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Global rigidity for totally nonsymplectic Anosov Zk actions

BORIS KALININ

VICTORIA SADOVSKAYA

We consider a totally nonsymplectic (TNS) Anosov action of Zk which is either
uniformly quasiconformal or pinched on each coarse Lyapunov distribution. We show
that such an action on a torus is C 1 –conjugate to an action by affine automorphisms.
We also obtain similar global rigidity results for actions on an arbitrary compact
manifold assuming that the coarse Lyapunov foliations are topologically jointly
integrable.

37C15, 37D99; 58R99

1 Introduction

In this paper we consider Anosov actions of Zk , k � 2, on a compact smooth manifold.
For certain classes of these actions, we establish global rigidity, ie, the existence of a
smooth conjugacy to an algebraic model.

The classification of Anosov systems is one of the central problems in smooth dy-
namics. A long standing conjecture on topological classification is that any Anosov
diffeomorphism is topologically conjugate to a hyperbolic automorphism of a torus or,
more generally, an infranilmanifold. This was established under the assumption that the
underlying manifold is an infranilmanifold, or that the diffeomorphism is of codimension
one (Franks [5], Manning [16], Newhouse [17]). A smooth classification of Anosov
diffeomorphisms is not feasible. Indeed, even when two Anosov diffeomorphisms are
topologically conjugate, the conjugacy is typically only Hölder continuous.

In contrast to a single Anosov diffeomorphism, it may be possible to classify higher rank
Anosov actions up to a smooth conjugacy. These are the actions of higher rank groups
with at least one element acting normally hyperbolically to the orbit foliation. The
study of rigidity for these actions originated from Zimmer’s conjecture that the standard
action of SL.n;Z/ on Tn , n > 2, is locally rigid, ie, any C 1 –small perturbation
is smoothly conjugate to the original action. The smoothness of the conjugacy was
established using the action of a diagonalizable subgroup isomorphic to Zn�1 (Hurder
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[8], Katok and Lewis [12]). This prompted the study of higher rank abelian Anosov
actions.

Reducible abelian actions can be obtained as products of Anosov diffeomorphisms or
flows. Important irreducible examples arise from natural algebraic constructions. They
include Zk actions by automorphisms of tori and infranilmanifolds, and Rk actions by
left translations on homogeneous spaces and biquotients. These actions exhibit strong
rigidity phenomena such as scarcity of invariant measures and cocycle rigidity (see
surveys in Lindenstrauss [15] and Nitica–Török [18]).

It is conjectured that all irreducible Anosov actions of Zk and Rk , k � 2, are smoothly
conjugate to algebraic actions. This conjecture is supported by the local rigidity results
of Katok and Spatzier. They showed that any C 1 –small perturbation of a higher-rank
algebraic Anosov action with semisimple linear part is smoothly conjugate to the original
action [13]. There are few results, however, toward proving the conjecture. So far, all
known results are for actions with one-dimensional coarse Lyapunov distributions. Such
actions are often called Cartan actions. Coarse Lyapunov distributions are the finest
nontrivial intersections of stable distributions of Anosov elements of the action. Katok
and Lewis established global rigidity for actions of certain maximal sets of commuting
diffeomorphisms of a torus [12]. In this case, the coarse Lyapunov distributions were
one-dimensional stable distributions of some Anosov elements of the action. Recently,
the first author obtained a smooth classification of certain classes of continuous and
discrete actions of rank k � 3 on arbitrary manifolds in the joint work with Spatzier
[11].

We consider Anosov Zk actions with higher-dimensional coarse Lyapunov distributions
under various assumptions on the relation between slow and fast expansion/contraction
rates on these distributions. Our approach is different from those of [11] or Katok
and Lewis [12], it is based on the study of holonomy maps and affine structures on
coarse Lyapunov foliations. For actions on tori, in contrast to [12], we do not rely
directly on the topological conjugacy given by the topological classification. This
allows us to obtain results on an arbitrary manifold, provided that the coarse Lyapunov
foliations are topologically jointly integrable. Also, we assume that the action is totally
nonsymplectic (TNS), ie, any pair of coarse Lyapunov distributions is contracted by
some element of the action. We note that this assumption is satisfied by the actions in
[12] and by the discrete actions in [11].

We state our main results in Section 3 and prove them in Sections 4 and 5. In Section 2
we discuss the structure of Zk Anosov actions and give necessary definitions.

The first author was supported in part by NSF grant DMS-0140513, and the second
author was supported in part by NSF grant DMS-0401014.
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2 Preliminaries

2.1 Lyapunov exponents for Zk actions

In this section we describe the Multiplicative Ergodic Theorem and related notions for
Zk actions (see Kalinin and Katok [10] for more details). Let f be a diffeomorphism
of a compact manifold M preserving an ergodic probability measure �. By Oseledec
Multiplicative Ergodic Theorem, there exist finitely many numbers �i and a measurable
splitting of the tangent bundle TM D

L
Ei on a set of full measure such that the

forward and backward Lyapunov exponents of v 2 Ei are �i . This splitting is called
Lyapunov decomposition.

Let ˛ be a Zk action on a compact manifold M preserving an ergodic probability
measure �. By commutativity, the Lyapunov decompositions for individual elements
of Zk can be refined to a joint invariant splitting for the action. Thus the Multiplicative
Ergodic Theorem in this case yields the following:

Proposition 2.1 There are finitely many linear functionals � on Zk , a set of full
measure P and a splitting of the tangent bundle TMD

L
E� over P which is ˛–

invariant and measurable such that, for all a 2 Zk and v 2 E� , the Lyapunov exponent
of v is �.a/, ie,

lim
n!C

�1

1

n
log kdan.v/k D �.a/;

where k � k is a continuous norm on TM.

The splitting
L

E� is called the Lyapunov decomposition and the linear functionals
� are called the Lyapunov exponents or Lyapunov functionals of ˛ . The hyperplanes
ker � � Rk are called the Lyapunov hyperplanes or Weyl chamber walls and the
connected components of Rk � [� ker� are called the Weyl chambers of ˛ . The
elements in the union of the Lyapunov hyperplanes are called singular, and the elements
in the union of the Weyl chambers are called regular.

Consider a Zk action by automorphisms, of a torus or an infranilmanifold. Then the
Lyapunov decomposition is determined by the eigenspaces of the automorphisms and
the Lyapunov exponents are the logarithms of the moduli of the eigenvalues. Hence
they are independent of the invariant measure, the Lyapunov decomposition is smooth,
and the Lyapunov functionals give uniform estimates of expansion and contraction
rates.
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2.2 Anosov Zk actions and coarse Lyapunov distributions

Let f be a diffeomorphism of a compact manifold M. Recall that f is Anosov if there
exist a continuous f –invariant decomposition of the tangent bundle TMD Es ˚ Eu

and constants K > 0, � > 0 such that, for all n 2 N,

kdf n.v/k � Ke��n
kvk for all v 2 Es;

kdf �n.v/k � Ke��n
kvk for all v 2 Eu:

The distributions Es and Eu are called the stable and unstable distributions of f . It is
well-known that these distributions are tangential to the stable and unstable foliations
W s and W u respectively. The leaves of these foliations are C 1 injectively immersed
Euclidean spaces. Locally, the immersions vary continuously in C 1 topology. Such
foliations are said to have uniformly C 1 leaves. In general, the distributions Es and
Eu are only Hölder continuous transversally to the corresponding foliations.

Now we consider a Zk action ˛ on a compact manifold M. The action is called Anosov
if there is an element which acts as an Anosov diffeomorphism. Note that the existence
of one Anosov element implies that all Lyapunov functionals are nonzero. Hence if
such an action is algebraic, ie, by automorphisms of a torus or an infranilmanifold,
then all regular elements are Anosov. In general, however, it is not known whether
all regular elements of an Anosov Zk action are Anosov. To obtain a good structural
theory for the general actions one needs to assume the existence of several Anosov
elements.

The stable distribution of one Anosov element is invariant under any other element,
and it is natural to consider intersections of the stable distributions for various Anosov
elements of the action. The finest such intersections are called coarse Lyapunov
distributions. This notion proved to be very useful for both algebraic and nonalgebraic
actions.

For an algebraic action, the coarse Lyapunov distributions are defined everywhere and
smooth. Moreover, a coarse Lyapunov distribution E� can be equivalently defined as
a direct sum of all Lyapunov spaces with Lyapunov functionals positively proportional
to �:

(2–1) E�
D ˚E�0 ; �0

D c � with c > 0:

For nonalgebraic actions, however, the situation is more complicated. It is not clear
that the an intersection of several stable distributions has constant dimension. Also, the
distribution ˚E�0 in general is only measurable and defined almost everywhere. The
next proposition shows that, in the presence of sufficiently many Anosov elements, the

Geometry & Topology, Volume 10 (2006)



Global rigidity for totally nonsymplectic Anosov Zk actions 933

coarse Lyapunov distributions are well-defined, continuous, and tangent to foliations
with smooth leaves. This is the discrete version of Proposition 2.4 in [11]. We denote
the set of all Anosov elements in Zk by A.

Proposition 2.2 Let ˛ be an Anosov Zk –action and let � be an ergodic probability
measure for ˛ with full support. Suppose that there exits an Anosov element in every
Weyl chamber defined by �. Then for each Lyapunov exponent � the coarse Lyapunov
distribution can be defined as

E�.p/D

\
fa2Aj�.a/<0g

Es
a.p/D

M
f�0Dc�jc>0g

E�0.p/

on the set P of full measure where the Lyapunov exponents exist. Moreover, E� is
Hölder continuous, and thus it can be extended to a Hölder distribution tangent to the
foliation W � D

T
fa2A j �.a/<0g W s

a with uniformly C 1 leaves.

It is easy to see that the coarse Lyapunov distributions constructed in the proposition
are indeed the finest nontrivial intersections of various stable distributions. Extending
Proposition 2.9 in [11], one can also show that for any other invariant measure with
Anosov elements in every Weyl chamber, (2–1) gives the same distributions. Note
that ergodic measures with full support always exist if the action contains a transitive
Anosov element. A natural example is given by the measure of maximal entropy for
such an element which, by uniqueness, is invariant under the action.

Now we describe an important class of Zk actions called totally nonsymplectic, or TNS.
For such an action, any pair of coarse Lyapunov distributions is contracted by some
element. For an algebraic action this is equivalent to having no negatively proportional
Lyapunov functionals. This property proved important and motivated the definition for
nonalgebraic actions in Katok–Niţică–Török [14] similar to the following:

Definition 2.3 Let ˛ be a C 1 action of Zk with a transitive Anosov element on a
compact smooth connected manifold M. We say that ˛ is a TNS Anosov action if TM
splits into a direct sum of continuous distributions Ei , called the coarse Lyapunov
distributions, so that:

(1) Any distribution Ei is of the form Ei D
T

a2AE
�.a/
a , where A is the set of

Anosov elements and �.a/ is either s or u.

(2) The sum of any two distributions Ei and Ej is contained in Es
a for some a 2A .

Remark 2.4 Note that condition (1) ensures that the distributions Ei are exactly the
coarse Lyapunov distributions as described earlier. It also implies that the distributions
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Ei are Hölder continuous and tangent to the integral foliations W i with uniformly
C 1 leaves, called the coarse Lyapunov foliations.

It also follows that for any Ei 6D Ej there exists a 2 A for which Ei � Es
a and

Ej � Eu
a .

This definition of an Anosov TNS action is very similar to the one introduced in [14].
In that definition, the set of all Anosov elements was replaced by a subcollection. It
gives similar properties for the action, but the distributions Ei may turn out to be
larger than the actual coarse Lyapunov distributions. We consider such distributions in
Theorem 3.4.

Proposition 2.2 gives the following sufficient conditions for an action to be TNS Anosov.
These conditions are close to being necessary.

Corollary 2.5 Let ˛ be a C 1 action of Zk with a transitive Anosov element on a
compact smooth connected manifold M. Suppose that for some ˛–invariant ergodic
measure � with full support there are no negatively proportional Lyapunov functionals,
and in each Weyl chamber there exists an Anosov element. Then ˛ is a TNS Anosov
action.

2.3 Conjugacy to algebraic models

Let f be an Anosov diffeomorphism of a torus or, more generally, an infranilmanifold
N . By the results of Franks [5] and Manning [16], f is topologically conjugate to
an Anosov automorphism AW N !N , ie, there exists a homeomorphism � W N !N
such that A ı� D � ıf . The conjugacy � is unique in the homotopy class of identity.

Now consider an Anosov Zk action ˛ on an infranilmanifold. For any Anosov element
of ˛ there is a homeomorphism � which conjugates it to an automorphism. It is well
known that � then conjugates ˛ to an action by affine automorphisms, Hurder [8, proof
of Proposition 2.18]. This follows from the fact that any homeomorphism commuting
with an Anosov automorphism is an affine automorphism (Palis and Yoccoz [19, proof of
Proposition 0]). By an affine automorphism we mean a composition of an automorphism
and a translation. We note that an Anosov Zk action on an infranilmanifold may have
no fixed points [8], however, there is always a finite index subgroup which fixes a point
and whose action is conjugate to an action by automorphisms.

2.4 Joint integrability

While any coarse Lyapunov distribution is integrable, a sum of two coarse Lyapunov
distributions is not integrable in general. This can be observed for Zk actions on
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nilmanifolds. However, for an algebraic Zk action on a torus, all Lyapunov foliations
are linear, and thus the sum of any two coarse Lyapunov distributions is integrable.

Let ˛ be an Anosov Zk action on a torus. Then it is topologically conjugate to an
algebraic action (Section 2.3). The conjugacy maps the (un)stable foliations to the
(un)stable foliations, and hence it maps the coarse Lyapunov foliations to the coarse
Lyapunov foliations. We conclude that any two coarse Lyapunov foliations for ˛ are
topologically jointly integrable in the following sense.

Definition 2.6 Two foliations W 1 and W 2 of a manifold are topologically jointly
integrable if there is a topological foliation W such that for any x the map

� W W 1.x/� W 2.x/! W .x/; �.y; z/D W 1.z/\ W 2.y/

is a well-defined local homeomorphism. In other words, the foliations W 1 and W 2

give a local product structure on the leaves of W .

2.5 Conformality and uniform quasiconformality

Let f be a diffeomorphism of a compact Riemannian manifold M, and let E be a con-
tinuous f –invariant distribution. The diffeomorphism f is uniformly quasiconformal
on E if the quasiconformal distortion

KE.x; n/D
max f k df n.v/ k W v 2 E.x/; kvk D 1 g

min f k df n.v/ k W v 2 E.x/; kvk D 1 g

is uniformly bounded for all n 2 Z and x 2M. We note that the notion of uniform
quasiconformality does not depend on the choice of a Riemannian metric on the
manifold. Clearly, an Anosov diffeomorphism can be uniformly quasiconformal on E

only if E is contained in its stable or its unstable distribution.

If KE.x; n/D 1 for all x and n, the diffeomorphism is said to be conformal on E .
The next result shows that any Anosov diffeomorphism uniformly quasiconformal on
E is, in fact, conformal with respect to some metric on E .

Theorem 2.7 Let f be a topologically transitive C 1 Anosov diffeomorphism on
a compact manifold M. Let E be a Hölder continuous f –invariant distribution.
Suppose that f is uniformly quasiconformal on E . Then f is conformal with respect
to a Riemannian metric on E which is Hölder continuous on M.

If, in addition, E is tangential to a foliation W with C 1 leaves, then this metric is
C 1 along the leaves of W .
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The proof of this theorem is virtually identical to the proof of Theorem 1.3 in Sadovskaya
[21]. There the stable distribution and the stable foliation are considered instead of E

and W .

Let � be a group acting on M via diffeomorphisms, and let E be a continuous
� –invariant distribution. We say that the action is uniformly quasiconformal on E if
the quasiconformal distortion is uniformly bounded for all elements of � .

Proposition 2.8 Suppose that the � –action is generated by finitely many commuting
diffeomorphisms. If each generator is uniformly quasiconformal on E , then the � –
action is uniformly quasiconformal on E .

Proof Any element of the action can be written as f n1

1
: : : f

nk

k
, where f1; : : : ; fk

are the generators. Then uniform quasiconformality of the action follows directly from
the definition.

3 Main results

In our first theorem we consider uniformly quasiconformal TNS Anosov actions.

Theorem 3.1 Let ˛ be a TNS Anosov action of Zk on a compact connected smooth
manifold M. Suppose that:

(1) Any two coarse Lyapunov foliations are topologically jointly integrable.

(2) The action is uniformly quasiconformal on each coarse Lyapunov distribution.

Then a finite cover of ˛ is C 1 –conjugate to a Zk action by affine automorphisms of a
torus.

If the manifold M is a torus, then condition (1) is automatically satisfied (see Section
2.4). Thus we obtain the following corollary.

Corollary 3.2 Let ˛ be a TNS Anosov action of Zk on a torus. Suppose that the
action is uniformly quasiconformal on each coarse Lyapunov distribution. Then ˛ is
C 1 –conjugate to a Zk action by affine automorphisms of the torus.

Note that some or all coarse Lyapunov distributions may be one dimensional. In this
case, the quasiconformality assumption is trivially satisfied. In higher dimensions,
quasiconformality can be replaced by certain pinching, ie, a relationship between
the slow and fast rates of expansion/contraction. The following theorem gives a
result of this type. Note, however, that uniform quasiconformality does not relate the
expansion/contraction rates at different points, so it does not imply the 1/2–pinching
below.
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Definition 3.3 Let f a diffeomorphism which contracts an invariant distribution E .
We say that f is 1/2–pinched on E if there exist numbers K > 0 and 0<�< � with
� < 2� such that for any v 2 E ,

K�1e�n�
kvk � kdf n.v/k � Ke�n�

kvk:

Theorem 3.4 Let ˛ be an Anosov action of Zk on a compact connected smooth
manifold M. Suppose that TM splits into a direct sum of continuous distributions
Ei , where each Ei is an intersection of stable distributions of some Anosov elements
of the action, and that for any two distributions Ei and Ej :

(1) The corresponding foliations are topologically jointly integrable.

(2) There is an element which contracts both distributions and is 1/2–pinched on Ei .

(3) There is an element a 2 Zk which expands Ei faster than it expands Ej ,
ie, for any x 2M,

max fkda.v/k W v 2 Ej .x/; kvk D 1g < min fkda.v/k W v 2 Ei.x/; kvk D 1g:

Then ˛ is C 1 –conjugate to a Zk action by affine automorphisms of an infranilmani-
fold.

Applying this theorem to actions on tori, we obtain the following result.

Corollary 3.5 Let ˛ be an Anosov action of Zk on a torus satisfying conditions (2) and
(3) of Theorem 3.4. Then ˛ is C 1 –conjugate to a Zk action by affine automorphisms
of the torus.

Remark 3.6 Condition (3) is used in Theorem 3.4 only to obtain certain smoothness
of Ei along the leaves of the foliation W j tangential to Ej . It can be substituted by
the assumption that the regularity of Ei along W j is C 1;ˇ for all ˇ < 1.

In Theorem 3.4, each distribution Ei may be a direct sum of several coarse Lyapunov
distributions (see the discussion after Remark 2.4). If the distributions Ei are the
coarse Lyapunov distributions, then the infranilmanifold is finitely covered by a torus.

Corollary 3.7 Let ˛ be a TNS Anosov action of Zk on a compact connected smooth
manifold M. Suppose that the coarse Lyapunov distributions satisfy conditions (1),
(2), and (3) of Theorem 3.4. Then a finite cover of ˛ is C 1 –conjugate to a Zk action
by affine automorphisms of a torus.
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We can also deduce some results on local rigidity of algebraic Anosov actions. The
local rigidity of higher rank Anosov Zk actions by automorphisms of tori was proved by
Katok and Spatzier [13] under the assumption that the automorphisms are semisimple
(ie, have no Jordan blocks). The general case has not been resolved. In a recent preprint
[2], Einsiedler and Fisher considered the Jordan block case under the 1/2–pinching
assumption on each coarse Lyapunov distribution. Corollary 3.8 gives an alternative
proof of their result in the TNS case.

Corollary 3.8 Let ˛ be a TNS Anosov action of Zk by toral automorphisms. Suppose
that for each coarse Lyapunov distribution there exists a regular element which is
1/2–pinched on this distribution.

Then ˛ is locally rigid, ie, it is C 1 –conjugate to any sufficiently C 1 –small perturba-
tion.

More generally, Corollary 3.7 can be applied to actions which have pinching similar to
that of small perturbations of 1/2–pinched algebraic actions.

Corollary 3.9 Let ˛ be a TNS Anosov action of Zk on a compact connected smooth
manifold M. Suppose that:

(1) Any two coarse Lyapunov foliations are topologically jointly integrable.

(2) For any coarse Lyapunov distribution E there exist functionals �min and �max

proportional with a constant 1 � c < 2, such that for some K > 0

K�1e�min.a/
kvk � kda.v/k � Ke�max.a/

kvk

for any a 2 Zk with �min.a/ > 0 and any v 2 E .

Then a finite cover of ˛ is C 1 –conjugate to a Zk action by affine automorphisms of a
torus.

Remark 3.10 The inequality in condition (2) of Corollary 3.9 of can be replaced by a
weaker assumption

K�1e�min.a/�"jaj
kvk � kda.v/k � Ke�max.a/C"jaj

kvk

if " is small enough for the given system of functionals.
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4 Proof of Theorem 3.1

4.1 Outline of the proof

We begin by considering any two coarse Lyapunov distributions E1 and E2 , and the
corresponding coarse Lyapunov foliations W 1 and W 2 . In Sections 4.2 and 4.3 we
show that the leaves of W D W 1 ˚ W 2 are smooth, and that E1 and E2 are C 1;ˇ

along these leaves.

In Section 4.4 we discuss the nonstationary linearization of the action along the leaves
of W 1 and the associated affine structures on these leaves. In the next section we show
that the holonomies of the foliation W 2 between the leaves of W 1 are affine. This
implies that E2 is C 1 along W 1 . It follows that all coarse Lyapunov distributions
are C 1 on M.

In Section 4.6 we show that the nonstationary linearizations depend smoothly on the
base point. We use this to construct a C 1 invariant affine connection in Section 4.7.
Together with the smoothness of the coarse Lyapunov distributions, this implies that the
action is C 1 –conjugate to an action by affine automorphisms of an infranilmanifold.
Finally, we show that this infranilmanifold is finitely covered by a torus.

4.2 Regularity of the sum of two coarse Lyapunov foliations

Since ˛ is a TNS Anosov action, the coarse Lyapunov distributions are defined every-
where on the manifold and Hölder continuous. They are tangential to coarse Lyapunov
foliations with uniformly C 1 leaves. (See Section 2.2.)

We consider any two coarse Lyapunov distributions E1 and E2 , and the corresponding
coarse Lyapunov foliations W 1 and W 2 . By assumption (1) of the theorem, the
foliations W 1 and W 2 are topologically jointly integrable, see Definition 2.6. We will
write W 1 ˚ W 2 for the foliation W in the definition. Since the action is TNS, there
is an element which contracts W . Applying the iterates of its inverse, one can see that
the local product structure on the leaves of W extends to the global one.

Lemma 4.1 The topological foliation W D W 1 ˚ W 2 has uniformly C 1 leaves
tangent to the distribution E D E1 ˚ E2 .

Proof This follows from the Journé lemma below. A function is said to be uniformly
C 1 along a foliation with smooth leaves if the partial derivatives of all orders in the
foliation directions exist and are continuous on the manifold.
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Lemma 4.2 [9] Let M be a C 1 manifold, and let W 1 and W 2 be two transverse
Hölder continuous foliations with uniformly C 1 leaves. If a function � is uniformly
C 1 along the leaves of the two foliations, then it is C 1 on M.

We recall that the leaves of W 1 and W 2 are C 1 immersed manifolds tangent to the
distributions E1 and E2 respectively. Moreover, they are uniformly C 1 . We can
identify a small neighborhood of a point x 2M with a ball in Rn and consider the
orthogonal projection … to the subspace E.x/D E1.x/˚ E2.x/. The restriction of
… to the leaf W .x/ is locally a homeomorphism that projects foliations W 1 and W 2

to transverse foliations SW 1 and SW 2 in E.x/ with uniformly C 1 leaves. Then the
inverse � of this restriction is uniformly C 1 along the leaves of SW 1 and SW 2 and
hence it is C 1 by the Journe lemma. This implies that W .x/ is a C 1 immersed
manifold. In particular, its tangent distribution is E D E1 ˚E2 . Since the immersions
of W 1.x/ and W 2.x/ depend continuously on x in C 1 topology it is easy to see
that so do the immersions of W .x/.

4.3 Coarse Lyapunov distributions are C 1;ˇ along W

Let E1 and E2 be two coarse Lyapunov distributions, let E D E1 ˚E2 be their sum,
and let W D W 1 ˚ W 2 be the corresponding foliation. Above we established that the
leaves of this foliation are C 1 manifolds. We study regularity of the distributions E1

and E2 along the leaves of W .

Proposition 4.3 Suppose that there exists an element f that expands E1 , contracts
E2 and is uniformly quasiconformal on W 2 . Then E1 is C 1;ˇ along the leaves of
W for some ˇ > 0. More precisely, its first derivatives in W directions exist and
are Hölder continuous along the leaves of W with uniform bounds on M for the
derivatives and the Hölder constants.

Proof We use the C r Section Theorem of M Hirsch, C Pugh, and M Shub. See
Theorem 3.2, as well as its more detailed version Theorem 3.5, and Remarks 1 and 2
after Theorem 3.8 in [7].

We consider the distribution E D E1 ˚E2 . This is a continuous bundle over M which
is C 1 smooth along the leaves of W . There exist distributions xE1 and xE2 in E

which are close to E1 and E2 respectively and C 1 along the leaves of W . Now we
can consider a vector bundle L whose fiber over x is the set of linear operators from
xE1.x/ to xE2.x/. The differential of f induces a natural action F on L. Suppose

that F contracts fibers of L, ie, for any x 2M and any u; v 2 L.x/

kF.u/� F.v/kf x � kxku � vkx with sup
x2M

kx < 1
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with respect to some norm on L. Then Theorem 3.1 in [7] gives existence, uniqueness,
and continuity of the invariant bounded section. By uniqueness, the graph of this invari-
ant section is the distribution E1 . Moreover, the C r Section Theorem [7, Theorems
3.2 and 3.5] states that if L is C r and

(4–1) sup
x2M

kx˛
r
x < 1 where ˛x D k.dfx/

�1
k;

then the invariant section is C r smooth. Theorem 3.8 in [7] and Remarks 1 and 2 after
it imply that this conclusion holds for noninteger values of r in the Hölder category,
and that the compactness of the base can be replaced by the boundedness condition as
in Theorem 3.2 in [7].

We are interested only in the smoothness of the invariant section along the leaves of
W . In this case, we need the smoothness of the bundle L only along W and we can
use ˛x D k.df jE.x//

�1k in (4–1). This can be also seen by formally applying the C r

Section Theorem to the bundle L over the disjoint union of the leaves of W as the
base.

Now we use the assumption that f is uniformly quasiconformal on W 2 to verify (4–1).
We fix some continuous norm on the distribution E and endow the fibers of L with
the standard operator norm. We denote

lx D min f kdfx.v/k W v 2 E1.x/; kvk D 1 g

mx D min f kdfx.v/k W v 2 E2.x/; kvk D 1 g

Mx D max f kdfx.v/k W v 2 E2.x/; kvk D 1 g:

Then ˛x D k.df jE.x//
�1

k D 1=mx and kx � Mx= lx

since xE1 and xE2 are close to E1 and E2 . Hence

kx˛
1Cˇ
x �

Mx

lxm
1Cˇ
x

�
1

l � m
ˇ
x

�
Mx

mx
�

K

l � .infxfmxg/ˇ

where l D infx lx and

K D sup
x; n

max f k df n.v/ k W v 2 E2.x/; kvk D 1 g

min f k df n.v/ k W v 2 E2.x/; kvk D 1 g

is the quasiconformal distortion bound. Note that K is a uniform bound for all iterates
f n . Since f expands E1 we can replace it by f n , if necessary, to ensure that l

is large enough so that K= l < 1. Then the right hand side is less than 1 for some
ˇ > 0. Once this iterate is chosen, we can take xE1 and xE2 close enough to E1 and
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E2 to guarantee that supx2M kx˛
1Cˇ
x < 1. Hence, by the C r Section Theorem, the

distribution E1 is C 1;ˇ smooth along the leaves of W .

By Remark 2.4, for any two coarse Lyapunov distributions there exists an element
of the action which expands the first distribution and contracts the second one. Thus,
under the assumptions of Theorem 3.1, Proposition 4.3 implies that any two coarse
Lyapunov foliations W 1 and W 2 are C 1;ˇ smooth along the leaves of their sum.

4.4 Nonstationary linearizations

For each coarse Lyapunov foliation W D W i we use the following proposition to
obtain a nonstationary linearization h D hi of the action along the leaves of W .

Proposition 4.4 [21, Proposition 4.1] Let f be a diffeomorphism of a compact
Riemannian manifold M. Let W be a continuous invariant foliation with C 1 leaves,
and let E be its tangent distribution.

Suppose that k df jE k< 1, and there exist K > 0 and " > 0 such that for any x 2M
and n 2 N,

(4–2) k
�
df n

jE.x/

��1
k � k df n

jE.x/k
2

� K.1 � "/n:

Then for any x 2M there exists a C 1 diffeomorphism hx W W .x/! E.x/ such that

(1) hf x ıf D dfx ı hx ;

(2) hx.x/D 0 and dhx.x/ is the identity map;

(3) hx depends continuously on x in C 1 topology.

Let f be an element of the action which contracts a coarse Lyapunov foliation W .
Since f is uniformly quasiconformal on W ,

k
�
df n

jE.x/

��1
k � k df n

jE.x/k

is uniformly bounded in x and n. Hence (4–2) is satisfied and there exists a linearization
h for f along the leaves of W . Since such a linearization is unique [21, Lemma 4.1],
h linearizes any diffeomorphism which commutes with f . Indeed, if g ıf D f ı g ,
then it is easy to see that dg�1 ı h ı g also gives a linearization for f , and hence
h ı g D dg ı h. Therefore, h provides linearization for all elements of the action.

Lemma 4.5 Under the assumptions of Proposition 4.4, for any R > 0 there exists
K > 0 such that for any two points x and z on the same leaf of W with dist .x; z/ <R

and any n> 0

kdf n
jE.z/k � K � kdf n

jE.x/k:
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Proof Using the linearization h along the leaves of W we can write

f n
jW .x/ D .hf nx/

�1
ı df n

jE.x/ ı hx;

so df n
jE.z/ D .dhf nx.f

nz//�1
ı df n

jE.x/ ı dhx.z/:

Since hx depends continuously on x in C 1 topology, kdhx.y/k and k.dhx.y//
�1k

are uniformly bounded for all x 2 M and y 2 W .x/ with dist .x;y/ < R. Since
dist .f nx; f nz/ < dist .x; z/ <R, the norms of the first and last term in the right hand
side are uniformly bounded and the lemma follows.

Proposition 4.6 Under the assumptions of Proposition 4.4, the map

hz ı h�1
x W E.x/! E.z/

is affine for any x and z on the same leaf of W . Hence the nonstationary linearization
h defines affine structures on the leaves of W .

By an affine structure we understand an atlas with affine transition maps.

Proof It suffices to show that

d
�
hz ı h�1

x

�
.xy/D d

�
hz ı h�1

x

�
.0x/ for any xy 2 E.x/:

Since hx D
�
df njE.x/

��1
ı hf nx ıf njW .x/ we obtain

hz ı h�1
x D

�
df n

jE.z/

��1
ı hf nz ı .hfnx/

�1
ı df n

jE.x/:

Then for any xy 2 E.x/

d
�
hz ı h�1

x

�
.xy/D

�
df n

jE.z/

��1
ı dhf nz.f

ny/ ı
�
dhfnx.f

ny/
��1

ı df n
jE.x/;

where y D .hx/
�1.xy/ 2 W .x/. Hence

k d.hz ı h�1
x /.xy/� d.hz ı h�1

x /.0x/ k �

k
�
df n

jE.z/

��1
k � k dhf nz.f

ny/ ı .dhfnx.f
ny//�1

�

dhf nz.f
nx/ ı .dhfnx.f

nx//�1
k � k df n

jE.x/k:

Note that all four differentials of h in the middle term are close to the identity Id (in
fact dhfnx.f

nx/D Id). More precisely, dhx.y/ depends Lipschitz continuously on
y 2 W .x/ with dist .x;y/ <R and the Lipschitz constant is uniform in x 2M. Hence
the norm of the difference between each of these four differentials and Id is of order

maxfdist .f nx; f ny/; dist .f ny; f nz/g � K1k df n
jE.z/k;
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as easily follows from Lemma 4.5. Applying this lemma again we obtain

kd.hz ı h�1
x /.xy/� d.hz ı h�1

x /.0x/k �

k.df n
jE.z//

�1
k � K2kdf n

jE.z/k � Kkdf n
jE.z/k ! 0

by (4–2). This shows that the differential of hz ı h�1
x is constant on E.x/ and thus the

map is affine.

We conclude that for every coarse Lyapunov foliation there exist affine structures on
its leaves. The maps induced by the elements of the action on the leaves are affine with
respect to these structures.

4.5 Holonomies are affine and coarse Lyapunov distributions are C 1

We continue to study the regularity of two coarse Lyapunov foliations W 1 and W 2

along the leaves of their sum W D W 1 ˚ W 2 . In this section we consider holonomy
maps H between the leaves of W 1 along the leaves of W 2 . Let x and z be two
nearby points on the same leaf of W 2 . For a point y in W 1.x/ close to x , we denote

H.y/D Hxz.y/D W 2.y/\ W 1.z/:

Our goal is to show that the holonomies are affine with respect to the affine structures
on the leaves of W 1 .

Proposition 4.7 Let f be a diffeomorphism which contracts W 1 ˚ W 2 . Suppose
that there exists 0 < ˇ � 1 such that the holonomy maps are C 1;ˇ and for any two
nearby points x and z on the same leaf of W 2 ,

(4–3) k
�
df n

jE1.z/

��1
k � k df n

jE1.x/k
1Cˇ

! 0 as n ! 1:

Then the holonomy maps are affine with respect to the affine structures on the leaves of
W 1 and are uniformly C 1 , ie, they depend continuously on x and z in C 1 topology.
Also, the distribution E2 is uniformly C 1 along the leaves of W .

Proof Since the diffeomorphism f contracts both W 1 and W 2 , the holonomy map
H D Hxz W W 1.x/! W 1.z/ is defined on the whole leaf W 1.x/. Indeed, for any y

in W 1.x/ we have H.y/D
�
f �n ı Hf nx f nz ıf n

�
.y/, where n is large enough so

that the points f nx , f ny , and f nz are close.

Let hx W W 1.x/ ! E1.x/ and hz W W 1.z/ ! E1.z/ be the linearizations given by
Proposition 4.4. Consider the map

xH D xHxz D hz ı H ı .hx/
�1

W E1.x/! E1.z/:
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Our goal is to show that xH is linear and hence H is affine. Note that xH .0x/D 0z

since hx.x/D 0x and hz.z/D 0z . For a point y in W 1.x/, we denote xy D hx.y/.
To prove that the map xH is linear it suffices to show that d xH .xy/D d xH .0x/ for any
y in W 1.x/.

Using forward iterations of the diffeomorphism f , we can write

xH D
�
df n

jE1.z/

��1
ı xHn ı df n

jE1.x/;

xHn D hf nz ı Hn ı .hf nx/
�1

W E1.f nx/! E1.f nz/;where

and HnW W 1.f nx/! W 1.f nz/ is the holonomy map along the leaves of W 2 . Then

d xH D
�
df n

jE1.z/

��1
ı d xHn ı df n

jE1.x/:

In E1.f nx/ we denote 0n D 0f nx and xyn D df n
x .xy/D .hf n

x
/�1.f ny/. Then

d xH .xy/D
�
df n

jE1.z/

��1
ı d xHn.xyn/ ı df n

jE1.x/

d xH .0x/D
�
df n

jE1.z/

��1
ı d xHn.0n/ ı df n

jE1.x/:and

We estimate the norm of the difference between d xH .xy/ and d xH .0x/ as follows.

kd xH .xy/� d xH .0x/k D k
�
df n

jE1.z/

��1
ı

�
d xHn.xyn/� d xHn.0n/

�
ı df n

jE1.x/k

� k
�
df n

jE1.z/

��1
k � k d xHn.xyn/� d xHn.0n/ k � k df n

jE1.x/k

Since the holonomy maps are C 1;ˇ with uniform Hölder constant, so are xH . Hence

k d xHn.xyn/� d xHn.0n/ k � K � .dist.xyn; 0n//
ˇ

� K � .dist.xy; 0x//
ˇ

� k df n
jE1.x/k

ˇ:

Therefore

k d xH .xy/� d xH .0x/ k � K � .dist.xy; 0x//
ˇ

� k
�
df n

jE1.z/

��1
k � k df n

jE1.x/k
1Cˇ

! 0

as n ! 1. This implies that d xH .xy/D d xH .0x/ for any xy in E1.x/. This shows that
d xH is constant on E1.x/, and therefore the map xH is linear.

Since hx and hz are C 1 diffeomorphisms, the holonomy map H D .hz/
�1 ı xH ı

hx W W 1.x/ ! W 1.z/ is also a C 1 diffeomorphism. Recall that the linearization
depends continuously on the base point in C 1 topology. Then, since xH is linear and
depends continuously on x and z , the holonomy map H D Hxz depends continuously
on x and z in C 1 topology. This implies that E1 is uniformly C 1 along the leaves
of W [20].

Geometry & Topology, Volume 10 (2006)



946 Boris Kalinin and Victoria Sadovskaya

Corollary 4.8 Under the assumptions of Theorem 3.1, all coarse Lyapunov distribu-
tions W i are C 1 on M. Also, the holonomy maps between the leaves of W i along
the leaves of W j are affine.

Proof We fix coarse Lyapunov foliations W i and W j . To apply Proposition 4.7
we consider an element f of the action which contracts Ei ˚ Ej . Such an element
exists since the action is TNS, and it is uniformly quasiconformal on Ei by assumption
(2) of the theorem. In Section 4.3 we showed that Ej is C 1;ˇ along the leaves of
W DW i˚W j with some ˇ>0 and a uniform Hölder constant on M. Hence so are the
holonomy maps H along W j [20]. By Lemma 4.10, k

�
df njEi .z/

��1
k �k df njEi .x/k

is bounded by a constant independent of n, and hence

k
�
df n

jEi .z/

��1
k � k df n

jEi .x/k
1Cˇ

! 0

for any ˇ > 0. Now it follows from Proposition 4.7 that the holonomy maps are affine
and uniformly C 1 , and Ej is uniformly C 1 along the leaves of W .

In particular, we have established that any coarse Lyapunov distribution is uniformly
C 1 along the leaves of any coarse Lyapunov foliation. To conclude that any coarse
Lyapunov distribution is C 1 on M we use the following well-known result (see
Katok and Lewis [12] and Goetze and Spatzier [6]), which is obtained by inductive
application of Journé Lemma 4.2.

Lemma 4.9 Let � be a map from M to a finite-dimensional C 1 manifold. If � is
uniformly C 1 along the leaves of every coarse Lyapunov foliation then it is C 1 on
M.

To complete the proof of Corollary 4.8, it remains to establish the following lemma.

Lemma 4.10 Let E be a Hölder continuous distribution invariant under a diffeomor-
phism f . Suppose that f is uniformly quasiconformal on E . Let x and z be two
points such that for some K1 and 0< � < 1, dist .f nx; f nz/� K1 ��n for all n � 0.
Then there exists a constant K such that for all n � 0,

(4–4) k
�
df n

jE.z/

��1
k � k df n

jE.x/k � K:

Note that the estimate (4–4) implies the one in Lemma 4.5, and in the uniformly
quasiconformal case the two estimates are, in fact, equivalent. The main difference
is that in Lemma 4.10 the points x and z are not required to be on the same leaf
of a foliation tangential to E . Hence the proof is different and requires a stronger
assumption.
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Proof Since f is uniformly quasiconformal on E , Theorem 2.7 implies that it is
conformal with respect to a Hölder continuous Riemannian metric on E . We will use
this metric in the proof. Note that (4.4) is independent of the choice of a continuous
metric on E .

To simplify the notations, in this proof only we write df i
x instead of df i jE.x/ . Since

E is Hölder continuous, df jE is also Hölder continuous with some exponent ˇ > 0.
Thus we obtain

kdfxk

kdfzk
� 1 C

j kdfxk � kdfzk j

kdfzk
� 1 C

K2 � .dist.x; z//ˇ

minz kdfzk
D 1 C K3 � .dist.x; z//ˇ:

Since f is conformal on E , k.dfz/
�1k D kdfzk�1 , and we can estimate

k.df n
z /

�1
k � k df n

x k

� k.dfz/
�1

k � k.dff z/
�1

k : : : k.dff n�1z/
�1

k � kdfxk � kdff xk : : : kdff n�1xk

D
kdfxk

kdfzk
�
kdff xk

kdff zk
� � �

kdff n�1xk

kdff n�1zk
�

n�1Y
iD0

�
1 C K3 �

�
dist.f ix; f iz/

�ˇ
�

�

n�1Y
iD0

�
1 C K3 �

�
K1 ��i

�ˇ
�

�

n�1Y
iD0

�
1 C K4 ��iˇ

�
� K:

4.6 The linearizations depend smoothly on the basepoint

Let W 1 and W 2 be two coarse Lyapunov foliations and let W D W 1 ˚ W 2 be
their sum. In Section 4.5 we established that the holonomy maps between the leaves
of W 1 along W 2 are affine. We will use this fact to show that the linearizations
h1

x W W 1.x/! E1.x/ depend smoothly on the base point along the leaves of W .

Proposition 4.11 If W 1 and W 2 are two coarse Lyapunov foliations then the lin-
earizations h1

x depend uniformly C 1 on the base point along the leaves of W 1 ˚ W 2 .

Proof First we construct a local linearization h along W using linearizations h1

along W 1 and h2 along W 2 . Let E be the distribution tangent to W and let U be a
small open neighborhood of a point x in W . We define the map hx W U ! E.x/ as
follows:

hxjW 1.x/ D h1
x; hxjW 2.x/ D h2

x;

and for a point p in U we set

hx.p/D h1
x.y/C h2

x.z/; where y D W 2.p/\ W 1.x/; z D W 1.p/\ W 2.x/:
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Since the foliations W 1 and W 2 are C 1 smooth along the leaves of W , the map
hx is a C 1 diffeomorphism. It is easy to see that the family of maps hx satisfies
conditions (1), (2), and (3) of Proposition 4.4 and thus h gives a local nonstationary
linearization along W . However, we do not use properties (1) and (2) in the proof.

Let us identify E.x/ with Rn � Rm in such a way that E1.x/ corresponds to Rn ,
and E2.x/ corresponds to Rm . Then hx identifies the neighborhood U � W of x

with an open neighborhood xU of 0 in Rn � Rm . It is clear from the construction of
hx that the leaves of W 1 and W 2 correspond to subspaces parallel to Rn and Rm

respectively. For a point p in U , the tangent space Ep is identified with Rn � Rm

by .dhx/p in such a way that 0p corresponds to xp D hx.p/. We will show that the
maps h1

p , p 2 U , are identity maps when written in these local coordinates. In other
words, this coordinate system coincides with the linearization on every leaf of W 1 .
This implies that the linearizations h1

p depend smoothly on p .

Let  p be the restriction of hx to W 1.p/. By the construction of hx , the diffeomor-
phism  p can be expressed as

 p D xH0; xp ı h1
x ı Hp;x;

where Hp;x is the holonomy map from W 1.p/ to W 1.x/ along the leaves of W 2 ,
and xH0; xp is the projection from Rn to Rn

xp D Rn C xp along Rm in Rn � Rm . Since
the holonomy map Hp;x is affine by Corollary 4.8, the map  p is also affine.

We denote by xh1
p the coordinate representation of h1

p , ie,

xh1
p D d p.p/ ı h1

p ı �1
p W Rn

xp \ U ! Rn
xp:

Since  p is affine, we conclude that xh1
p is also affine. We note that

xh1
p. xp/D xp and d xh1

p. xp/D d p.p/ ı dh1
p.p/ ı d. �1

p /. xp/D Id;

since dh1
p.p/D Id by Proposition 4.4(2). Hence the affine map xh1

p is the identity map,
and therefore the maps h1

p depend uniformly C 1 on p . The uniformity comes from
the fact that hx depends continuously on x in C 1 topology.

4.7 Smooth affine connection

In this section we construct an ˛–invariant C 1 affine connection on M. We say that
an affine connection r is of class C r , r � 0, if rX Y is a C r vector field for any two
C 1 vector fields X and Y .

It was proved by Feres in [4] that an Anosov diffeomorphism which is 1/2–pinched on
its stable and unstable distributions preserves a unique continuous affine connection. In
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fact, such a connection exists on any invariant distribution where a diffeomorphism is
a 1/2–pinched contraction [3]. The connections on the stable and unstable distributions
can be combined into a connection on the manifold. However, the connection on the
(un)stable distribution is not known to be smooth transversally even if the distribution
is smooth. Feres also noted in [3] that the exponential map of an invariant connection
gives a nonstationary local linearization.

We consider coarse Lyapunov distributions and use the nonstationary linearizations to
obtain invariant affine connections on them. Their smoothness will follow from the
smoothness of the linearizations. It can be seen from Proposition 4.6 that these affine
connections are the same as the ones defined by the affine structures on the leaves of
coarse Lyapunov foliations.

First we define an ˛ -invariant affine connection ri along each coarse Lyapunov
foliation W i . At each point x in M, pull back the affine connection xrEi .x/ on the
tangent space Ei.x/ using the map hi

x W W i.x/ ! Ei.x/ to define an ˛–invariant
affine connection ri along each coarse Lyapunov foliation W i . More precisely, for
vector fields X i and Y i on W i we define

.ri
X i Y

i/.x/D .hi
x/

�1
�

�
xr

Ei .x/
xX i

xY i
�
;

where xX i D .hi
x/�X i and xY i D .hi

x/�Y i are the push-forwards of X i and Y i . It
is easy to see that ri is an ˛–invariant affine connection, which is as smooth as the
dependence of hi

x on x . Thus, by Proposition 4.11, ri is uniformly C 1 along the
leaves of any coarse Lyapunov foliation. It follows from Lemma 4.9 that ri is C 1

on M.

Now we define an affine connection r on M using a standard construction. Let X

and Y be two vector fields on M. We decompose X D
P

X i and Y D
P

Y i , where
X i ;Y i 2 Ei . Then

rX Y D

X
r

i
X i Y

i
C

X
i¤j

…j ŒX
i ;Y j �;

where …j is the projection onto Ej , defines an affine connection. Since the distribu-
tions Ei and the connections ri are C 1 , so is r . Since ri and Ei are ˛–invariant,
so is r . Thus we constructed an ˛–invariant C 1 affine connection on M.

4.8 Smooth conjugacy to a toral action

In this section we complete the proof of Theorem 3.1. First we show that the action is
C 1 –conjugate to an action by affine automorphisms of an infranilmanifold.
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Let f be a transitive Anosov element of the action ˛ . Then f preserves the C 1 affine
connection r constructed in Section 4.7. Also, its stable and unstable distributions are
C 1 as direct sums of C 1 coarse Lyapunov distributions. It follows from the main
result of Y Benoist and F Labourie in [1] that f is conjugate to an automorphism of
an infranilmanifold N by a C 1 diffeomorphism � . It is known that any diffeomor-
phism commuting with an Anosov automorphism of an infranilmanifold is an affine
automorphism itself (see Section 2.3). Hence � conjugates ˛ to an action x̨ by affine
automorphisms of N .

Now we complete the proof by showing that N is finitely covered by a torus. We use
joint integrability of the coarse Lyapunov foliations and uniform quasiconformality of
the action on them.

The conjugacy maps the (un)stable manifolds for elements of ˛ to the (un)stable
manifolds for elements of x̨ , and the course Lyapunov foliations of ˛ are mapped to
the course Lyapunov foliations of x̨ . It follows that any two course Lyapunov foliations
of x̨ are jointly integrable. Since the conjugacy is smooth, the Lyapunov functionals of
the two actions coincide, and x̨ is uniformly quasiconformal on its course Lyapunov
distributions. Also, the action x̨ is TNS, and hence it has no negatively proportional
Lyapunov functionals.

The infranilmanifold N is finitely covered by a nilmanifold N=� , where N is a
simply connected nilpotent Lie group, and � is a cocompact lattice in N . We need
to show that N is abelian. The Lie algebra n of N splits into Lyapunov subspaces
ei with Lyapunov functionals �i of the action x̨ . If for u 2 ei and v 2 ej the bracket
Œu; v� is nonzero, then Œu; v� belongs to a Lyapunov subspace with Lyapunov functional
�i C �j . We recall that a coarse Lyapunov subspace is a direct sum of Lyapunov
subspaces corresponding to positively proportional Lyapunov functionals.

Suppose that Œu; v� ¤ 0 for some u and v which belong to two different coarse
Lyapunov subspaces. Then �i and �j are not positively proportional and hence are not
proportional. If follows that �i C�j is not proportional to either one of them. Hence
Œu; v� belongs to a coarse Lyapunov subspace different from the ones containing u and
v . This contradicts the fact that any two course Lyapunov foliations of x̨ are jointly
integrable.

Suppose that u and v are in the same coarse Lyapunov subspace e. Uniform quasicon-
formality of the action on e implies that all vectors in e are expanded/contracted at the
same rate, ie, there is only one Lyapunov functional � corresponding to e. If Œu; v� is
nonzero, then it belongs to a Lyapunov subspace with Lyapunov functional 2�. But
this subspace must be contained in e, which is impossible.
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We conclude that Œu; v�D 0 for any u and v in the Lie algebra n. Thus the Lie group
N is abelian, and the infranilmanifold N is finitely covered by a torus. This completes
the proof of Theorem 3.1.

5 Proof of Theorem 3.4 and its corollaries

5.1 Proof of Theorem 3.4

The proof of this theorem follows the same steps as the proof of Theorem 3.1. Below
we describe the necessary adjustments.

The coarse Lyapunov distributions are substituted by the distributions Ei given in
the theorem. The fact that any two such distributions are contracted by some element
of the action is given by condition (2) of the theorem. Since these distributions are
intersections of some stable distributions, they have most of the properties of coarse
Lyapunov distributions. In particular, their integral foliations are Hölder continuous
with uniformly C 1 leaves.

Let E1 and E2 be two distributions, and let W 1 and W 2 be the corresponding
foliations. As in Section 4.2, we show that the leaves of the foliation W D W 1 ˚ W 2 ,
given by assumption (1), are smooth. Then we show the smoothness of E1 along the
leaves of W using the following proposition in place of Proposition 4.3.

Proposition 5.1 Suppose that there exists an element f that expands E1 faster than
it expands E2 . Then E1 is C 1 along the leaves of W , ie, its derivatives of all orders
in W directions exist, are continuous along the leaves of W and uniformly bounded
on M.

Proof We apply the C r Section Theorem as in the proof of Proposition 4.3. The
assumptions on f directly imply that supx2M kx < 1, ie, the induced map F contracts
the fibers. Moreover, since f expands W , we see that ˛x < 1, and thus

sup
x2M

kx˛
r
x < 1 for any r > 0:

The C r Section Theorem implies that the distribution E1 is C 1 smooth along the
leaves of W .

As in Section 4.4, we obtain nonstationary linearizations of the action along the leaves
of foliations W i and the associated affine structures. In this case, (4–2) follows from
the 1/2–pinching assumption.
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It follows from condition (3) of the theorem and Proposition 5.1 that the holonomies
of W 1 between the leaves of W 2 are C 1 along the leaves of W D W 1 ˚ W 2 and
vise versa. Also, the 1/2–pinching assumption implies (4–3) with ˇ D 1. Hence we
can apply Proposition 4.7 to show that the holonomies are affine and uniformly C 1

along the leaves of W . As in Section 4.5, it follows that all distributions W i are C 1

on M.

As in Sections 4.6 and 4.7, we show that the nonstationary linearizations depend C 1

on the base point and construct a C 1 –invariant affine connection. As in the beginning
of Section 4.8, we conclude that the action is C 1 –conjugate to an action by affine
automorphisms of an infranilmanifold.

5.2 Proof of Corollary 3.7

We need to show that the infranilmanifold obtained in Theorem 3.4 is finitely covered
by a torus. The argument is similar to the one in Section 4.8. We use joint integrability
of the coarse Lyapunov foliations and the 1/2–pinching. The only difference is in
showing that Œu; v�D 0 for any u and v which belong to the same coarse Lyapunov
subspace e. Suppose that Œu; v�¤ 0 for some u and v in e. Then the corresponding
Lyapunov functionals �i and �j are positively proportional. Hence they are positively
proportional to �i C�j , and the Lyapunov subspace of �i C�j is also contained in e.
It is easy to see that this contradicts the existence of an element which is 1/2–pinched
on e.

5.3 Proof of Corollary 3.9

It suffices to verify assumptions (2) and (3) of Theorem 3.4. Let E1 and E2 be two
coarse Lyapunov distributions. Let �1

min and �2
min be the corresponding functionals,

and let H1 and H2 be their negative half-spaces in Rk . If follows from assumption
(2) of Corollary 3.9 that the negative half-space of �i

max is Hi , and that all elements in
Hi contract Ei .

Since the action is TNS Anosov, there exists an element which contracts both E1 and
E2 . Hence the intersection KDH1 \H2 is a nonempty open convex cone in Rk . It
follows from condition (2) of the corollary that all elements in K contract both E1

and E2 and are 1/2–pinched on them. This verifies assumption (2) of Theorem 3.4.
To verify assumption (3) of the Theorem, we take an element a in Zk \ .�K/ close
to the boundary of H2 and away from the boundary of H1 . Clearly, such an element
expands E1 faster than E2 . This completes the proof of the corollary.
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5.4 Proof of Corollary 3.8

It is well known that an Anosov Zk action by toral automorphisms is topologically
conjugate to a C 1 –small perturbation. To show the smoothness of the conjugacy we
verify the assumptions of Theorem 3.4 for the perturbed action z̨ .

First we consider the unperturbed action ˛ by toral automorphisms. For any coarse
Lyapunov distribution E we denote by �min and �max the minimal and the maximal
of the Lyapunov functionals corresponding to E . The existence of a regular element
which is 1/2–pinched on E implies that condition (2) of Corollary 3.9 is satisfied.
Hence we can verify assumptions (2) and (3) of Theorem 3.4 for ˛ as in Section 5.3.

Now we consider a C 1 –small perturbation z̨ . For any coarse Lyapunov distribution
E of ˛ there exists a corresponding z̨–invariant distribution zE close to E . Each
zE is the intersection of the corresponding stable distributions for z̨ , and the tangent

bundle is the direct sum of the distributions zE . If the perturbation is sufficiently
C 1 –small, the assumptions (2) and (3) of Theorem 3.4 are satisfied for the distributions
zE . Assumption (1) follows from the existence of topological conjugacy to ˛ . Now

Theorem 3.4 implies that the conjugacy is C 1 .

References
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