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SMOOTH LOCAL RIGIDITY FOR HYPERBOLIC TORAL
AUTOMORPHISMS

BORIS KALININ, VICTORIA SADOVSKAYA, AND ZHENQI JENNY WANG

ABSTRACT. We study the regularity of a conjugacy H between a hyperbolic toral auto-
morphism A and its smooth perturbation f. We show that if H is weakly differentiable
then it is C1+H0lder and, if A is also weakly irreducible, then H is C®. As a part of the
proof, we establish results of independent interest on Holder continuity of a measur-
able conjugacy between linear cocycles over a hyperbolic system. As a corollary, we
improve regularity of the conjugacy to C* in prior local rigidity results.

1. INTRODUCTION AND LOCAL RIGIDITY RESULTS

The theory of dynamical systems with hyperbolic behavior is an important area of
smooth dynamics. Ergodic, topological, and smooth properties of such systems have
been extensively studied. The development of the theory began with uniformly hyper-
bolic systems such as geodesic flows of manifolds with negative sectional curvature,
hyperbolic automorphisms of tori and nilmanifoolds [A67], and hyperbolic sets and at-
tractors [Sm67]. The theory later expanded to partially hyperbolic and non-uniformly
hyperbolic systems. Hyperbolicity refers to exponential expansion under the iterates
in some directions and exponential contraction in other directions. The expansion
and contraction produce a rich and complex behavior of the system, often described as
chaotic. While individual trajectories are highly sensitive to small changes in the ini-
tial conditions, uniformly hyperbolic (Anosov) diffeomorphisms are stable as a whole,
that is, qualitatively similar to any small perturbation.

Hyperbolic automorphisms of tori are the prime examples of uniformly hyperbolic
dynamical systems. The action of a matrix A € SL(N,Z) on RY induces an auto-
morphism of the torus TN = RN/ZN, which we denote by the same letter. An auto-
morphism A is called hyperbolic, or Anosov, if the matrix has no eigenvalues on the
unit circle. In this case RN = ES @ E*, where ES and E* are the sums of generalized
eigenspaces corresponding to eigenvalues of moduli less than one and greater than one,
respectively. This yields the corresponding A-invariant splitting of the tangent bundle
of TV into the stable and unstable sub-bundles. The vectors in ES are exponentially
contracted by positive iterates of A, and those in E* are exponentially contracted by
negative iterates.
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One of the key properties of hyperbolic systems is structural stability. Any diffeo-
morphism f of TV sufficiently C*-close to such an A is also hyperbolic, more precisely,
the differential Df preserves a continuous splitting E} @E}‘ of the tangent bundle close
to that of A and with similar contraction properties. Moreover, f is topologically con-
jugate to A [A67], which means that there exists a homeomorphism H of TV, called a
conjugacy, such that

(1.1) AoH=Hof.

Such H is unique in a C? neighborhood of the identity. Also, any two conjugacies differ
by an affine automorphisms of TV commuting with A [Wa7(], and hence have the
same regularity. Although H is always bi-Hélder continuous, it is usually not even C?,
as there are various obstructions to smoothness. This is in sharp contrast with rigidity
for actions of larger groups, where often any perturbation, or even any smooth action,
is C* conjugate to an algebraic model.

In the classical case of a single system, the problem of establishing smoothness of
the conjugacy from some weaker assumptions has been extensively studied. It is often
described as local rigidity, in the sense that weak equivalence of f and A implies strong
equivalence.

In dimension two, definitive results were obtained in [dIL87, dILMS88, dIL92]. For
hyperbolic automorphisms of T2, and more generally for Anosov diffeomorphisms of
T2, C* smoothness of the conjugacy was obtained from absolute continuity of H and
from equality of Lyapunov exponents of A and f at the periodic points.

The case of higher dimensional systems is much more complicated. In particular,
the problem of the exact level of regularity of H is subtle: for any k € N and any N > 4
there exists a reducible hyperbolic automorphism A of TN and its analytic perturbation
f such that the conjugacy is C* but is not Ck*1 [dIL92]. We recall that A is reducible
if it has a nontrivial rational invariant subspace or, equivalently, if its characteristic
polynomial is reducible over Q.

The two-dimensional results were extended in two directions. First, C* conjugacy
was obtained for systems that are conformal on full stable and unstable subspaces
under various periodic data assumptions which ensured that the perturbed system is
also conformal [dIL02, KS03, dIL04, KS09]. Second, for some classes of irreducible A,
equality of Lyapunov exponents or similarity of the periodic data were shown to imply
cl+Holder smoothness of H [[GGO8, G08, GKS11, SaY19, GKS20, dW21]. Irreducibility
of A is necessary for these results [dIL92, dIL02, GO§]. Low smoothness of H is due
to the method of the proof, which establishes regularity of H along natural one or
two-dimensional f-invariant foliations of TV, whose leaves are typically only C!+Holder
smooth. Nevertheless, Gogolev conjectured in [G08] that the regularity of H should be
close to that of f, and in particular if f is C* then so is H. Until now, the only progress
on higher regularity of H, outside of the conformal setting, was obtained for automor-
phisms of T* with real spectrum in [G17]. We refer to [KSW22] for a more detailed
account of questions and developments in the area of local rigidity.

In this paper we establish general results on bootstrap of regularity of the conjugacy.
We show that for any hyperbolic automorphism A, if H is weakly differentiable in a
certain sense then it is C1*H0lder and, if in addition A is weakly irreducible, then H is
C®. As a corollary, we improve the regularity of H from C1+H0lder to C in the previous
local rigidity results for the irreducible case.
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Now we formulate our main results. We denote by W14(T™) the Sobolev space of
L1 functions with LY weak partial derivatives of first order. We note that Lipschitz
functions are in Wb (TN).

The first result holds for an arbitrary hyperbolic automorphism without any irre-
ducibility assumption. We recall that while H satisfying ([[.T) is not unique, there is a
unique conjugacy C° close to the identity. This is H in the homotopy class of the identity
with H(p) = 0, where p is the fixed point of f closest to 0.

Theorem 1.1. Let A be a hyperbolic automorphism of TN and let f be a C1+H91er diffeo-
morphism of TN which is C! close to A. Suppose that for some conjugacy H between f and
A, either H or H™ is in WY4(TN) with q¢ > N. Then H is a C*+H4er diffeomorphism.

More precisely, there is a constant 3, = B¢(A), 0 < By < 1, so that forany0 < ' < B,
there exist constants § > 0 and K > 0 such that for any 0 < § < 8’ the following holds.

For any C'*# diffeomorphism f with ||f — Al|c1 < &, if some conjugacy between A and
f, or its inverse, is in WH4(TN), g > N, then any conjugacy is a C'*+# diffeomorphism.
Moreover, for the conjugacy H that is C° close to the identity,

1.2) IH = Il|cr+s < KI|f = Allcr+e-

Remark 1.2. The assumption of being in W4 with ¢ > N in this and in the next
theorem can be replaced with a slightly weaker one that we actually need for the proof:
either H~! is in W1! and its Jacoby matrix of partial derivatives is invertible and gives
the differential of H~! for Lebesgue almost every point of TV, or the same holds for H
and f preserves an absolutely continuous probability measure.

To formulate our result on C* smoothness of the conjugacy we introduce the no-
tion of weak irreducibility. Let RN = eBpiEi be the splitting where E' is the sum of
generalized eigenspaces of A corresponding to the eigenvalues of modulus p;, and let
Ei = Qapj#piEj . We say that A is weakly irreducible if each E* contains no nonzero el-
ements of ZN. This condition is weaker than irreducibility and holds for some A with
Jordan blocks, see Section B.3 for details.

Theorem 1.3. Let A be a weakly irreducible hyperbolic automorphism of TV. Then there
is a constant £ = €(A) € N so that for any C*® diffeomorphism f which is C¢ close to
A the following holds. If for some conjugacy H between f and A either H or H™ is in
the Sobolev space W4(TN) with q > N, then any conjugacy between f and A is a C*
diffeomorphism.

The constant ¢ = £(A) is chosen sufficiently large to satisfy the inequalities (B.17).

Remark 1.4. While we state and prove the theorem for a C* perturbation f, the proof
works in the same way for f in C¥, with k > £(A), yielding that H is C¥~¢ for any € > 0.

Applying Theorem [[.3 we improve the regularity of the conjugacy from C1+Holder ¢
C* in the strongest local rigidity results for irreducible toral setting [GKS11, GKS20]:

Corollary 1.5. Let A : TN — TV be an irreducible Anosov automorphism such that no
three of its eigenvalues have the same modulus. Let f be a C* diffeomorphism which is
C?-close to A such that the derivative D, f" is conjugate to A" whenever p = f"(p). Then
[ is C*™ conjugate to A.
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Corollary 1.6. Let A : TV — TN be an irreducible Anosov automorphism such that no
three of its eigenvalues have the same modulus and there are no pairs of eigenvalues of
the form A, —A orild, —id, where A € R. Let f be a volume-preserving C* diffeomorphism
of TV sufficiently C?-close to A. If the Lyapunov exponents of f with respect to the volume
are the same as the Lyapunov exponents of A, then f is C* conjugate to A.

Now we briefly discuss our approaches. Our methods are different from those in
the previous local rigidity results. In particular, we prove smoothness of H without
showing it first along invariant foliations.

To prove Theorem [, we first establish results of independent interest on Holder
continuity of a measurable conjugacy between linear cocycles over a hyperbolic system.
These results are formulated and discussed in Section P. In the proof of Theorem [L.]
we apply them to the conjugacy DH between the derivative cocycles Df and A. The
methods used yield only Hélder continuity of the conjugacy between the derivative
cocycles and hence only C'*# regularity of H. We note, however, that existence of
some Holder conjugacy between the derivative cocycles Df and A does not imply in
general that H is Cl. Indeed, if all eigenvalues of A are simple with distinct moduli,
then conjugacy of D, f"* and A", whenever p = f"(p), always gives Holder conjugacy
of the cocycles, but H may not be C! if A is reducible.

To prove Theorem [[.3 we introduce new techniques which combine exponential
mixing of the unperturbed system with a KAM type iterative scheme. KAM methods
have been extensively used to study local rigidity, primarily for elliptic systems, such as
Diophantine translations of a torus. A method similar to KAM was used in [FMO035] to
bootstrap regularity from finite to C* for isometric actions of property (T) groups. Hy-
perbolic systems are very different from the elliptic ones. In particular, the linearized
conjugacy equation in our case is a cohomological equation twisted by a hyperbolic
matrix. In contrast to the elliptic case, this creates obstructions to solving the equation
by sufficiently smooth functions. Closest to our setting, KAM techniques were used
in [DKt10] to prove C* local rigidity for some Z2 actions by partially hyperbolic toral
automorphisms. In [[DKt10] the structure of Z? action was used in an essential way
to show vanishing of the obstructions. We instead use the existence of a C!*# conju-
gacy H given by Theorem [[-1. In our context of a hyperbolic twist, C1*# regularity was
not sufficient for the previously known methods of analyzing the obstructions. One
of our key innovations is splitting the linearized equation and using corresponding di-
rectional derivatives to “balance” the twists, see remarks after Theorem [7.4 for details.
Relating Fourier coefficients of a function and its directional derivatives is the only
place where we use weak irreducibility of A. However, the estimates of the error term
in our setting create difficulties in establishing convergence of the iterative procedure,
which we overcome in Section g.

The paper is structured as follows. In Section P we formulate our results on con-
tinuity of a measurable conjugacy between linear cocycles over a hyperbolic system,
Theorems P and P.3. These theorems are proved in Sections f| and [, respectively.
In Section § we summarize basic notations and facts used throughout the paper. In
Section f we prove Theorem [.1. In Section [ we obtain the main result on solving
a twisted cohomological equation over A, and in Section § we complete the proof of
Theorem [[.3.
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2. RESULTS ON CONTINUITY OF CONJUGACY BETWEEN LINEAR COCYCLES

In this section we consider linear cocycles over a transitive Anosov diffeomorphism
f of a compact connected manifold M. We recall that f is Anosov if there exist a split-
ting of the tangent bundle TV into a direct sum of two D f-invariant continuous sub-
bundles ES and E*, a Riemannian metric on M, and continuous functions v and ¥ such
that

2.1) IDAI < v(x) <1 <9(x) < [IDAV
for any x € M and any unit vectors v* € E*(x) and v* € E%(x). The diffeomorphism

is transitive if there is a point x € M with dense orbit. All known examples satisfy this

property.
Let A be a map from M to GL(N, R). The GL(N, R)-valued cocycle over f generated
byAisthemap A : X XZ — GL(N,R) defined by A(x,0) = Id and forn € N,

A(x,n) = A% = A(f*1x) o --- 0 A(x) and A(x,—n) = A" = (Aj'c‘_nx)_l.
We say that a GL(d, R)-valued cocycle A is §-Holder continuous if there exists a
constant c such that
d(Ax,ﬂy) <c dist(x,y)ﬁ forall x,y e M,
where the metric d on GL(N, R) is given by
d(A,B) =||A—BJ|| +||A"' =B~Y||, where ||.|| is the operator norm.

More generally, we consider linear cocycles defined as follows. Let P : E - M bea
finite dimensional 8-Holder vector bundle over M. A continuous linear cocycle over f
is a homeomorphism A : E — E such that

PoA=foP and A, : E, — Ef, isalinear isomorphism for each x € M.

The linear cocycle A is called f-Holder if A, depends f-Hélder on x, with proper iden-
tification of fibers at nearby points. A detailed description of this setting is given in
Section 2.2 of [KS13].

The differential of f and its restrictions to invariant sub-bundles of TM, such as E*
and E%, are prime examples of linear cocycles.

We say that a S-Holder cocycle A over an Anosov diffeomorphism f is fiber bunched
if there exist numbers 0 < 1 and c such that for all x € M and n € N,

22) - (D - OB < com and  JAZ| - 14| (OF™F < com,
where v = v(f*1x)---v(x) and 97" = (O(f~"x))"L - (O(f1x)) L.
Let u be an ergodic f-invariant measure on M. We denote by A, (A, u) and A1_(A, 1)

the largest and smallest Lyapunov exponents of A with respect to ¢ given by the Os-
eledets Multiplicative Ergodic Theorem. For u almost all x € M, they equal the limits

(23) A A,p)=limntIn|l4%| and A_(A,ux) = lim n=tIn||(AH)7Y|7L.
n—oo n—oo
We say that a cocycle A has one exponent if for every f-periodic point p the invariant

measure up, on its orbit satisfies 1, (A, up) = 1_(A, up). By Theorem 1.4 in [K11], this
condition is equivalent to

A (A, ) =A_(A,u) for every ergodic f-invariant measure.
We note that if A has one exponent, then it is fiber bunched [S15, Corollary 4.2].
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For GL(N, R) cocycles A and B over f, a (measurable or continuous) function € :
M — GL(N, R) such that

Ay = C(fx)B,C(x)~! forallx e M

is called a (measurable or continuous) conjugacy or transfer map between A and B.
For linear cocycles A, B : E — E a conjugacy is defined similarly with C(x) € GL(E,).

The question whether a measurable conjugacy between two cocycles is continu-
ous has been studied in [PaP97,[Pa99, Sch99, 513, S13]. An example in [PW01/] shows
that a measurable conjugacy between two fiber bunched GL(2, R)-valued cocycles is
not necessarily continuous, moreover, the generators of the cocycles in this example
can be chosen arbitrarily close to the identity. Continuity of a measurable conjugacy
was proven for cocycles with values in a compact group [PaP97,Pa99] and, somewhat
more generally for cocycles with bounded distortion [Sch99], for GL(2, R)-valued co-
cycles with one exponent [S13], and for GL(N, R)-valued cocycles such that one is fiber
bunched and the other one is uniformly quasiconformal [S13]. The result in [S13] re-
lied on two-dimensionality, and the uniform quasiconformality assumption in [S15]
is much stronger than having one exponent. Theorem P.1 establishes continuity of a
measurable conjugacy between a fiber bunched cocycle and a cocycle with one expo-
nent.

Theorem 2.1. Let f be a transitive C1*101der Aposov diffeomorphism of a compact man-
ifold M, and let A and B be 3-Holder linear cocycles over f. Suppose that A has one
exponent and B is fiber bunched.

Let u be an ergodic f-invariant measure on M with full support and local product
structure. Then any u-measurable conjugacy between A and B is 3-Holder continuous,
i.e., coincides with a -Holder continuous conjugacy on a set of full measure.

As we mentioned above, continuity of a measurable conjugacy does not hold in
general if A has more than one exponent, however, we prove it in a special case of
a constant A. Moreover, we obtain an estimate of the 8-Holder constant Kg(C) of the
conjugacy C in terms of the 5-Hdélder constant of B.

Theorem 2.2. Let f and u be asin TheoremP.1l, and let A be a constant GL(N, R)-valued
cocycle over f. Then for any Hélder continuous GL(N, R)-valued cocycle B sufficiently C°
close to A, any u-measurable conjugacy between A and B is Holder continuous.

More specifically, there exists a constant y(A, f) so that the following holds. For any
0 < B < Bo(A, f) thereis § > 0 and k > 0 such that forany 0 < 8 < ' and any
B-Holder GL(N, R)-valued cocycle B over f with ||B, — Al|co < 8, any u-measurable
conjugacy C between A and B is f-Holder and its 3-Holder constant satisfies

24)  Kz@ <k||CllcoKa(B) and  Kg(€™Y) < k(€ lco Ka(B).

The constant 84(A, f) is explicitly given by (5.4) in Section B.

3. BASIC NOTATIONS AND FACTS

3.1. Norms and Hélder constants. For r € N U {0} we use ||-||cr for the C" norm of
functions with continuous derivatives up to order r on TV,
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For a g-Holder function g, 0 < 8 < 1, we denote its S-Holder constant, or Holder
seminorm, by

Ks(9) = |lgllcos = sup{[g(x) — g)[d(x,y)F : x#yeTV} < co.

We denote by C1# or C'+# the space of functions with g-Holder first derivative with
norm

Ifllcire = [Ifller +Ka(DF).

3.2. Invariant subspaces. For A € GL(N,R)let p; < --- < py be the distinct moduli
of its eigenvalues and let

3.1 RN =E'@---®EL

be the corresponding A-invariant splitting, where E’ is the direct sum of generalized
eigenspaces corresponding to the eigenvalues with modulus p;. We also denote

A def . . . .
(3.2) B @ 0B, Ay=Alp :E' > E, and N;=dimE.

For the Euclidean norm on RY there is a constant K, such that for each i we have
(3.3) A" < Kq o (Im|+ DN forallm € Z.

Also, for any € > 0 there is an “adapted” inner product on RY such that the direct sum
PDE! is orthogonal and foreach1 <i <L,

(34)  (pi —e)™ < ||AMu|| < (p; + €)™ for any unit vector u € E' and any m € Z.

If A is hyperbolic then p;; < 1 < p; 4 for some 1 < iy < L, and we define the stable
and unstable subspaces of A as

B S @, F and E*E @, E.
3.3. Weak irreducibility. Recall that GL(N, Z) denotes the integer matrices with de-
terminant +1. We say that A € GL(N, Z) is weakly irreducible if each E' contains no
nonzero elements of ZV. Irreducibility over Q implies weak irreducibility. Indeed, if
there is a nonzero integer point n € E! then span{A™n : m € 7} C E' is a nontrivial
rational invariant subspace. In fact, weak irreducibility is determined by the charac-
teristic polynomial of A as follows.

Lemma 3.1. A matrix A € GL(N, Z) is weakly irreducible if and only if there is a set
A C R so that for each irreducible over Q factor of the characteristic polynomial of A the
set of moduli of its roots equals A.

Proof. Let A€ GL(N, Z), let p4 be its characteristic polynomial, and let p4 = Hlk{zl pik
be its prime decomposition over Q. Then we have the corresponding splitting RN =
@V into rational A-invariant subspaces V| = ker pik(A). We also have the (non-
rational) A-invariant splitting (B.1)), and we set A = {p,, ..., o1 }. We will show that A is
weakly irreducible if and only if A is the set of moduli of the roots for each py.

If for some p; € A and k € {1,...,K} no root of the irreducible polynomial pj
has modulus p;, then V; C E'. Hence A is not weakly irreducible as V' is a rational
subspace and hence it contains nonzero points of ZV.
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Conversely, suppose each pj has A as the set of moduli of its roots. Suppose that for
some i there is 0 # n € (ZN N EY). Then for some k its projection ny to V', is a nonzero
rational vector. We note that ny, € E' as E' = @ (E' n V). Then

W = span{A™n;, : m € Z}

is a rational A-invariant subspace contained in E! n V. Then the characteristic poly-
nomial of Ay is a power of p, and hence W contains an eigenvector with eigenvalue
of modulus p; € A. Thus W n E! # 0, contradicting W C E!. Thus A is weakly
irreducible. O

It follows from the lemma that if A is irreducible or weakly irreducible then the
following matrices are weakly irreducible

A 0 and A 1
0 A 0 A
These matrices are not irreducible and the latter is not diagonalizable.

4. PROOF OF THEOREM 2.

Let f be a transitive C1*H0lder Anosov diffeomorphism of a compact manifold M, let
E be a §-Holder vector bundle over M, and let ¥ : E — E be a 3-Holder linear cocycle
over f.

In Section B.T we recall the definition and properties of holonomies for linear cocy-
cles, in Section .2 we prove a preliminary results on twisted cocycles, and in Section
A3 we give a proof of Theorem R.1l.

4.1. Holonomies of fiber bunched linear cocycles. The notion of holonomies for
linear cocycle was introduced in [BV04, V08]. Existence of holonomies was proved in
[V08,[ASV13] under a stronger “one-step” fiber bunching condition and then extended
to bundle setting and weaker fiber bunching (B.2) in [KS13,515].

Proposition 4.1. Let F be a 3-Holder fiber bunched linear cocycle over (M, f). Then for
every x € M andy € W5(x) the limit

(4.1) Fy =3y = lim (F)7 o FL,

called the stable holonomy, exists and satisfies
(H1) 73, is an invertible linear map from E to Ey;
(H2) 3, =1d and 5, , 0 H5 , = I3 ,, and hence (F(5,)™" = 75 ;
(H3) 33, = (FH) o Hiny, pny o F& foralln e N;
(H4) ||,y —1d] <c- d(x,y)?, where c is independent of x and y € Wi (x).

4.2. Twisted cocycles. In this section we study the coboundary equation over f
twisted by a 5-Holder linear cocycle ¥ : E — E. We will use its main result, Proposi-
tion .3, in the inductive process in the proof of Theorem P.1l.

Let ¢,7 : M — E be sections of the bundle E over M. We consider the equation

(4.2) () =¢(x) + (F) 7' M(fx)) equivalently $(x) = 1(x) = (F) " ((fx).
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Iterating (A.) and denoting ' = F gn-1y 0 --- 0 F p 0 Fy o Ex — Eyny We obtain
() = ¢(x) + (F) 7 (X)) = $(x) + (F) TS X) + F px((f2x)] = ...
= ¢(0) + (F) S + -+ + (FLTHTHGU™ 1) + (F 1) T (1)
Thus
4.3) N(x) = ®"(x) + (F pn-1) ' (9(f"x)), where
P"(x) = ¢(x) + (F)THP(fX)) + -+ + (FLTHTHH(f" 1)) € E;.
We say that F is uniformly bounded if there exists K such that ||#}}|] < K for all

X € M and n € Z. A -Holder bounded cocycle is fiber-bunched and hence it has
stable holonomies 7(3 ,, : E, — E, where y € W¥(x).

Lemma 4.2. Suppose that ¢ is a f-Hélder section and that F is a uniformly bounded
B-Holder cocycle. Then for any x € M and y € W5(x) the following limit exists
Dxy = lIm (@7(x) - IG5, @"(y) = 2, LEOT@(x) = 765 (FHT ()]

and satisfies || @3 || < K'd(x,y)? with uniform K’ for all x € M and y € W (x).
The result holds if instead of being uniformly bounded ¥ satisfies the following.
There exist numbers 6 < 1 and L such that forall x € M and n € N,
IFD - )P <L

Proof. Forallx € Mandy € (x) we have d(f*x, f¥y) < vkd(x,y). As ¢ is

f-Holder we obtain

S
loc
$(f*2) = d(f*W)II < Ky (vkd(x, y)P,
is B-Holder close to identity by (#4), we have

IBCFE0) = T, PPN < Koo dx, )P

By uniform boundedness of # we have ||(#¥)~!|| < K, and by continuity of ¢ we
have sup_ ||¢(x)|| < K;. Therefore,

: S
and since }(fky’ka

n-—1

OM(0)=T05,.0"() = Y (FE LGN~ o I, 1 NI, 1 FEP)-
k=0

Since J(3 . o (Ff) 7 o = (F5)~1 by (#3), the k" term in the sum equals

frx,fky
(T G*) = T O, PV = T U0 = e, 1PV,
and we estimate
I LB *x) = I, PN < IFE - 16CF%) = T, i D
< NIEFHY - Ky(vk d(x, y)F < KK, 6Fd(x,y)? for some 8 < 1.
Hence the series converges and

n—1
[@7(x) — 765, @"(W)|| < Y. KK, 6d(x,y)f <K'd(x,y)F,
k=0

so the limit @3, ,, satisfies ||®3 || < K'd(x, y)B. O
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Proposition 4.3. Let & be a 3-Holder uniformly bounded cocycle over an Anosov dif-
feomorphism f (or a hyperbolic system). Let u be an ergodic f-invariant measure on M
with full support and local product structure.

Let ¢ : M — E be a B-Holder section, and let ) : M — E be a u-measurable section
satisfying (B.2). Then n is 3-Holder and

n(x) =I5 n(y) + @5, forallx € Xandy € W5(x).
Proof. Let x € M and y € W5(x). Using equation (B.3) for n(x) and n(y) we obtain
n(x) — Hyx n(y) = @"(x) — H5 D" (y) + Ay,
where
Ay = (F pn1) T (%)) = T, (F pnoay)) 0 (f ).
By Lemma f.2, (®"(x) — (} ,®"(y)) converges to 5 ,,.

Now we show that ||A,|| — 0 along a subsequence for all x, y in a set of full measure.
First we note that by property (#3) we have 5, o (F pn-1,) ™" = (F pn-1,) 7" 0 Hny, pny-
Hence

A = (F pror) "L (0(F"%) = FCon, e (1)) = (F pno12) LAY,
where Ay, = n(f"*x) — K }ny’ fn L+@(f"y)). By uniform boundedness of # we obtain
AN < ICF pr)7HE- (AR < KA

Since the section  : M — E is u-measurable, by Lusin’s theorem there exists a com-
pact set S € M with u(S) > 1/2 such that # is uniformly continuous and hence
bounded on S. Let Y be the set of points in M for which the frequency of visiting S
equals u(S). By Birkhoff Ergodic Theorem, u(Y) = 1.

If x,y € Y, there exists a subsequence n; — oo such that such that f"ix, f"y € S
foralli. Sincey € W*(x), d(f"ix, f"iy) — 0and hence Aj,, — 0by uniform continuity
and boundedness of 7 on S and property ((4) of }(°. Thus A,, — 0 and we obtain that

n(x) = 35 n(y) + @5, forallx,y € Y withy € W¥(x).
Since @} ), is §-Holder on Wf (x) by Lemma §.2, we conclude that
[In(x) — I3 nI| < K'd(x,y)? forallx,y € Y with y € W(x).

Since J(3 , is f-Holder by property (7(4), this means that 7 is essentially 8-Holder along
W (0.

Similar arguments for y € Wi .(x) show that 7 is also essentially §-Holder along
W .(x). Hence 7 is §-Holder by the local product structure of ¢ and of the stable and
unstable manifolds. O

4.3. Proof of Theorem R.I. For convenience, by taking inverse, we will work with a
conjugacy C satisfying

(4.4) B, = C(fx) A, C(x)~L.

First we observe that since 1, (A,u) = 1_(A,u) and B is u-measurably conjugate to
A, the following lemma implies that

A4(B,p) = 2_(B, ).
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Lemma 4.4. Let u be an ergodic f-invariant measure. If C is a u-measurable conjugacy
between cocycles A and B, then for u a.e. x and for each vector 0 # u € E, the forward
(resp. backward) Lyapunov exponent of u under A equals that of C,(u) under B.

Proof. We fix a set of positive measure Y C M such that for some K we have ||C|| < K
and [|(C,)7!|| < K for all x € Y. Then we choose an f-invariant set of full measure
X C M such that for every x € X

(i) the forward and backward Lyapunov exponents under both A and B exist for
each nonzero vector v € E,, and
(ii) the frequency of visiting Y under both forward and backward iterates of f
equals u(Y) > 0.
For every x € X, 0 # u € E,, and n € Z we have

n~HInIBE(C )l = n7! In [|Cpnx(AF ).

The limit of the left hand side as n — oo (resp. n — —o0) is the forward (resp. back-
ward) Lyapunov exponent of C,(u) under B. On the other hand, by the choice of Y, the
limit of the right hand side along a subsequence n; — oo (resp. n; - —oo) such that
fMix € Y equals the forward (resp. backward) Lyapunov exponent of u under A. O

We use the following results from [KS13]. In the three theorems below, f is a tran-
sitive C1HHolder Apggoy diffeomorphism, A, B : E — E are 3-Holder linear cocycles
over f, and u is an ergodic f-invariant measure with full support and local product
structure.

Theorem 4.5 ([KS13, Theorem 3.9]). Suppose that for every f-periodic point p the in-
variant measure (i, on its orbit satisfies 1,.(A, up) = A_(A, up). Then there exist a flag of
B-Holder A-invariant sub-bundles

(4.5) 0}=0°cU'c.-cUI-'cUrK=E

and 3-Holder Riemannian metrics on the quotient bundles Ui/UY i=1,...,k, so that
for some positive B-Holder function ¢ : M — R the quotient-cocycles induced by the
cocycle pA on U'/U'™! are isometries.

Theorem 4.6 ([KS13, Theorem 3.1 and Corollary 3.8]). If B is fiber bunched, then any
B-invariant u-measurable conformal structure on E coincides u-a.e. with a Holder con-
tinuous conformal structure.

If a cocycle has more than one Lyapunov exponent, then the corresponding Lya-
punov sub-bundles are invariant and measurable, but not continuous in general. For
a fiber bunched cocycle with only one Lyapunov exponent, measurable invariant sub-
bundles are continuous.

Theorem 4.7 ([KS13, Theorem 3.3 and Corollary 3.8]). Suppose that B is fiber bunched
and A, (B, u) = A_(B, u). Then any u-measurable B-invariant sub-bundle of € coincides
u-a.e. with a Holder continuous one.

We consider the flag U? for A given by Theorem f.3. Denoting UL = €(x)U: we
obtain the corresponding flag of measurable B-invariant sub-bundles
O=uculcu?Pc--cuk=E

By Theorem f.7 we may assume that the sub-bundles U’ are Hélder continuous.
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The conformal structure o, on E! given by the Riemannian metric in Theorem .3
is invariant under A. The push forward of o; by € gives a measurable B-invariant
conformal structure 7; on U*, which is Holder continuous by Theorem F.8.

Similarly, we consider Holder continuous quotient-bundles V! = U!/U"! and V' =
Ul /U=" over M with the quotient cocycles A® and BY. Since A® preserves a Holder
continuous conformal structure o; on V', pushing forward by € we obtain a measurable
conformal structure 7; on U!/U'~! invariant under B®, which is Holder continuous
by Theorem [.6. Thus we obtain a “similar structure” for B.

We fix a -Holder Riemannian metric on E. We denote by V' the orthogonal com-
plement of U~ in E;, and we denote by V' the orthogonal complement of 2~! in 2,
i=1,...,k. ThusU' = V@ ---@®Viand Ul = V' @ --- @ V. All these sub-bundles
are Holder continuous but for i > 1 they are not invariant under A and B, and C does
not necessarily map V' to V%

We denote by P/ : E — V/ the projection to the VJ component in the splitting
E=V'® - ® V¥ and similarly P/ : & - VJ.

We denote the restriction of € to V! by €' and we denote by /! its j-component
Chl=Pioel . Vi = VI, Since UL = C(x)U}, we have €' : VI — Ul and thus €/ =0
for j > i, that is € has an upper triangular block structure.

We also define the corresponding blocks A/ : Vi — VJand B/ : Vi — VJas
AJt = PJ o A|yi and similarly for B. The invariance of the flags also yields upper
triangular block structures for 4 and B: A/ = 0 = BJ for j > i.

We will show inductively that the restriction of € to U' is Holder continuous, i =
1,..., k. The base case i = 1 follows from the following result from [S13].

Theorem 4.8 ([S13, Theorem 2.7]). Let A, B : E — E be 3-Holder linear cocycles over
a hyperbolic system. Suppose that A is uniformly quasiconformal and B is fiber bunched.
Let u be an ergodic invariant measure with full support and local product structure. Then
any u-measurable conjugacy between A and B is 3-Holder continuous, i.e. it coincides
with a B-Hélder continuous conjugacy on a set of full measure.

Now we describe the inductive step. Assuming that the restriction of € to U~ is
B-Holder continuous we show that so is the restriction to U'. Since U! = VI @ U'~1, it
suffices to show that the restriction €! of € to V' is also 3-Hélder continuous. We will
establish this inductively for each of its components C/*%, j =i,..., 1.

First we observe that € is Holder continuous foralli = 1,..., k. For this we identify
bundles V! with V! and V! with V' via the projections. Under these identifications
the cocycle A4 : Vb — Vb corresponds to the quotient cocycle AW, the cocycle
Bh Yl 5 Pblcorresponds to BD, and the map €' corresponds to the quotient
measurable conjugacy € between A® and B®. Since the quotient cocycles A® and
B are conformal, Theorem .8 shows that e is B-Holder continuous, and hence so
is €.

Now we show that C=%! is 8-Hélder assuming that ¢!~/ is g-Hélder for j = 0,1,
...¢ — 1. Using the conjugacy equation

ByoCy =CrxoAy
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and equating (i — ¢, i) components we obtain

Bibi=C  @i=bi | pi=Ci=+1 jol=t+li | pi=0i el

_ };e,i—e o ALTCLE 4 e};é’,i—€+1 o AL 4 g ei;&i o AL
and hence

(4.6) )ic—e,i — (gi—f,l’—e)_l ° e}—&i OA;;I +Dx

X

where

D, = (3§C_€’i_€)_1 o (e};e,i—e oAJiC—€+1,i ot e};é’,i—l OA)iC—l,i)

i—8,i—¢\— i—€,i—¢+1 i—¢+1,i i—&,i i,i
_(Bx ) 1°(Bx o Cx + -+ By °ex)~

We view (?fc_g’i and D, as sections of the Holder bundle L(V?, Vi=?) whose fiber at x is

the space of linear maps L(V, Vi~¢). Thus equation (f-) is of the form (#.2) with
E=LV, V™), ¢y =Dy, 1= )ic—é’,i’ and -rfrx(r)fx) = (Bjc_é’i_g)_l °Nfx °ﬂ;ic’i.

We note that D, is f-Hdlder since we inductively know that all its terms are 3-Holder.
Also ¥ is a linear cocycle on the bundle L(V?, Vi=¢) over f~1, and it is 8-Holder since
so are BI=%1=¢ and A", Moreover, F is uniformly bounded since cocycles Bi~¢1—¢
and A5 are conformal and their normalizations are continuously cohomologous. The
latter follows since we know that Bi=%i=¢ and A!~%!~¢ are continuously cohomologous
by €=%i=¢ and that the normalizations of all A" are given by the same function ¢~!
from Theorem f.3. Hence we can apply Proposition f.3 and conclude that =41 is
SB-Holder.

The argument above applies to € = 1,...i — 1 and we conclude that all €1, ..., Cb
are Holder. This proves that the restriction of € to U’ is Holder and completes the
inductive step. We conclude that € is Holder, completing the proof of Theorem R.1.

5. PROOF OF THEOREM .2

In this proof we will also work with a conjugacy C satisfying (§.4). First, Holder
continuity of C is deduced from Theorem P.1] as follows.

Let A € GL(N, R) be the generator of the constant cocycle A. Let p; < --- < pr be
the distinct moduli of the eigenvalues of A and let

(5.1) RN=F'@---@E~L

be the corresponding invariant splitting as in (B.1l). In this section we will use the
adapted norm on RY for which we have estimates (8.4). They imply that for any 8 > 0
the cocycle A; generated by A; is fiber bunched if € is sufficiently small.

Let B(x) = B, : M — GL(N, R) be the generator of the cocycle B. If B is sufficiently
CO close to A, then B has Holder continuous invariant splitting C° close to (5.1))

RN =& @ &L,
so that the restrictions B; = B|E! satisfy estimates similar to (B.4)
(5.2) (p; —2¢)" < ||BMul| < (p; +2€)" for any unit vector u € &

This is well known but also follows from Lemma B.1], which gives explicit estimates of
both Holder exponent and Holder constant. We conclude that all restrictions 3B; are
B-Holder and hence are fiber bunched if ¢ is sufficiently small.
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Let C be a measurable conjugacy between .4 and B. We claim that € maps E' to &,
that is C,(E") = &L for u a.e. x. Indeed, by Lemma 4, for u a.e. x and for each unit
vector u € E' the forward and backward Lyapunov exponent of C,(u) is Inp;. This
yields that C,(u) € &I, as having a nonzero component in another &/ would imply
having forward or backward Lyapunov exponent under B different from In p; if € is
sufficiently small. Then C; = C|gi is a measurable conjugacy between fiber bunched
cocycles A; and B;. By Theorem P each €; is Holder for alli = 1,..., L, and hence so
is C.

Now we prove the more detailed statement. We denote the Lipschitz constants of
f~!and f respectively by

(5.3) ap =sup [IDcf7Y>1 and a} = sup [[Df]| > 1.
xeMm xem

For1 <i < L we define

o In(pis1/p:) _ In(pisa/pi)
iz Ty M P e

k]

and we choose

(54) Bo = Bo(A, f) = min{1, Bi,.... 811, B1s--» B 1} > 0.

Since B is f-Holder with 8 < ' < fy, Lemma p.] shows that the splitting (5.2)
is B-Holder and by Lemma 5.4 so are all restrictions B;. Then by Theorem P.1] each
restriction C; = C|g: is §-Holder and hence sois €. Since A; and B; are 5-fiber bunched
for any sufficiently small ¢, [S15, Proposition 4.5] yields that f-Holder C; intertwines
their stable holonomies, that is,

(5.5) ?C,'f‘ys =C()o %ﬁ;s o @;(x)™! forall x,y € M such that y € W5(x).
Since for the constant cocycle A; the holonomies are all identity, }Cf gis = Id, we get
Ci(x) = €(y) o Hxh'.
Thus using Lemma b.3 we obtain that for all y € W5(x)
€)= G = 1€(¥) o (I —1A)|| < [|Cillco - k3 Kp(B) - dys (x, )P
Combining these estimates for alli = 1,..., L we conclude that all y € W5(x)
[6() = Wl < [|€llco - ka Kp(B) - dus(x, y)P.

Similarly, using the analog of Lemma B.3 for unstable holonomies, we obtain the same
estimate for y € W*(y). Then the local product structure of stable and unstable folia-
tions of f implies that the S-Holder constant of € can be estimated as

Kg(C) < k|ICllco Kg(B).

Now, to complete the proof of the second part of the theorem, we state and prove the
lemmas used in the above argument.

Lemma5.1. Forany0 < 8’ < B, thereisd > 0 and k; > 0 such that forany0 < f < f’
any B-Hélder GL(N, R) cocycle B with || B, — Al|co < 8 preserves -Holder splitting

RN =€ @ ®&x
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which is C° close to E* @ --- @ E™ and for each 1 < i < L the 3-Hélder constant Kﬁ(é'i)
of & satisfies

(5.6) Kp(EY) < ky Kg(B).
Proof. We deduce this lemma from the one below. We fix 1 <i < L, and let
E=E'®--@®E and E=E*'@.-@E.

Lemma .3 shows that for any 8’ < 8; thereis § > 0 and k’ such thatforany0 < § < f’
any cocycle B with || B, — Al|co < & preserves the bundle & close to E with the desired
estimate for 8-Holder constant. Similarly, for any 8’ < f; using the inverses of A and
f we obtain that B preserves a bundle &’ close to E’ with a similar estimate for its
B-Holder constant. Then for each 1 < i < L the bundle &' is defined as a suitable

intersection and hence is also C° close to E! and its 8-Holder constant satisfies (5.4).
U

Remark 5.2. Lemmas .1 and b.3 do not rely on hyperbolicity of f and use only that it
is bi-Lipschitz.
Lemma 5.3. Let A € GL(N,R), let RN = E’ @ E be an A-invariant splitting, and let
§ =max{[|Av|| : vEE', |v|| =1}=|Alg/| and
§=min{[JAv]| : vEE, |lv|| =1} = [|A7YglI7".
Let oty = sup IIDf~Y| > 1 be the Lipschitz constant of f~! and let 8’ > 0. Suppose that
B
c{ ’
& <& and g—f <1, thatis, ' < In(§/¢ ).
Inoay

§

Then there is 8 > 0 and k' such that for any 0 < 8 < 8’ any -Holder GL(N, R) cocycle
B with || B, — Al|co < & preserves a f-Hoélder sub-bundle € which is C° close to E and its
B-Holder constant Kg(€) satisfies

Kp(E) < k' Ka(B).

Proof. The argument is similar to the Holder version the C" Section Theorem of
M. Hirsch, C. Pugh, and M. Shub (see Theorem 3.8 in [HPS77]), but we give the es-
timate of the Holder constant.

We consider the space £ = L(E, E’) of linear operators from E to E’ and endow it
with the standard operator norm. Since A preserves the splitting E’ @ E it induces the
graph transform action A on £ as follows: if L € £ and G C RY is its graph then A(L)
is the operator in £ whose graph is A(G). The map A is linear,

A[Ll=A|g oLo(Alp)7Y,
SO we can estimate its norm as
IAIl < [|Alg |l - [ICAlR) M| < €'/ < 1.

Similarly, any linear map B € GL(N, R) sufficiently close to A induces in the same
way the graph transform map B on a unit ball £, in £. Moreover, B is a contraction
of £, with Lipschitz constant K(B) close to K(A) = &'/¢ < 1. Indeed, B induces an
algebraic map on the Grassmannian of (dim E)-dimensional subspaces which, together
with its first derivatives, depends continuously on B. Also, it is easy to see that the map
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B+ B from a small neighborhood of A to C°(£,, £,) is Lipschitz with some constant
L.

Now we consider the trivial fiber bundle V = M X £;. Then any B, which is
CO-close to A induces graph transform maps B, : V, — V 7x and thus the bundle
map B : V — V covering f. We consider the space S of continuous sections of V
with the supremum norm, and the induced action F = Fy on S defined for s € S as
(Fs)(fx) = By(s(x)). If K? := sup, K(B,) < 1 then F is a contraction on S and hence
has a unique fixed point s, = Fs,. Let sq(x) = 0 € £ be the zero section, then we can
write s, = lim F"s;, and it follows that s, is C%-close to s,. Denoting the graph of s(x)
by &, we obtain the unique continuous B-invariant sub-bundle close to E.

Now we will show that s, is S-Holder and estimate its S-Hdolder constant. For this
we will find M > 0 such that Kg(s) < M implies Kg(Fs) < M. Then Kg(F"(sg)) < M
for all n and since s, = lim F"(s) it will follow that Kg(s,) < M.

Fix points z,z’ and let x = f(z), x' = f(2’). Then for any §-Hoélder s € S we can
estimate, as ||s(x)|| < 1, that

IFs(x) — Fs(x')|| = [|B,5(2) — Bs(z)|

<|18B,5(2) — Bs@)|| + [|1B5(2) — B s(2))|

< dco(B,, B,) + K(B,)|Is(2) — s(z)| < L||B, — By || + KZ||s(z) — (2|

< LKg(B)d(z,2')F + KPKs(s)d(z,2')P < [LK(B) + KPKs(s)] (ay d(x,x))P,

where ay is the Lipschitz constant of f ~! and L is the Lipschitz constant of the map
B + B on a neighborhood of A. Hence Fs is also §-Holder and

Kp(Fs) < Lo} Kg(B) + o KPKg(s).
Therefore, Kg(s) < M implies Kg(Fs) < M if we take
M = (1-K%a)"'Laf Ky(B).

If | B, — Al|co is small then K2 is close to K(A) = £'/£. Since &'af’ /£ <1 and B < B/
it follows that 1 — K2 a? > 0 and is separated from 0. Then there is a constant k' which
bounds I:a? - I(Baﬁ)‘1 forall 0 < 8 < 8’ and all B with || B, — A||co < 6. Hence,

M < k' Kg(B).
Finally, since Kg(so) = 0 it follows that Kg(F"(sy)) < M for all n and hence for the
limit we also have Kg(s,) < M < k'Kg(B). O
Now we estimate the 8-Holder constants of the restricted cocycles B; = B|i.

Lemma 5.4. Forany0 < 8’ < B, thereisd > 0and k, > 0such that forany0 < f < f’
and any B-Hélder cocycle B with || B, — Al|co < & the 5-Holder constant of the cocycle
B;, i =1,...L, satisfies

Kg(B;) < k, K(B).
Proof. Denoting B(x) = B, and B;(x) = B,|s we need to estimate the distance be-

tween B;(x) and B;(y). To do this using their difference, we fix 3-Holder identifica-
tions Iy, : € — &L, say by translation from x to y in the trivial bundle M x RN
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followed by an appropriate rotation. Then for a unit vector u € £(x) we need to esti-
mate [|(B;(x) — B;(») o I y)ul|. We note that

llu — I yull < dist(EL, EL) < Kp(E) d(x, y)P.

Also, since B(x) is 8-Holder have ||B(x)u — B(y)u|| < Kg(B) d(x, y)B. Hence we obtain
that for a unit vector u € £i(x)

|(Bi(x) = By(y) o I, y)ul| < [|BGu —By)ull + [[BO)|| - [|u — Iy yull

< Kg(B)d(x, )P + |Bllco Kg(€) d(x, y)P.
Since Kg(&') < ki Kg(B) by (E8) and ||Bllco < [|A]l + [|Bx — Allco < [|A|| + & we
conclude that
(Bi(x) = Bi(y) o Iy )ul| < ky Kg(B)d(x,y)°.

Thus Kﬁ(Bl) < k2 Kﬁ(ﬂ) (I

In Lemma B.3 we consider the stable holonomies of cocycles B; = B|gi,i = 1,...,L.

Lemma 5.5. Forany0 < 8’ < 8, thereis § > 0 and k; > 0such that forany0 < f < f’
and a B-Holder cocycle B with || By, — Al|co < & the holonomies of cocycles B; = B|ci
satisfy

175,y —1d || < k3 Kg(B) d(x,y)? foranyx e Mandy e Wi (x).
Proof. We fix i and denote ¥ = B;. The stable holonomies of F are given by
(5.7) Hey = lim (F)7 o AL
The existence is ensured by fiber bunching of #. Indeed, the contraction along W is
estimated by (R.1)) as
d(f"x, f'y) <v'd(x,y) foranyx e M, y € Wi .(x), n€N.
We also obtain from (5.2) that

m—1 m
_ _ i+ 2
(58) 17211 < T 1057 < (B25) =™ forallx,y e,
j=0 :

where o = (p; + 2¢)(p; — 2¢)~! is close to 1 when ¢ is small. It follows that
(5.9) I 11| VB < gm.ymB = gm  forall x,y € M,

where 8 = ovf < 1 if § and hence ¢ are sufficiently small. In particular, & is fiber
bunched so the limit in (5.7) exits, though this also follows from the proof.
We want to obtain a constant c such that ||F i; —1d|| < cd(x,y)? forall x € M
and y € W} (x). Denoting x,, = f™(x) and y,, = f™(y), we obtain
(T e T = (Fp ) o ((Fy, ) o Fx, ) o TET!
= (@D o (d+r) o T = () o AP+ (P o gy 0 P
n-1

= 1d+ L (F)  ory o FN, where hy = (F,) 7" 0 Fy, — 1d,

m=0

Since ¥ is f-Holder, denoting ¢’ = (p; — 2:;')_1K,3(5t ), we obtain that for every m > 0
1l < 11(Fy, )M - 1

Xm

— Tyl S NFHlco Kg(F) dCxm, ym) < ¢ dx, )PP
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Using (5.9) it follows that
IFFD ™ 0 o FN < NG - NFP - ¢ dlx, )Py < 8™ ¢ d(x, y)P.

Therefore, for every n € N,

n—1 n—1
IId — (F) ™ e FP| < Z I(F) L or; o Fi| < ¢ d(x, y)P Z 6' < cd(x,y)P,
i=0 i=0
where
' (i —20)7'Kg(F) . , _ _
c=1o5 S T = K Ka(¥) with k= (o - 207 A - o)

By (5.7) the sequence {(F})~* o #} converges to . ):g,)s (in fact the estimates imply that
it is Cauchy) and the limit satisfies

|F%,y —1d ]| < cd(x,y)? forany x € M and y € W, ().
By Lemma .4 we have Kg(¥) = Kg(B;) < k, Kg(B) and we conclude that
|5, — Id || < k3 Kg(B)d(x,y)? forany x € M and y € W, (x).
This completes the proof of Lemma B.3 |

6. PROOF OF THEOREM [L.]|

Any two continuous conjugacies between f and A differ by an element of the cen-
tralizer of A. By [Wa70, Corollary 1], any homeomorphism commuting with an ergodic,
in particular hyperbolic, automorphism A is an affine automorphism, and hence all
conjugacies have the same regularity.

First, using Theorem P.3 we will show in Section B.1] that H is a C!+H0l4er diffeomor-
phism, and moreover the Holder constant of its derivative satisfies the estimate

(6.1) Kg(DH) < k||DH||co ||f — Allc14-

This part does not rely on closeness of H to the identity and the estimate applies to any
conjugacy H. Then in Section .2 we use (b.1]) and an interpolating inequality to obtain
the desired estimate ([.2) of |H — I|| 1+ for the conjugacy CP close to the identity.

6.1. Proving that H is a C1+H0ler diffeomorphism.

First we recall some properties of a map g € WH4(RN,RN), g > N, which also extend
to the case when g € wla (TN ,TV). It is well known that, as a consequence of Mor-
rey’s inequality, for any such g the Jacoby matrix of weak partial derivatives gives the
differential D, g for almost every x with respect to the Lebesgue measure u. Also, any
such g satisfies Lusin’s N-property [MM73] that u(E) = 0 implies u(g(E)) = 0, as well
as Morse-Sard property [P01] that u(g(C,)) = 0 for the set of critical points of g

€y ={x € TN : Dyg exists but is not invertible},

see also [KK18] for sharper results and further references.
Now we assume that H € W4 with q > N, so that the differential D, H exists u-a.e.,
and for the set

Gy ={x € TN : D,H exists} and its complement Ey = TN \ Gy



308 BORIS KALININ, VICTORIA SADOVSKAYA, AND ZHENQI JENNY WANG

we have u(Gg)=1 and u(Ey) = 0. Further Gy = Cy U Ry is the disjoint union of two
measurable sets, the critical set Cy and the regular set

Ry = {x € TN : D,H is invertible}.

Since f and A are diffeomorphisms, it follows from the conjugacy equation Ho f = AoH
that the sets Gy, Cy, and Ry are f-invariant. Further, differentiating the equation on
the set Gy we obtain

(6.2) DyyH oDy f = Ao DH.
Denoting C(x) = D, H on the set Ry we obtain the conjugacy equation over f
(6.3) A=C(fx)oB,oC(x)"! forcocycles B, = D, f and A, = A.

Now we show that u(Rg) = 1 and also that f preserves a measure g equivalent to
u. Since u(Eg) = 0, the Lusin’s N-property of H yields u(H(Eg)) = 0. Also, we have
1(H(Cg)) = 0by the Morse-Sard property. Hence for R}y = H(Ry) we have u(Ryy) = 1.
Now we consider the measure g = (H™!),(«) and note that i(Ry) = 1 as u(Ry) = 1.
Since H is a topological conjugacy between f and A, the measure /i is f-invariant and,
in fact, is the Bowen-Margulis measure of maximal entropy for f, since u is that for A.
Indeed, denoting the topological entropy by h,,, and metric entropy with respect to &
by h; we get

h;(f) = hy(A) = hyop(A) = hyep(f).

In particular, # is ergodic with full support and local product structure. Since € is a
conjugacy between B and A on Ry with fi(Ry) = 1, by Lemma .4 we obtain that
the Lyapunov exponents /1{r H of f for the cocycle B = Df are equal to the Lyapunov
exponents /1‘1-4 of A. Hence the sum of positive Lyapunov exponents (counted with mul-
tiplicities) for @ equals its entropy

hy(f)=h ()= Y =Y "

>0 /1{’[‘>0

Thus we have equality in the Pesin-Ruelle formula, which implies that & has abso-
lutely continuous conditional measures on the unstable foliation of f [Le84]. Similarly,
equality of the negative Lyapunov exponents yields that & has absolutely continuous
conditional measures on the stable foliation of f. We conclude that j itself is absolutely
continuous. Moreover, the density o(x) = Z—Z is Holder and positive as a measurable

solution of the coboundary equation o(fx)o(x)~! = det Df(x). Thus f is equivalent
to u, so that fi(Rg) = 1 implies u(Ry) = 1.

Provided that ||A — By||co = ||A — Dy fllco < ||A — fllcr < 6, where § > 0 is from
Theorem P.2, we can apply this theorem with f and i to obtain that

C(x) =D.H : TN = GL(N,R)

coincides with a Holder continuous function almost everywhere with respect to g and
hence u. Since H € W4 we conclude that H is C'*Holder - Algo, since (D,H)™! =
C(x)~! exists and is also Holder continuous we see that H is C'*H0lder diffeomorphism.
Further, Theorem .2 gives us the estimate (b.1]), which we will use to obtain the desired
estimate for ||H — Id||c1+p in Section B.2. This completes the proof that H is C*+Holder
diffeomorphism assuming that H € W4,
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Now we consider the case when H = H~!isin W14 and hence D, H exists u-a.e. We
similarly define the sets Gz, Eg, Cg, and Rg, which are measurable and A-invariant.
Hence by ergodicity of A the set Ry must be null or co-null for u. If u(Rg) = 0 then
u(H(Ry)) = 0 by the Lusin’s N-property of H, but this is impossible since u(H(Eg)) =
0 by the Lusin’s N-property and u(H(Cy)) = 0 by the Morse-Sard property. Hence
u(Rg) = 1. Then for Ry, = H(Rpg) we have fi(R;) = 1, where as before @ = H,(u)
is the measure of maximal entropy for f. Now the Lusin’s N-property of H yields that
/& is absolutely continuous and then equivalent to u. Hence we also have u(Ry;) = 1.
Since H = H~! is a homeomorphism, and D, H is invertible for x € Ry, it follows that
D,H = (D, H)™" is the differential of H for each y = H(x) in R};.

Therefore, we can again differentiate H o f = A o H to obtain (6.3) and then the
conjugacy equation (b.3) with C(x) = D.H on the set Ry; of full measure for both u
and fi. Then by Theorem P.2 applied with f and & we obtain that C(x) = D.H is
Hoélder on TN and hence so is @(y)~! = D, H. Since H = H~! is in W4 we conclude
that H~! is C1+H0ler diffeomorphism. In this case we also get (B.1)).

6.2. Estimating |H — I||c1+s. We showed that any conjugacy H is a C1*Holder diffeo-
morphism satisfying (6.1). Now we prove estimate ([[.2) for the conjugacy H that is C°
close to the identity.

Any two conjugacies in the homotopy class of the identity differ by a composition
with an affine automorphism commuting with A, which is translation T,(x) = x + v,
where v € TV is a fixed point of A. It is well known that if f is C!-close to A, then
it has a unique fixed point p which is the perturbation of 0. More precisely, there are
0 < 8(A),r(A) < 1/5 and k(A) so that for each f satisfying ||f — A||c1 < 8(A) thereisa
unique fixed point p = f(p) with d(p,0) < r(A) and it satisfies

d(p,0) < k(A)|lf — Allco-

Since H maps fixed points of f to those of A we see that if ||[H — I||co < r(A) then it is
in the homotopy class of the identity and satisfies H(p) = 0.
Replacing f by f = T_j, o f o T, we can change p to 0. Since for f(x) = f(x+p)—p
we have that
IDf — Allc = |IDf — Allcx  for any k > 0,
and so only || f — A||co is affected by this change. Moreover, if we write f = A+R, then

f(x) = A(x) = A(x + p) + R(x + p) — p— A(x) = R(x + p) + A(p) — p
and hence
If = Allco < |[Rllco + lA(P) — pll = |If — Allco + |A(p) — f(P)I| < 2||f — Al|co-

Thus ||f — Al|c1+s < 2||f — Allc1+s. Also, if H is the corresponding conjugacy between
f and A then H(x) = H(x — p) and hence

| = Id||c1+s < |IH —1d||c1es + d(p,0) < [|H — Id||c1+s + k(A)|If — Allco.

Thus the estimate (B.1]) for H via f would yield the corresponding estimate for H via f.
So without loss of generality we will assume that

f(0) =0 and H(0) =0.

Now we recall how the conjugacy equation Ho f = Ao h can be rewritten using lifts.
We denote by f and H the lifts of f and H to RN satisfying f(0) = 0 and H(0) = 0so
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that we have H o f = A o H where all maps are RN — RV, Since H is homotopic to the
identity and f is homotopic to A we can write
H=1d+h and f=A+R
Then the commutation relation on RN
(Id+h)o(A+R)=Ao(Id+h) yields h=A"'(hof)+AR.
Since h,R : RN — RN are ZN -periodic we can view them as
h=H-1d: TN >RN and R=f-A : TN > RN
and rewrite the conjugacy equation as one for RN -valued functions on TV
(6.4) h=A"hof)+A R

Using the A-invariant splitting RN = E* @ E° we define the projections h, and R,
of h and R to E*, where * = s, u, and obtain

(6.5) h, =A;Y(h,o f)+A;'R,, where A, = Alg..
Thus h, is a fixed point of the affine operator
(6.6) T.($) =A@ o /) + AT'R,.

Since ||A7!|| < 1, the operator T, is a contraction on the space C°(T¢, E%), and thus
h,, is its unique fixed point

(6.7) h, = lim T7(0) = ) A7™(Az'Ry 0 f™).
m=co m=0
Hence
(6.8) IRullco < D5 A ™ [Rullco < k[Ryllco < KA = fllco.
m=0

Similarly, hy is the unique fixed point of contraction T;! and hence satisfies a similar
estimate. Combining them we conclude that

(6.9) IH = 1d[|co = [|hllco < kollR[|co = KollA = fllco-

Now we estimate ||[H — Id|| 144 using (6.9), (b.1), and the following elementary in-
terpolation lemma. We note that DH = Id + Dh, so that Kg(Dh) = Kg(DH).

Lemma 6.1. If h : TN — RN satisfies Kz(Dh) < K then
/Q
IDhllco < 8 |RIIgs P KVA+E),

Proof. Denote b = ||Dh||co and choose x € TN such that ||D,h|| = b. Then for some
unit vectors u,v € RN we have (Dyh)u = bv. Fory € TV let by, = ((Dyh)u,v), so
b, = b. Then

|b— by| < [|(Deh)u— (Dyh)ul| < Kd(x,y)f <b/2 if d(x,y) < (b/2K)"F

and hence by, > b/2 for such y. Consider y(t) = x + tu, with0 <t < t; = (b/2K)VE,
and g(t) = (h(y(1)), v). Then

gl(t) = <(Dyh)u’ U> = by(t) > b/2,
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and hence by integrating we get bt,/2 < g(t,) — g(0). Since |g(ty) — g(0)| < 2||h]|co We
obtain bt, < 4||h||co. Substituting ¢, = (b/2K)"/F we obtain

b(b/2K)VE < 4lhllco = bA+AVE < 4|Ihl|coRK)VE = b < 8|[h||2a P RIAH)
as 4R/0+B)V/(+E) < g, O

We denote a = ||h||co, b = ||Dh||co, and d = ||f — A||c1+5. Then
|IDH||co = ||Id + Dhl||co <1+ b,
and hence (b.1)) implies that
(6.10) K = Kg(Dh) = Kg(DH) < k(1 + b)d.
Also, by (b.9) we have a = ||h]|co < kod. Then Lemma p.1] gives
b < 8(kd)F'A+B) (k1 + b)d)V+B) < k, d(1 + b)V(1+A),
It follows that b is bounded by some k, if d < 1. Then (b.10) implies that
K = Kg(Dh) < ksd.

With this K Lemma p.J] gives

b < 8(kd)P/A+B) (J,d)/A+A) < k,d.
‘We conclude that

b= ||Dh||co < kqd, a=|lhllco <kod, and Kg(Dh) < k;d,

so that
IH = Idlc1es = ||Pllcree < ksd = ks ||f = Allcivs.
This completes the proof of Theorem [L.1].

7. LINEARIZED CONJUGACY EQUATION

In this section we begin the proof of Theorem [[.3, and in the next one we will
complete it using an iterative process. In these sections we fix a hyperbolic matrix
A € SL(N, Z). We will use K to denote any constant that depends only on A, and K, to
denote a constant that also depends on a parameter Xx.

7.1. Preliminaries. Set A = (A")~! where A denotes transpose matrix. We call A the
dual map on ZV. Since A is hyperbolic so is A, and we denote its stable and unstable
subspaces by E* and E*. Thus there is p > 1 (p < min{p;, 1, p;}l}) such that

(7.1) lIA%v|| > Ke¥||v]l, k>0, veEY,
lA=%v|| > Kp¥||v|l, k>0, veE.

For a subspace V of R, we use 7}, to denote the (orthogonal) projection to V. For
any integer vector n € ZN we write ng = mgsn and n, = mwgun. Since A € SL(N,Z)
is hyperbolic, for any 0 # n € ZN both ng and n,, are nonzero and there is a unique
ky = ko(n) € Z such that

lA*ng|| > ||A*n,|| forallk <k, and
| Ak ng|| < ||y forall k > k.
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We call the corresponding element Ako(Mp in the orbit of n minimal, and we denote
(7.2) M = {AkoMy : 0£nezN} czZN\o.

For any n € M we have ||n|| > 3 |||l and ||An,|| > 3||An]|.

For a function 6 € I*(TN, C) we denote its Fourier coefficients by 8,, n € ZN, so
that

6(x)= D, B,e¥™m* inIA(TV).
nezN

We say that 6 is excellent (for A) if 6, =0foralln ¢ M.

To simplify our estimates, instead of the standard Sobolev spaces we will work the
spaces H5(TV), s > 0, defined as follows. A function 6 € I?(TN) belongs to H3(TN) if

def A A
16115 = sup |Bnll|nll* + |6o] < oo.
n

The following relations hold (see, for example, Section 3.1 of [dIL99]). If o > N+ 1 and
r € N, then for any 8 € C"(TN) and w € H"*9 we have 8 € H" and w € C"(TV) with
estimates

(7.3) lellr < Kllfllcr and  [lwllcr < K[|l

For a vector-valued function 6 : TN — C™ we denote its coordinate functions by
6;,j = 1,...,m. We say that § is in H*(TV) if each 6; is in H5(T) and set

def A def A~ —~
I6lls = max [16)lls, 64 '= (G1)s-.» @udn) foranyn e zN.
1<j<m
We say that 6 is excellent if 6; is excellent for each j.

7.2. Twisted cohomological equation over A in high regularity.
A crucial step in the iterative process is solving the twisted cohomological equation

(7.4) Aw—woA =0

over A, which can be viewed as the linearized conjugacy equation. In this section we
give preliminary results on solving this equation in high regularity. We start with a
scalar cohomological equation over A twisted by 1 € C\{0, 1},

(7.5) Aw—woA=206.

Lemma [7.1 shows that the obstructions to solving it in C* category are sums of Fourier
coefficients of 8 along the orbits of A. Moreover, for any C* function 6 there is a well
behaved splitting 6 = 6' + 0%, where 6' can be view as a projection to the space of
twisted coboundaries and 6* as the error. A similar result was proved for ergodic toral
automorphisms in [DKt10] and used for establishing C* local rigidity of some partially
hyperbolic Z* actions. We prove the result for hyperbolic case to keep our exposition
self-contained and get a better constant o(4).

Lemma 7.1. Fora function 8 : TN — Cin H%(TN) and 1 € C\{0, 1} we define

De(m)= Y. A~V .
i=—o0
[log |Al|

Suppose a > a(A) = Togp T 1, where p > 1 is the expansion rate of A from (I.1)). Then
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(i) The sum Dg(n) converges absolutely for any n # 0; moreover the function

d .
o+ Y S AD(n)e2minx,
neM

where M is from ([[2), is in H*(TN) with the estimate ||6*||; < K4.1|0]|a-
(ii) If Dg(n) = 0 for any n # 0, then the equation (7.3) has a solution w € H*(TN)
with the estimate

lolla < Kr2l16llq-

(iii) If the equation (Z.3) has a solution w € HW(TN), then Dg(n) = 0 for any
n# 0.

d
(iv) For 6" = 6 — 6 the equation:
Aw—woA =06
has a solution w € HY(TN) with the estimate ||wl||q < K, 1]6||q-

Remark 7.2. We emphasize that the existence of 6" requires a high regularity of 6. In
fact, for any b < o(4), we have to estimate it as ||0%||, < K;|0/5¢1)-

Proof. We define
De(n)y = Y. 27V, and Dg(n)_ =— ) A"+Dfy,.

i>1 i<0
(i) Let n € M. The inequality ||z (n)|| > 5||n|| we obtain

IDe(m)—| < [1Blla Y I~V AR < [|6llq Y 147D flgs (A~

i<0 i<0
—-a —(i+1) 5ia —-a W —-a
(7.6) < 6llaC™ Y 1] P Imgs (M|~ < KgallBllg llml ™.
i<0
Here in (1) convergence is guaranteed by a > Llogl ' The sum Dy (n), can be estimated

logp
similarly using the inequality ||z (An)|| > %||An||. Hence we get

16°lla < Kq,allBlla-

For any z € ZN and k € Z, we see that
(7.7) Dg(AkZ) = ;lkDe(Z).

This shows that Dg(n) converges absolutely for any n # 0.
(ii) In the dual space the equation Aw — w o A = 8 has the form

A&, — @z, =6, forall nezV.

For n = 0, we let & = %. For any n # 0, let &, = Dg(n)_. Then w = ), 27

nezN C/U\"e
is a formal solution. Next, we obtain its Sobolev estimates. If ||7zs(n)|| > %||n||, then

from (77.6) we have
(7.8) |@n] - lInl|* < Kq,z-

If |7 gu(An)|| > %||An||, then the assumption Dg(n) = 0 implies that @, = Dg(n),.
The arguments in (i) show that (7.§) still holds.
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(iii) By (i) and (7.7) we have: for any n # 0
Dg(n) = Djey—goa(n) = AD,,(n) — Dw(An) = AD,,(n) — AD,,(n) = 0.

(iv) It is clear that Dg:(n) = Dg_g«(n) = Dg(n) — Dg.(n) = 0 for any n # 0. Then the
result follows from (ii). O

Now we extend Lemma [7.]] to the vector valued case. We consider the equation
Ajw—woA=0

with the twist given by the restriction A; = A|E!, where E!, i = 1,..., L, is a subspace
of the splitting (B.1). We note that any eigenvalue 1 of A; satisfies |1| = p;.

Lemma 7.3. Let p > 1 be the expansion rate for A from (1)) and let

(7.9 0= max <M+I>N+N+2.
i=1,..,.L\ logp
Then foranyi=1,...,Land any C® map 0 : TV — CNi, there is a splitting of 6
6=0'+06"

such that the equation
(7.10) Ajw—woA=0"
has a C* solution w with estimates
lwller < KillBllcr+e forall v 2 0;
and 6* : TN — CNi is an excellent C* map so that for allr > 0

16%llcr < Kill€llcr+o  and  [[6%|l; < Kl6]lr+o-2-N-
Proof. If A; is semisimple, then the conclusion follows directly from Lemma [7. as the
equation ([7.10) splits into finitely many equations of the type
AJCUJ — (Uj 0A = (91)’,

where 6; is a coordinate function of 6 and 4; is the corresponding eigenvalue of A;.

If A; is not semisimple, we choose a basis in which A; is in its Jordan normal form
with some nontrivial Jordan blocks. We note that the excellency of maps is preserved
under the change of basis. LetJ = (J; ;) to be an mxm Jordan block of A; corresponding

to an eigenvalue A with |1| = p;, thatis, J;; = Aforall1 <[ < mand 4;;,; = 1 for all
1 <1 < m—1. Then equation (7.10) splits into equations of the form

(7.11) JQ—QoA=0,

corresponding to the Jordan blocks J. Each equation ([/.11]) further splits into the fol-
lowing m equations:

AQ; = QjoA+ Qi =(0Y);, 1<j<m-1, and
AQp — Q0 A =(0Y,, = (0,)"
For the m-th equation, Lemma [/.1] gives the splitting
O =1Q,, — Q0 A+ (0%),,,
where Q,,, (0%),, = (0,,)% and (@"),, = 1Q,, — Q,, o A are C* functions satisfying
max{|[(®)p|lr, [|Qmllr} < Krml|®llr+o(0,) forall r>0
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and ®j, is excellent.
Now we proceed by induction. Fix 1 < k < m — 1 and assume that forall k + 1 <
Jj < mwe already have the splitting

®J = /19] - Qj oA+ Qj+1 + (G*)j
where Q;, G);f, and (G)‘)j =2Q; — Qjo A+ Qj,, are C* functions satistying
712)  max{l|ll 1O} < Ky 1Ol omejs1yoqep forall r 20
and (@%); is excellent. By Lemma [.1 we obtain the splitting

O — Qpy1 = A0 — Qg 0 A + (O — Q)"
where Qp, (0%, = (O — Qi41)*, and (B4, = AQy — Qp 0 A + Q. are C* functions
satisfying the estimates following from (7.12):
max{[|Qlly, [1(©)ll,}
S KrllOk = Qirillrtotop < KrkllOllr+(m—k+1)0(0) forall r>0

and (@) is excellent. Let Q, ® and ©* be maps with coordinate functions Q;, (®");
and (©%);, 1 < j < mrespectively. Hence we show that there is a splitting of ®

0 =0"+0"
such that the equation (7.11]) has a C* solution Q with estimates
max{|©°[ly, [0} < K,Ollr 4 moqey forall r 2 0.

This can be repeated for all corresponding blocks of A. Since the maximal size of a
Jordan block is bounded by N, we obtain estimates for the ||-||, norms of w and 6*. This
implies estimates for the ||-||cr norms as well by (7.3). (]

7.3. Main result on the linearized equation. Theorem [7.4 plays the crucial role in
the inductive step of the iterative process, Proposition B.3. In the step we start with a
C! conjugacy H between A and its perturbation f, and use Theorem [[.] to get that H
is C1*2, The goal is to construct a new map f = H~' o f o H which is closer to A. The
map H is obtained in the form H = I — w, where w is a C® approximate solution of the
linearized equation (7.14) given by Theorem [/.4. To construct w we use an approximate
C'*%golution ) = H—I of linearized equation (7.13). This necessitates the introduction
of the C!*¢ error term W in the assumption (7.13), see Lemma B.3 and equation (B.13).

Theorem 7.4. Let A be weakly irreducible hyperbolic automorphism of TN. Suppose
that

(7.13) Afh—fhoA=R+V,

where maps §, ¥ : TV — RN are C1*%and R : TN — RN is C®.
Then there exist C® maps o, ® : TN — RN satisfying the equation

(7.14) R=Aw—woA+®
and the estimates

I-2-N 2N+2
[@llcr < KrllRllcree and  ||@flco < Ky a(|[¥]lcrea) BN ([|R]|cee) TN

foranyr > 0and | > N + 2, where o is given by (7.9).
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The main difficulty in estimating @ in our setting is that ¥ is only C1*¢. This does not
allow us to directly estimate orbit sums of Fourier coefficients and split R into a smooth
coboundary R* = Aw — w o A and an error term R* = @, see Remark [7.2. To overcome
this problem we use the splitting RN = @FE! to decompose the equation (7.13) and
then differentiate i” component along directions in E. This allows us to “balance”
the twist (up to a polynomial growth of Jordan blocks) and analyze the differentiated
equation using Holder regularity. This is done in the following Lemma [7.5. After that,
we establish Lemma [7.6 to relate Fourier coefficients of a function and its directional
derivatives. We then complete the proof of Theorem [7.4 in Section [7.5.

Another difficulty in applying KAM methods to our setting is that the estimate of
® depends on ¥ and R rather than on W only. This results in technical issues in prov-
ing convergence of the iterative procedure, which we resolve by introducing, and later
appropriately choosing, the parameter [ in the estimate for ||®||co.

Now we begin the analysis of the differentiated equation (7.13). Forany1 <i < L
and any unit vector u, € E’, we consider unit vectors u; and scalars ay, k € Z, given
by
Afug AF uo |

= ——— and qap = ||[Ajul| = —5—— sothat Aju = aply.
(145 ol

(7.15)
llAF o |

We define a sequence of matrices P, € GL(N;, R) which commute with A; and satisfy
the recursive equation
(7.16) Piy1 = apA; Py
Specifically, we set
ag - a1 A7 = [|Afuoll AT, k>0,

(7.17) BR=I1d and P, =
° (ay - a_) 7 AF = |aT*uol AF, k<o,

Lemma 7.5. Let ¢, : TN — RNi be a sequence of maps in H*(TN), a > 0, satisfying
[|@klla < bforallk € Z, let P, € GL(N;, R) be as in ([17), and let

S(n) = Y P (PR)akn-
kez

(i) For any n € M the sum S(n) converges absolutely in CNi with the estimate
IS()II < Kb |||~

(i) Ifhx : TV — RNi is another sequence in H*(TN) so that for all k € Z we have
Bxclla < ¢ and

(7.18) Aibx — arBhrr1 0 A = @i,
then S(n) = 0 for every n € M.

Proof. (i) Since all eigenvalues of A; have the same modulus p;, we have (B.3), and so
there exists a constant C such that all P, satisfy the polynomial estimate

(7.19) 1Pl < IAfI] - 1Tl < Clkl + 1N = p(k]), forallk € Z.

Letn € M. We write ¢ = (@k,1, > Pi,n;) and set

Sy =D Pc@)ikn and  S(n)_ = D Pe (@) ikn-
k>1 k<0
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Using the assumption ||¢kll, < b, estimates (7.19) and (7)), and the inequality
lrgs (M| > %Ilnll we obtain

NONESY ||Pk||1r<nji)r(n|(§0/k,\j)Akn| < 2 lgklla 1Pl 1A nl| =2

k<0 k<0

< b)) p(kD lzes(AFn)|I=¢ < 6C~ 37 p(k]) o [|7gs (m)]| =
k<0 k<0

< Kqb[|nf ™%

The sum S(n), can be estimated similarly using the inequality ||7zzu(An)|| > %llfin”.
(ii) Let n € M. From the equation (7.1§) we obtain that for any k € Z

P gy 0 A¥ = PLA; By 0 A — a Py By 0 AL

Summing from —m to j and observing that the sum on the right is telescoping as a, P, =
APy i1 = Pr,1A; by the choice of Py in (7.16), we obtain

J
D Pepro A = AP 0 AT — a;Pj By 0 AL

k=—m
Taking Fourier coefficients and noting that (W)n = 8, we obtain

J
Z Pk(@)Akn = AiP—m([)—m)A—mn - aij(f)j+l)Aj+1n-

k=—m

Since the series ), _, Pe(hy) ik, converges by part (i), we have Pe(hp) ik, = 0ask —
+oo and hence, as a; are bounded,

aij(f)/j:l)Aan —0as j— oo, and Al-Pm(H,\n)Amn — 0 as m — —oo.

We conclude that S(n) = 0. a

7.4. Directional derivatives. In this section we establish some estimates for Fourier
coefficients of a C! function & : TV — R via Fourier coefficients of its directional
derivatives along a subspace E! of the splitting (B.1). This relies on weak irreducibility
of A.

For any v € RV with ||v|| = 1, we denote the directional derivative of 6 along v by
6,.

Lemma 7.6. Let A be a weakly irreducible integer matrix and let v, j, j = 1,...,N;, be
an orthonormal basis of a subspace E' from (B.1]). Then there exists a constant K = K(A)
such that foranyi = 1,...,Land any C* function 8 : TV — R,

N;i
18al < K 3318y, dnl - I|IN - forall n € ZM\o0.
j=1
Proof. We denote by ||.|| the standard Euclidean norm in RN, Since 0 is C!, we have

27i(n-v; )0y = By s 1<j< Ny
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Adding over j we obtain that for any n € Z¥\0 we have
Ni ~ Ni —
A Zj:l |(evi’j)n| < Zj:] |(6Ui,j)n|

16| = N <
i 2 in
27T ijll |n . Ui,j| 7T||7TE1 ”

since for an orthonormal basis v; ; we have Zjvz'l |n - v;j| 2 ||wgin]|. Since ||7gin|| =
d(n, (E")1), to complete the proof it remains to show that d(n, (E)*) > K'||n|| V.

Since A is weakly irreducible, so is the transpose A”. This follows from Lemma B.3
which gives an equivalent condition for weak irreducibility in terms of the characteris-
tic polynomial. We denote the splitting (B.1]) for A by RN = E1 @ --- @ EL and similarly
let £ = @;_,;EL. Then we obtain (E')* = EL. Indeed, the polynomial

pi(x) = H (X _A)N’
[A1=pi
where the product is over all eigenvalues of A of modulus p;, is real and
(BN = (ker p(A)* = range(p;(A)7) = range(p;(A")) = Ei,
since p;(A7) is invertible on EL. Now the desired inequality
d(n,(ENY) = d(n, E3) > K'||n||7N

follows from Katznelson’s Lemma. We apply it to A” with the invariant splitting RN =
EL @ EL and note that EL n ZN = {0} by weak irreducibility of A7. O

Lemma 7.7 (Katznelson’s Lemma). Let A be an N X N integer matrix. Assume that RN
splits as RN = V; @ V; with V; and V; invariant under A and such that Aly, and Aly,
have no common eigenvalues. If V; N ZN = {0}, then there exists a constant K such that

d(n,V;) > K||n||™N forall0 #n e zZN,
where ||v|| denotes Euclidean norm and d is Euclidean distance.
See e.g. [DKt10, Lemma 4.1] for a proof.

7.5. Proof of Theorem 4. Using the splitting RN = @E! we decompose (7.13) into
equations

(720) Aif)i—f)iOAZRi-l'lPi, i=].,...,L,

where §;, R; and ¥; are coordinate maps in the of fj, R and ¥ respectively.
By Lemma [7.3 there is an excellent C* map R; with estimates

(721)  [IRiller S KplIRillcr+e and IR} ||y < Ky [|Rilly1o-N-2  forall r >0,
such that the equation
(7.22) Ajw; — w0 A=R; + R}
has a C* solution w; with estimates
loiller < Kyl|Rillcres forall r >0,

Let w be the map with coordinate maps w;.
We obtain from (7.20) and (7:22) that C'*9 maps p; = §; — w; and A; = —R} +
satisfy

Aipi —Pic A=A
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We fix 1 < i < L and an orthonormal basis Vi j of E.. We fix1 < j < N; and,

as in (7.13), consider unit vectors u, = v;j and u, = II::" ,and let ap = [|Aug||
k € 7. Taking the derivative of the previous equation in the dlrectlon of u;, we obtain
equations

APy, — APy, °A = Ay, VkeZ.
We note that for any k € Z the maps (p;),, and (A;),, are in C* and hence in 79, as
we recall that for any function g by (7.3) we have
(7.23) 18w lla < Kl|8u llca < Killgllcr+a-
Now we use (ii) of Lemma [.3 with . = (p;)y, > Pk = (A;)y, > and Py is as defined in
(F17) to obtain that for any n € M
2 P®Du) e, = 20 PR i = 20 Pl g, =
kez kez kez
Since (R}),, is excellent, for each k € Z we have
3 Pl @) g, = 2 P 11, = (R,
kez kez
for any n € M, which gives

. @
((Ruy),,| < Ko max{]|(¥p)uy lladlinll™* < Kail[¥illcrrallnl =

Here in (1) we use (i) of Lemma 7.5 and in (2) we use (7.23).
We conclude that for any v; j, 1 < j < N;, we have

(7.2) (@D, | < KellBllewsallnl =@, Vne M.
Finally, using Lemma [7.§ and (7.24)), we obtain that for any n € M
N;
(7.25) |(R]),| < KZ (R, Do) IRl < Kal[illcrvallnlN =% < Ka|¥ilicrsalInll™Y.
j=1

Now for any r > N + 2 and any n € M we can estimate splitting the exponent of the
first term as « and 1 — « in the way to get the total the exponent of ||n|| be zero

(R} )nlllf’lllNJr2 IR, TR Il T [|nN+2

1-2-N ! 2N+2
< (KallWillrsalInlIN) FN (11l = 1R5 [10) = [ln|N+2
1-2—-N

= Ka™ (|¥flcisa) BN (I1; 1) ™

)] 1-2-N . 2N+2
< K o([¥illcrea) TN (|| R [|c1) TN

3) 1-2-N 2N+2
< K o([¥illora) T (|| Rl creo) T

Here in (1) we use that R} is C* and (7.23); in (2) we use (7.3); in (3) we use (7.21)).
Then by (7.3) we get

% " 1-2-N 2N+2
IR llco < ClIRFlIn+2 < Kia(lWillcrea) TR ([ R;l| crae) BN

Finally, we denote by ® the map with coordinate maps R;.
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8. PROOF OF THEOREM [[.3

In this section we complete the proof of Theorem [[.3 using an iterative process. The
main part is the inductive step given by Proposition B.3. We start with a sufficiently
small perturbation f,, of A which is C! conjugate to A. We construct a smaller pertur-
bation f,,,; which is smoothly conjugate to f,. The conjugacy H,, between f,, and
fn+1 is obtained using Theorem [7.4. Then the iterative process is set up so that f,, con-
verges to A and H; o --- o H,,; converge in sufficiently high regularity.

8.1. Iterative step and error estimate.
We recall the following results, which will be used the proof of Proposition B.3.

Lemma 8.1 ([dILOY8, Propositions 5.5]). For anyr > 1 there exists a constant M, such
that for any h,g € C"(M),

[hogller <M, (1+igllent) Ullicr llgller + Rllerligller) + 1l co-
Lemma 8.2 ([La93, Lemma AIL.26.]). Thereisd > 0 and such that for any h € C"(M),
if ||h = I||c1 < d then h™! exists with the estimate ||h™! — I||cr < K,||h —1||cr

aps . . . N _ Bo
Proposition 8.3. Let A be a weakly lrreduableAnosi)v automorphism of TY. Let § = =2,
where (3 is as in Theorem [L1. There exists 0 < ¢ < 3 such that for any C* perturbation
Jn Of A satisfying
llfiy = Allco+2 < ¢, where o is from Lemma [/.3,
and the conjugacy equation
(8.1) H, o f, = Ao H, with a function H, € C}(T™) with ||[H,, — I||co < ¢

the following holds. There exists w,,; € C®(TN) so that the functions

(8.2) Hpy1 =1—-wpy1, Hpy =Hy °Hn+1’ Jar1 = ~r?il °fuo ~n+1
satisfy the new conjugacy equation
Hyi10 fug1 = Ao Hpgy,
and we have the following estimates.
(i) Foranyr>0andanyt > 1

lonsiller < Kp min{t?||Ry||cr, [|Rpllcrec},  where R, = f, — A.
(ii) Forthe new error R, 1 = fn41 — A, we have

IRns1llco < Kt°|[RpllctlIRnllco + Kot ™ ||Rpllce

o2 148 12N 2N+2
+ Ko (T (IRyllce + lIRnllc2*) TN (E7]1Ryp || ct) TN

foranyt>1, ¢ > 0and | > N + 2; and also for any r > 0 we have
(8.3) ||Rn+1||CV < KrtaHRnHC’ + K.

(iii) For the new conjugacy Hy, 1, we have
(8:4) IHn+1 = Illco < K[[Rpllco + [[Hp = Il|co-
Remark 8.4. The assumption in (B)) that ||H,, — I||co < c ensures that the conjugacy

H,, between f,, and A is the unique one close to the identity. Hence Theorem [L.1] gives
that ||[H,, — I||c1+¢ is small, see (B.3). This closeness plays a crucial role in the proof.
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Proof. We denote h, = H, — I and R,, = f,, — A and, similarly to (b.4), we write the
conjugacy equation (B.1) as

Ahy — hy o fy = Ry

We can assume that ¢ < §, where § = §(f) is from Theorem [[.1, and that ||H,—I||co < ¢
yields that H is the conjugacy close to the identity. Then Theorem [[.1] gives the estimate

(8.5) lhnllcres < Kl[Rpllcr48-
We define
(8.6) Q,=Ah,—h,oA, and ©,=R,—Q,=h,0cA—h,o f,.

B
1+£
Lemma 8.5. ||®n||cl+§ < Ka |[Rull a5

Proof. We omit index n in the proof of the lemma. We note that
[Rllcr+e = [If = Allcres <c < 1.
Differentiating at x € TN we get
DO(x) = Dh(Ax) o A — Dh(fx) o Df(x)
(8.7) = Dh(Ax) o A — Dh(fx) oA+ Dh(fx) o (A— Df(x)),
and hence
ID®]|co < [|A[| [IDR(AX) = Dh(fX)|lco + [IDA(fx) o DR(X)||co
< |||l IDRl|s|IR[[Eo + IIDRl|col|IDR|co
< Al Ikl cass IR Zo + llkllcr IRl

Since we also have ||®||co < [|A]|c1||R||co, We conclude using (B-3) and ||R]|c1p < 1
that

(8.8) 1©licx < Al l1llcrss [IRIIZo + IRllcr IRl < KIIRIlgrss-
Now we estimate the Holder norm of D®. By (B.7), for any x, y € TN we have
DO(x) — DO(y) = (Dh(Ax) — Dh(Ay)) o A + Dh(fx) o (Df(y) — Df(x))
+(Dh(fy) = Dh(fx)) e Df(y),
and hence
IDO(x) — DOW)|| < [|A]l[IDh(AX) — DR(AY)|| + IDR(fOIIIIDS () — DF GO
+ IDA(fy) — Dh(fO)llIDf W)
< [lAll IDRl|csllAx — AY|IP + ||kllct Dl e lly — xII°
+Ifllcr DAl s llfx — fylf
< AN IRl cresl|x = YIE + IRl el fllcreslly — 1P
+ 1 llct Il e 112 Dl = Y118
We conclude using (B-3) and ||f — A||c14¢ < 1 that

1+
(8.9) [ID®llcos < A [Allcrsz + Ihlical|fllcrss + Illcrs Il < KlIRllcavs-
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Therefore
(8.10) 1®llc1+s < [|®llc1 + [[DO]|cos < 2K||R|[c145-

Finally, we complete the proof of the lemma using an interpolation inequality
. 1+
(8.11) 101l 1.z < KlI®lic1lI®llcres < KallRllcas-
O

We recall that there exists a collection of smoothing operators 3;, t > 0, such that
for any s > s; > 0and s, > 0, for any g € C5(T™) the following holds, see [DKt10] and
[Ha&2]:

(8.12)  [I8,8llcs+s2 < K5, 12 |Iglles,  and  [|(T = 8)gllcs—s1 < Ko £751 [l cs-
We write (B.6) as

(8.13) Ahy,—h,0cA=Q,=R,—0, =[3R,]+[U-8)R,—O,] =R+¥
and apply Theorem [7.4 to get the new splitting and obtain the estimates:

(8.14) 8:R,, = Awy 41 — Wy 0 A+ Dy,

where w,,,; and ®,, are C* maps with the estimates:

(a)
(8-15) ||wn+1||C" < Kr||§t(Rn)||C’+U < Kr mln{tG”Rn”C"’ ”Rn”C”’U}’ and

1-2-N 2N+2
[®nllco < Ky(|T — 81)Ry, — ®nllcl+§) BN (||8Rylcteo) TN

(b) 148 12N 2N+2
< Ki(ItT = $0)Rullc2 + [1Rnllcz2 * ) #N ([18¢Rpllcreo) TN

(8.16) < Kio (07 IRpllce + [IRnllc2 ) N (t7][Ry [l 1) TN

for any r, ¢ > 0 and any | > N + 2. Here in (a) we use (8.12) and in (b) we use (B.1T)).
From equation (B.14) we obtain a C" estimate for ®,, withr > 0

1)
||q)n||C’ = ||Awn+1 — Wp1 °A— gtRnHCV < K||wn+1||C’ + ||Q’tRn”Cr < KrtGHRnHCV'

Here in (1) we use (B.12) and (B.15).

Let H,,q = I — w,4,. From (B.I3) we can assume that ||w,;1]|c1 < min{%, d} (see
Lemma B.J) if c is sufficiently small. Hence H,,,, is invertible. We estimate the new
error Ry, ;1 = f,41 — A by using

Jos1 = Hr?—ll—l °fno ~n+l = I:In+1 ° fat1 = Jfn o ~n+l
> (I—wpy1) o fus1 = fioHupr = for1 = Opg1 © fosr + fo 0 Hpgr-
This gives
Rpy1 = Wpi1 0 fup1+ fno Hn+1 —-A
= Wp41° fup1 + Ry +A) o (I —wypq) —A

= Wp41 0 fuy1 T Rpo (I —wpy1) —Aowyy.
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Hence we see that R, ; has three parts:
Ry = (C‘)n+1 ° fr41 — Wnt1 °A) + (Rn o(I—wpyy) — Rn)
&1 &
+(wpg10A—Aowyy +Ry).

&3

‘We note that
) 1
I€1llco < ll@ntallerllfpsr = Allco < FlIRntallco,

(€]
I€2llco < KlIRpllctllwpsillco < Kt€|[Rpllc1][Rullco,  and
I€3llco = 1Py + (I = 8)Rp||co

(@)
<1 ®ullco + 11U = 8)Rpllco < [[Pnllco + Kot~ ||Rullce

for any ¢ > 0. Here in (0) we recall that ||w,41||cr < %; in (1) we use (B.13); and in (2)
we use (B.17). Hence it follows that

1
[Rn41llco < [1€1llco +[1€allco +[[E5llco < SlIRns1llco + [I€2llco + [|€3]lco,
which gives

[IRns1llco < 2l[E2llco +2lIEs]lco < Kt%||Rpllct[IRullco + Kit ™| [Rpllce + [|@nllco

(€))
< Kt%||Ryllc1Rnllco + Kot~ |[Rpllce

—t42 144 2N N+2
+ Ko 2|Rpllce + [Rullc2?) BN (¢%]|Rp | ct) TN

for any l > N + 2. Here in (3) we use (8.19).
Now we estimate ||R;,;1||cr- We note that

Rpp1 =T =wp)oRy+A)o(I=wyy) —A= (I —wyy) ' 0 P—A.
By Lemma B.1 we have
IPllcr < My (14 I = wppallcr’)
“(IRy + Allct I = @paller + |IRn + Aller I = @pialler) + [IRp + Allco
(€)) (1)
< K| Ryller +Kpe and ||Pller < K.

Here in (1) we use the fact that w,,,; satisfies the estimates ||w,;1||cr < K, t°||Ry||cr
(see (B13)) and ||wp41]lcr < % Using Lemma B.7 this also implies that

10 = wpe)"Hler <1+ Kpllwnsaller <1+Kp1t7lRpllcr
As a direct consequence of Lemma .1 and the above discussion we have

IRns1ller < My (1 +[IPIGt) (1T = @ng ) Hier IPller + 1T = @ng ) Hler IPller) + K
< KiIPllcr + K t9||Rpllcr + Ky < Ky 1t||[Ryllcr + Ki .
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To get (B.4) we have

1Hp41 = Illco = 1Hp o (I = @pi1) = Ilico < [|Hp o (I = @pi1) = Hyllco + [[Hp = Il|co

(©)]
< Hullcllonsillce + 1Hp = Ilico < K|[Rpllco + [|Hp =[] co-
Here in (1) we use (B.13) with r = 0 as well as (B.5). The latter gives
IHp = Illct = llnllcr < K[|[Rullcr = K| fy = Allcr < Ke,
which yields a uniform bound for C* norms of H,, under consideration. O

8.2. The iteration scheme. First we note that by [dIL92, Theorem 6.1] there exists
0o = 0o(A) € N'such that if H and H~! are C% then H and H~! are C*.
To set up the iterative process we take ¢ sufficiently large so that the following holds

¢ Zmax{ 3G+;0, %’, 2(5 max{o,, o} + 1), 2(20+5)},
(8.17) , 1-3 ,
5\/¢—2-N\ _2N+2
PV\1-2 - > 142,
<1+2)<1 é’)( 7+ N ) 2orN 2173

Now we construct R, f,;, @, and H,, inductively as follows. For n = 0 we take

fo=f, Hy=H, Ry=f—-A, wy,=0, anddefine ¢, =¢",

wherey =1+ g and € > 0 is sufficiently small so that the following holds

1
[Rollco <€ =€ [IRollcr < €5 [1Ho —I|lco < &g

We note that H, € C'(TV) by Theorem [[.1. Now we assume inductively that H,, €
CY(TN) satisfies the conjugacy equation

Hyo fy=AoH,
and that H,, and R,, = f,, — A satisfy

|
—-

n
(8.18) IRnllco < €ns IIRullce <€ty [1Hn—Illco < ), €

A NI

Il
=]

By interpolation inequalities we have

¢-2—0 240 5+20

(8.19) IRnllcor> S KolRnllco™ [IRnllce <en © <e

Sl

provided ¢ > 2(20 + 5). Here, and subsequently, we estimate various constants from
_1
above by €, “. This can be done since ¢ is fixed, we can take ¢ small enough. We also

have

nolog X1, 1
(8.20) |Hy —1Illco < D) €2 < Y. (e3)! < 2¢3.

i=0 i=1
Then (B.1I9) and (B.20) allow us to use Proposition B.3 to obtain the new iterates R,,,,
Jn+1> @nyq and Hy, ;. Now we show that these iterates satisfy the inductive assumption
and establish appropriate convergence.
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8.3. Inductive estimates and convergence.
3

We use Proposition B3 with t,, = €, ° and | = ¢ to verify (B.I8) for the new iterate.
(1) C¢ estimate for R, 41

_ _1-8 _
IRpsillce < KotS|Rullce + Ko < Kpen “ (7t + D <en ® 7 <en * =¢niy,

provided € > 247”

(2) CO estimate for R, 44

IRp+1llco < KEFIIRnlIZz + Kot [|Rnllce

o2 1+§ (2N 2N+2
+ Ko (67" |Rullce + [Rnllc2*) 7N (t7]|Ryllce) &N

(a) 5 _ 30410
<Ken 7 +Kseet

3(@—2) 5 —2-N 30 2N+2
1 1-
+ Kp(en * Ty §1+ X ) ¢+N (en 1) #+N
(b) 5 — 30+10 a+5 )(1 2N+2  (0)

<Ken 7 +Kye4+2K,(en ) = (€)W < eh =€y

Here in (a) we use interpolation inequalities:

2 2 -8
(8.21) IRallc2 < ClIRnllcl IRnllée <en
in (b) we note that

ﬁ)(1——)<2(1——)<2—9 and 2 <1,

1+ 7 2

30

Thene, ¢ €, <¢,? and

3(¢-2)
a+5HHu-% a+5Ha-3,
max{ +2 7 ey ? En}— +2 :
in (c) we use
ei—@ < €L+§’ E(nu%)(l—;) £= 2)2;1;2 < €1+§’
provided
30+ 10 B B 5,6—-2—N 2N +2 B
2—-T——>1+F%, 1+3)1- 5 2 >14°=.
% - 3 ( )( X ¢+ N )- ¢+ N 3

By (B.17) and the assumption all inequalities above are satisfied.
(3) C9 estimate for w,,: By interpolation inequalities we have
—ap 200+1

£—1
IRnllcoo < KellRullco [1Rn ||ce <en

Hence we have

_39 | _ 20t L
(8.22) llonsillcoo < KiglRpllcoo < Ken “en © <en,
provided
30 20'0 +1 1
=~ t+1-="—>,
et ¢ 72

which is satisfied for ¢ > 2(5 max{cy, g} + 1).
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(4) C° estimate for H,,1: By (B.19) we have

IHus1 = Illco < Kl|Rullee + [1Hy —Illco < Ken

5+20

i M :
:Nh—-
:Nh—-

i M :
II

-
~NI»—‘

Consequently, we have

_ -1 r—1 Fr—1 3 3 _ q-1
fn+1—Hn+1°Hn o-roHi ofoHjo- o0 n+1_8n+1°f°2n+1’

where H;=I—w;, 1<i<n+1,and &,,;y =Hyjo--0H,,.

Finally, (B:22) implies that £, converges in C?° topology to a C°0 diffeomorphism H,
which is a conjugacy between f and A. By [dIL92, Theorem 6.1] and the choice of o,
we conclude that H is a C*® diffeomorphism. Similarly, if f was assumed to be only C¥
with k > ¢, [dIL92, Theorem 6.1] yields that H is Ck—e,
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