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Abstract. We study regularity of a conjugacy between a hyperbolic or partially hyper-
bolic toral automorphism L and a C∞ diffeomorphism f of the torus. For a very weakly
irreducible hyperbolic automorphism L we show that any C1 conjugacy is C∞. For a
very weakly irreducible ergodic partially hyperbolic automorphism L we show that any
C1+Hölder conjugacy is C∞. As a corollary, we improve regularity of the conjugacy to
C∞ in prior local and global rigidity results.

1. Introduction and main results

1.1. Hyperbolic systems on tori and their topological classification.
Hyperbolic automorphisms of tori are the prime examples of hyperbolic dynamical sys-
tems. Any matrix L ∈ GL(d,Z) induces an automorphism of the torus Td = Rd/Zd,
which we denote by the same letter. An automorphism L is hyperbolic or Anosov if the
matrix has no eigenvalues on the unit circle. In this case, Rd = Es ⊕ Eu, where Es/u

is the sum of generalized eigenspaces of L corresponding to the eigenvalues of modulus
less/grater than 1. In general, a diffeomorphism f of a compact manifoldM is Anosov if
there exist a continuous Df -invariant splitting TM = Es ⊕ Eu and constants K > 0 and
θ < 1 such that for all n ∈ N,

‖Dfn(v)‖ ≤ Kθn‖v‖ for all v ∈ Es, and ‖Df−n(v)‖ ≤ Kθn‖v‖ for all v ∈ Eu.
The sub-bundles Es and Eu are called stable and unstable. They are tangent to the stable
and unstable foliations Ws and Wu.

Classical result of Franks and Manning [14, 26] establish topological classification of
Anosov diffeomorphisms of Td. Any such diffeomorphism f is topologically conjugate
to the hyperbolic automorphism L that f induces on Zd = H1(Td,Z). In particular, a
hyperbolic automorphisms L is topologically conjugate to any C1-small perturbation. A
topological conjugacy is a homeomorphism H of Td such that

(1.1) L ◦H = H ◦ f.
Any two such conjugacies differ by an affine automorphism of Td commuting with L [29],
and in particular have the same regularity.

1.2. Regularity of conjugacy for hyperbolic automorphisms.
A conjugacy H in (1.1) is always bi-Hölder, but it is usually not even C1, as there
are various obstructions to smoothness. For example, C1 regularity of H requires that
Lyapunov exponents of L equal Lyapunov exponents of f with respect to any measure, and
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in particular at periodic orbits. Thus smoothness of the conjugacy is a rare phenomenon
and it is often referred to as rigidity. The problem of regularity of H has been extensively
studied and it can be rougly split into two questions:

(Q1) Is the conjugacy C1 assuming vanishing of some natural obstructions?
(Q2) If the conjugacy is C1, is it C∞ for a C∞ diffeomorphism f?

These questions were often considered in a local setting were f is a small perturbation of L.
Answering them in the global setting would give a description of Anosov diffeomorphisms
smoothly conjugate to algebraic models.

In dimension two, complete positive answers to both questions were obtained by de la
Llave, Marco, and Moriyón [9, 4, 5].

The higher dimensional case is much more complicated and answers to both questions
are negative in general, without some irreducibility assumption on L. Examples by de
la Llave in [5] demonstrated that a conjugacy between a hyperbolic L and its analytic
perturbation f can be Ck but is not Ck+1, and also that vanishing of periodic obstructions
may not yield C1 conjugacy. Automorphisms L in these examples are products, and hence
reducible. We recall that L is irreducible if it has no nontrivial rational invariant subspace
or, equivalently, if its characteristic polynomial is irreducible over Q.

For large classes of irreducible L, positive answers to question (Q1) were obtained by
Gogolev, Guysinky, Kalinin, Sadovskaya, Saghin, Yang, and DeWitt [17, 15, 18, 28, 19,
10, 11] under various assumptions on Lyapunov exponents and periodic data. These
results were for the local setting, and recently they were extended to the global setting by
DeWitt and Gogolev in [12]. In contrast to the two-dimensional case, they established only
C1+Hölder regularity of H. Smoothness of H on T2 was obtained along one-dimensional
stable and unstable foliations, which have C∞ leaves. The higher-dimensional results
for L with more than one (un)stable Lyapunov exponent showed regularity of H along
intermediate invariant foliations corresponding to the Lyapunov splitting of L. However,
the leaves of these foliations are typically only C1+Hölder and hence studying regularity
along them cannot yield higher smoothness.

Nevertheless, Gogolev conjectured [15, 12] that the answer to question (Q2) is positive
for an irreducible L. Until recently, the only progress in this direction for non-conformal
case was the result of Gogolev for automorphisms of T3 with real spectrum [16]. The key
step of his proof was showing that the leaves of the one-dimensional intermediate foliation
are C∞ by studying certain cohomological equation over a Diophantine translation on T3.

Recently in [24] we used KAM-type techniques to obtained a positive answer to question
(Q2) for perturbations weakly irreducible hyperbolic L. We call a matrix L ∈ GL(d,Z)
weakly irreducible if all factors over Q of its characteristic polynomial have the same set
of moduli of their roots. This assumption is strictly weaker than irreducibility and it is
satisfied by some products. The KAM-type techniques required that the diffeomorphism
f is close to L in Cr topology, where r depends on L and is typically quite large. Thus
this result did not give a conclusive answer to question (Q2) even for the standard local
setting with C1 closeness.

In our new results, we use a completely different approach which allows us to avoid
any closeness assumption, and so we obtain a general global regularity result under a very
weak irreducibility assumption. For a matrix L ∈ GL(d,Z) we denote the largest modulus
of its eigenvalues by ρmax and the smallest by ρmin. We say that L is very weakly irreducible
if every factor over Q of the characteristic polynomial of L has a root of modulus ρmax

and a root of modulus ρmin. Clearly this condition is weaker than weak irreducibility.
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Essentially, for a toral automorphism L it means that any algebraic factor of L has the
same largest and smallest Lyapunov exponents as L.

Now we state our main result in the hyperbolic case.

Theorem 1.1. Let L be a very weakly irreducible hyperbolic automorphism of Td and let
f be a C∞ diffeomorphism of Td. If f and L are conjugate by a C1 diffeomorphism H
then any conjugacy between f and L is a C∞ diffeomorphism.

Of course f in the theorem is Anosov, but we do not assume that it is close to L. For a
C1-small perturbation of L, certain weak differentiability of H implies that H is C1+Hölder

[24, Theorem 1.1], and so we obtain the following corollary for the local setting.

Corollary 1.2. Let L be a very weakly irreducible hyperbolic automorphism of Td and let
f be a C∞ diffeomorphism of Td which is C1-close to L. If for some conjugacy H between
f and L either H or H−1 is Lipschitz, or more generally is in a Sobolev space W 1,q(Td)
with q > d, then any conjugacy between f and L is a C∞ diffeomorphism.

1.3. Regularity of conjugacy for ergodic partially hyperbolic automorphisms.
A toral automorphism L is called partially hyperbolic if the matrix has some (but not all)
eigenvalues on the unit circle. It is ergodic if and only if none of its eigenvalues is a root of
unity. In contrast to the hyperbolic case, there is no topological classification of partially
hyperbolic toral diffeomorphisms. The presence of neutral directions yields that even a
small perturbation of L may not be topologically conjugate to it. However, if a conjugacy
between L and a diffeomorphism f exists, the question of its regularity is interesting.
As in the hyperbolic case, any two conjugacies differ by an affine automorphism of Td
commuting with L, and so have the same regularity.

Prior techniques of showing smoothness of a conjugacy along contracting and expanding
foliations do not extend to the neutral foliations. Our methods, however, adapt well to
the partially hyperbolic case, and we establish regularity of a conjugacy between L and
f without any closeness assumption.

Theorem 1.3. Let L be a very weakly irreducible partially hyperbolic ergodic automor-
phism of Td. If a C∞ diffeomorphism f of Td is C1+Hölder conjugate to L, then any
conjugacy between f and L is a C∞ diffeomorphism.

To the best of our knowledge, this is the first bootstrap of regularity result for the
partially hyperbolic case. In this theorem we assume C1+Hölder regularity of H, which is
needed for our approach. In contrast to the hyperbolic case, we do not know whether
C1 regularity implies C1+Hölder. This lack of Hölder estimates is one of the reasons why
KAM-type iterative argument in [24] did not work in the partially hyperbolic case.

1.4. Applications: improving regularity of conjugacy in prior rigidity results.
Applying Theorems 1.1 and 1.3 we improve the regularity of conjugacy from C1+Hölder to
C∞ in local and global rigidity results for irreducible hyperbolic and partially hyperbolic
toral automorphisms. For a large class of toral automorphisms, these corollaries describe
diffeomorphisms which are C∞ conjugate to them.

The first result is global and is called C∞ periodic data rigidity of L. It follows from
Theorem 1.1 and C1+Hölder periodic data rigidity, which was recently obtained in [12] as
the globalization of the corresponding local result in [18]. The only prior results on C∞

periodic data rigidity were obtained for automorphisms of T3 in [12, Theorem 1.1] and
for some automorphisms conformal on full stable and unstable bundles [7, 8, 23].
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Corollary 1.4. (of Theorem 1.1 and [12, Proposition 1.6])
Let L : Td → Td be an irreducible hyperbolic automorphism such that no three of its
eigenvalues have the same modulus. Let f be a C∞ Anosov diffeomorphism of Td in the
homotopy class of L such that the derivative Dpf

n is conjugate to Ln whenever p = fn(p).
Then f is C∞ conjugate to L.

We also obtain improvements in local Lyapunov spectrum rigidity results.

Corollary 1.5. (of Theorem 1.1 and [19, Theorem 1.1])
Let L : Td → Td be an irreducible hyperbolic automorphism such that no three of its
eigenvalues have the same modulus and there are no pairs of eigenvalues of the form
λ,−λ or iλ,−iλ, where λ ∈ R. Let f be a volume-preserving C∞ diffeomorphism of Td
sufficiently C1-close to L. If the Lyapunov exponents of f with respect to the volume are
the same as the Lyapunov exponents of L, then f is C∞ conjugate to L.

A similar result in a partially hyperbolic setting uses stronger assumptions on the
spectrum of L and on closeness of f to L. A toral automorphism L is called totally
irreducible if Ln is irreducible for all n ∈ N. Such L is ergodic.

Corollary 1.6. (of Theorem 1.3 and [19, Theorem 1.5])
Let L : Td → Td be a totally irreducible automorphism with exactly two eigenvalues of
modulus one and simple real eigenvalues away from the unit circle. Let f be a volume-
preserving C∞ diffeomorphism sufficiently CN -close to L, where N = 5 if d > 4 and
N = 22 if d = 4. If the Lyapunov exponents of f with respect to the volume are the same
as the Lyapunov exponents of L then f is C∞ conjugate to L.

1.5. Proof strategy. We reduce the conjugacy equation (1.1) to a cohomological equa-
tion over f with hyperbolic twist L

Lh− h ◦ f = R,

where h = H − I and R = f − L can be viewed as functions from Td to Rd. Projecting
this equation to a Lyapunov subspace Eρ ⊂ Eu for L we obtain

(1.2) Lρhρ − hρ ◦ f = Rρ, where Lρ = L|Eρ .
This is a fixed point equation on hρ for an affine contraction on the space C0(Td, Eρ). It
follows that hρ is the unique fixed points given by series

(1.3) hρ =
∞∑
k=0

L−k−1
ρ (Rρ ◦ fk).

Term-wise differentiation can be used to show that hρ is C∞ along the leaves of Ws.
However, regularity of hρ alongWu cannot be analyzed directly, as the series of derivatives
diverge since Dfk grows exponentially. Our approach relies on estimating distributional
derivatives of hρ along Wu and showing that weak derivatives of all orders are in L2(Td).
We use some techniques developed in [13] in the context of Zk-actions to study regularity
of conjugacy along the neutral foliation of f , rather than the unstable one. To analyze
regularity of hρ along Wu, instead of (1.3) we consider a different representation using
negative iterates of f ,

(1.4) hρ = −
∞∑
k=1

Lk−1
ρ (Rρ ◦ f−k).
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However, this series does not converge in C0(Td, Eρ). The key element of our approach is
to differentiate it once along the corresponding fast subfoliationW ofWu. Such derivatives
D1
Whρ converge in distributional sense as the contracting Df−k balances the expanding

twist Lk−1
ρ . Then we differentiate further and show that all distributional derivatives of

D1
Whρ along all of Wu are in L2(Td).
Now we need to obtain weak differentiability of hρ from that of D1

Whρ. This is the step
where we use global information given by very weak irreducibility of L. We recall that
the bootstrap fails in general for reducible L. In particular, the regularity of hρ transverse
to W cannot be recovered locally, even if hρ is constant along W . In order to use global
structure of L to study nonlinear f , we construct a global coordinate chart for the foliation
Wu and the fast partW . This allows us to use a suitable version of Diophantine property
for the fast linear foliation of L, which we obtain from very weak irreducibility. Using this
Diophantine property we establish a regularity result that allows us to recover sufficient
information about all weak derivatives of hρ along Wu from that of D1

Whρ.
Our techniques are also well-adapted to treating the partially hyperbolic case, so that

bootstrap from C1+Hölder to C∞ requires only minor changes compared to hyperbolic one.

2. Proof of Theorem 1.1

Since L and hence f are hyperbolic, we have hyperbolic splittings for L and f

Rd = Es ⊕ Eu for L and Rd = Esx ⊕ Eux for f.(2.1)

The subspace Es/u is the sum of all generalized eigenspaces of L corresponding to eigen-
values of moduli less/grater than 1. The stable and unstable subbundles Es and Eu of TTd
are tangent to f -invariant topological foliations Ws and Wu with uniformly C∞ leaves.
This means that the individual leaves are C∞ immersed manifolds with the derivatives of
any order continuous on TTd. For any continuous conjugacy H as in (1.1) we have

H(Ws) = W s and H(Wu) = W u,(2.2)

where W s and W u are the linear foliations defined by Es and Eu.

2.1. The conjugacy H is C1+Hölder. First we show that the conjugacy H in Theorem
1.1 is in fact C1+α for some α > 0. Since H is C1 we can differentiate the conjugacy
equation L ◦H = H ◦ f and obtain

L ◦DH(x) = DH(fx) ◦Df(x).

Thus C(x) = DH(x) is a continuous conjugacy between the derivative cocycles L and
Df , that is,

L = C(fx) ◦Df(x) ◦ C(x)−1.

We consider the Lyapunov splitting Rd = ⊕ρ∈∆Eρ for L, where ∆ is the set of moduli
of eigenvalues of L and Eρ is the sum of generalized eigenspaces of L corresponding to
the eigenvalues of modulus ρ. Denoting Eρ(x) = C−1(x)Eρ we obtain a continuous Df -
invariant splitting TTd = ⊕ρ∈∆Eρ with the same expansion/contraction rates as for L. It is
well known that such splitting is α-Hölder with some exponent α > 0 which depends on ∆.
Then the restriction Cρ(x) = C(x)|Eρ(x) is a continuous conjugacy between α-Hölder linear
cocycles L|Eρ and Df |Eρ(x) over f . Both cocycles have one Lyapunov exponent log ρ, and
L is clearly fiber bunched as the nonconformality ‖Ln‖·‖L−n‖ grows at most polynomially
and hence is dominated by expansion/contraction along (un)stable manifolds. Hence [24,
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Theorem 2.1] applies and yields that the conjugacy Cρ(x) is α-Hölder for each ρ. It follows
that DH(x) = C(x) is α-Hölder.

2.2. General construction and properties of H. While we do not assume that H is
close to the identity map, we may assume that H is homotopic to the identity. Indeed,
the induced map H∗ : Zd → Zd on the first homology group of Td is given by a matrix
A ∈ GL(d,Z), which defines an automorphism of Td. Replacing f by A◦f ◦A−1 and H by
H ◦A−1, we may assume that H∗ = Id. In particular, this yields that f is in the homotopy
class of L. Since L fixes 0 we see that f fixes H−1(0). Conjugating f by the translation
x 7→ x + H−1(0) we can also assume that f(0) = L(0) = H(0) = 0 is a common fixed
point for f and L.

From now on we will assume that H is in the homotopy class of the identity, f is in
the homotopy class of L, and they satisfy H(0) = f(0) = 0. Under these assumptions,
the conjugacy H is unique and is given by the following construction. We lift f and H to
Rd as

H̄ = Id + h̄ and f̄ = L+ R̄,

where h̄, R̄ : Rd → Rd are Zd-periodic functions satisfying R̄(0) = h̄(0) = 0. The lifts
satisfy the conjugacy equation

L ◦ H̄ = H̄ ◦ f̄ which yields L ◦ h̄− h̄ ◦ f̄ = R̄.

The latter equation projects to the following equations for functions on Td

L ◦ h− h ◦ f = R or h = L−1 ◦ h ◦ f + L−1R,(2.3)

where h,R : Td → Rd satisfy R(0) = h(0) = 0 and are as regular as f and H respectively.
Thus we have that R is C∞ and h is C1+α.

Using the hyperbolic splitting Rd = Es ⊕ Eu for L we define the stable and unstable
projections hs, hu, Rs, Ru of h and R respectively. Projecting the second equation in (2.3)
to Eu we obtain

(2.4) hu = L−1
u (hu ◦ f) + L−1

u Ru, where Lu = L|Eu .

This is a fixed point equation for hu with the affine operator

(2.5) Tu(ψ) = L−1
u (ψ ◦ f) + L−1

u Ru.

Since ‖L−1
u ‖ < 1, the operator Tu is a contraction on the space C0(Td, Eu), and thus hu

is its unique fixed point given by

(2.6) hu = lim
k→∞

T ku (0) =
∞∑
k=0

L−k−1
u (Ru ◦ fk).

Similarly, one obtains the equation for hs and the series hs = −∑∞k=1 L
k−1
s (Rs ◦ f−k).

Lemma 2.1. The unstable component hu is uniformly C∞ along Ws, that is, it has
derivatives of all orders along the leaves of Ws which vary continuously on Td. Similarly,
hs is uniformly C∞ along Wu.

Proof. This follows from (2.2). Specifically, H(Wu) = W u means that the locally defined
unstable component of the conjugacy Hu = Idu + hu is locally constant along the leaves
of Ws and hence is as regular as these leaves. Thus hu is uniformly C∞ along Ws.
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Alternatively, this can be established by term-wise differentiation of the series (2.6) as
norms of the derivatives of fk along Ws decay exponentially. This is clear for Dfk|Es ,
and for higher order derivatives this is given by (5.11) in Lemma 5.2 (i). �

2.3. Lyapunov splitting and smoothness of hu. We will focus on the unstable com-
ponent and show that hu is C∞ on Td. For this we consider the splitting of the unstable
bundles for L and f into Lyapunov subspaces. Let 1 < ρ1 < · · · < ρ` be the distinct
moduli of the unstable eigenvalues of L and let

(2.7) Eu = Eu,L = E1 ⊕ E2 ⊕ · · · ⊕ E`

be the corresponding splitting of Eu, where Ei is the direct sum of generalized eigenspaces
corresponding to the eigenvalues with modulus ρi. Similarly to the above, we project the
conjugacy equation to this splitting. We let Li = L|Ei and denote by hi and Ri the Ei

components of h and R respectively. Then (2.3) yields

Lihi(x)− hi(f(x)) = Ri(x), x ∈ Td.(2.8)

As above, this equation has a unique solution given by the similar series

hi =
∞∑
k=0

L−k−1
i (Ri ◦ fk).

However, this series is still not useful for studying the regularity of hi along Wu as
differentiating along Wu yields diverging series.

The main part of the proof is analyzing regularity of individual hi along Wu and
showing inductively that they all are C∞ on Td. The inductive process is given by the
next theorem, which yields that hu is C∞. The argument for hs is similar and hence h
and H = Id + h are also C∞.

Theorem 2.2. Suppose i ∈ {1, . . . , `}. If hj is C∞ for all 1 ≤ j < i, then hi is also C∞.

In the base case i = 1 the assumption becomes vacuous. We emphasize that the
regularity of hi in the theorem is the global regularity on Td rather than the regularity
along the corresponding foliation.

3. Proof of Theorem 2.2

3.1. Outline of the proof. We recall that the conjugacy H is a C1+α diffeomorphism.
Using the Lyapunov splitting (2.7) for L we obtain the corresponding splitting for f

(3.1) Eu = Eu,f = E1 ⊕ E2 ⊕ · · · ⊕ E `

into α-Hölder Df -invariant sub-bundles E j = DH−1(Ej) for j = 1, . . . , `.
The bundles E i are tangent to foliations W i, which are mapped by H to the corre-

sponding linear ones: H(Wj) = W j for all j = 1, . . . , `. In particular, each Wj is a C1+α

foliation. However, even its individual leaves are not more regular in general. This is the
main reason why the regularity of H cannot be bootstrapped by studying its restrictions
to W i. Instead, we show global smoothness of the component hi on Td.

We will work with the fast subbundle E i,` and the corresponding foliations W i,`, where

E i,` = E i ⊕ · · · ⊕ E ` = TW i,`.

We note that each W i,` has uniformly C∞ leaves, moreover it gives a C∞ subfoliation of
the leaves of Wu. While this holds in general, in our case it follows from Proposition 3.1.
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Our approach is to represent the first derivatives of hi along W i,` as series over the
negative iterates of f . Using exponential mixing we show that these series converge as
distributions as the “expanding twist” by Li is now balanced by the contracting derivative
of f−1 alongW i,` . Then we further differentiate these series in distributional sense along
all directions in Wu. We obtain estimates of such derivatives of all orders in terms of
fractional Sobolev norms of test functions and then show that they are in L2(Td). This
is done in Proposition 3.2.

In Proposition 3.1 we construct an appropriate global coordinate chart which sends
foliations Wu and W i,` to the corresponding linear foliations W u and W i,` for L. This
allows us to use the Diophantine property of W i,` = Ei,` to show that all derivatives of hi
along Wu are in L2(Td). This is done in Proposition 3.3. Since by Lemma 2.1 hi is also
uniformly C∞ along Ws, and we will conclude that hi is C∞ on Td using [6, Theorem 3].

3.2. Global charts. Modifying the C1+α conjugacy H, we now construct a global chart
Γi for foliations Wu and W i,` such that Γi is C∞ along Wu.

Proposition 3.1. Suppose that i ∈ {1, . . . , `} and that hj ∈ C∞(Td) for 1 ≤ j < i.
Then there exists a C1+α diffeomorphism Γi of Td such that

(1) Γi maps Wu to W u and is uniformly C∞ along Wu;
(2) Γi maps W i,` to W i,`.

We note that Γi may not map Ws to W s.
If i = 1 in the proposition, we have W i,` = W1,` = Wu and the assumption that hj is

C∞ becomes vacuous. The argument applies and gives a C1+α diffeomorphism Γ1 which
is just a smoothing of H along the leaves Wu.

Proof. Recall that the conjugacy H = Id + h, where h : Td → Rd, is a C1+α diffeomor-
phism. We write h = (hs, h1, . . . , h`) and smooth each hj, j ≥ i, while keeping the other
components unchanged. More precisely, we define

h̃ε =
Ä
hs, h1, . . . , hi−1, sε(hi), . . . , sε(h`)

ä
,(3.2)

where sε(hj) ∈ C∞(Td) is obtained using a standard smoothing by convolution operator.

Since h̃ε → h in C1 as ε → 0, we see that Id + h̃ε is C1 close to the diffeomorphism H
for small ε. It follows that Id + h̃ε is invertible and hence is a C1 diffeomorphism. We fix
such ε > 0 and define

Γi = Id + h̃ε.(3.3)

Since h̃ε remains C1+α on Td, both Γi and Γ−1
i are also C1+α.

For j ≥ i components (h̃ε)j = sε(hj) are C∞ by smoothing, and for 1 ≤ j < i

components (h̃ε)j = hj are C∞ by the assumption. The stable component h̃sε = hs

remains unchanged and hence is uniformly C∞ along Wu by Lemma 2.1. Thus the whole
h̃ε is uniformly C∞ along Wu, and hence so is Γi.

Also since h̃sε = hs, the property H(Wu) = W u ensures that Γi(Wu) = W u. Similarly,

(h̃ε)j = hj, for 1 ≤ j < i, and so H(W i,`) = W i,` yields Γi(W i,`) = W i,`. �

3.3. Derivatives along Wu. We denote the dimension of Eu by du and we fix an or-
thonormal basis x1, . . . , xdu of Eu such that x1, . . . , xdimEi,` is a basis of Ei,`. We denote
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by m = (m1, . . . ,mdu) a multi-index with nonnegative integer components, and the cor-
responding derivative of a function ω on Td by

Dm
Eu(ω) = ∂m1

x1
∂m2
x2
· · · ∂mduxdu

ω.

The global foliation chart Γi allows us to conveniently describe the derivatives along the
foliations Wu and W i,` in a similar way:

Dm
Wuω = Dm

Eu(ω ◦ Γ−1
i ) = ∂m1

x1
∂m2
x2
· · · ∂mduxdu

(ω ◦ Γ−1
i ).

The proof of Theorem 2.2 has two main parts. The first one is the following proposition,
which shows that all derivatives of hi along Wu are in L2, as long as the first derivative
is taken along W i,`.

Proposition 3.2. Suppose that i ∈ {1, . . . , `} and that hj are C∞ for 1 ≤ j < i.
Then for every 1 ≤ k ≤ dimEi,` and every multi-index m = (m1, . . . ,mdu)

Dm
Eu∂xk(hi ◦ Γ−1

i ) ∈ L2(Td).

We will prove this proposition in Section 5. The proof is dynamical and uses derivative
estimates and exponential mixing.

The second part is Proposition 3.3 where we improve the conclusion of Proposition 3.2
by showing that all derivatives Dm

Eu(hi ◦ Γ−1
i ) are in L2(Td).

Proposition 3.3. Suppose that Dm
Eu∂xk(hi ◦ Γ−1

i ) ∈ L2(Td) for every 1 ≤ k ≤ dimEi,`

and every multi-index m = (m1, . . . ,mdu). Then

Dm
Eu(hi ◦ Γ−1

i ) ∈ L2(Td) for every m = (m1, . . . ,mdu).

We will prove this proposition in Section 4. The proof is analytical and relies on a
Diophantine property of the linear foliation Ei,`, which we obtain from the very weak
irreducibility of L. This is the only place where we use the irreducibility assumption.

Combining Propositions 3.2 and 3.3 we conclude that Dm
Eu(hi ◦ Γ−1

i ) ∈ L2(Td) for all
m, that is, all derivatives Dm

Wuhi of hi along Wu are in L2(Td). Recall that by Lemma
2.1 the map hu and hence each component hi are uniformly C∞ alongWs, that is, Dm

Wshi
are continuous and so are also in L2(Td). Now we apply [6, Theorem 3]. It yields that
all derivatives of order m of a function φ are in L2(Td) if φ has derivatives of order m
in L2(Td) along finitely many transverse foliations, each with uniformly C∞ leaves and
admitting foliation charts whose Jacobians are uniformly C∞ along the foliation. The last
assumption holds for Ws and Wu [6, Theorem 2]. Thus we conclude that all derivatives
of hi are in L2(Td), and hence hi ∈ C∞(Td) by Sobolev embedding theorems.

This completes the proof of Theorem 2.2 modulo the proofs of Propositions 3.2 and
3.3. For convenience of the exposition we will prove Proposition 3.3 first.

4. Proof of Proposition 3.3

The proof of Proposition 3.3 is structured as follows. In Section 4.1 we give corollaries
of very weak irreducibility and then state and prove a certain Diophantine property for
spaces Ei,`. In Section 4.2 we discuss fractional Sobolev spaces Hβ that we will use in our
regularity results. In Section 4.3 we state and prove the main technical result, Proposition
4.5, and in Section 4.4 we use it to complete the proof of Proposition 3.3.
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4.1. Very weak irreducibility and Diophantine property. For a matrix L ∈ GL(d,Q)
we denote the largest modulus of its eigenvalues by ρmax. Let Emax be the direct sum of its
generalized eigenspaces corresponding to the eigenvalues with modulus ρmax. We denote
by Êmax the direct sum of its generalized eigenspaces corresponding to the eigenvalues with
modulus different from ρmax. Thus we have an L-invariant splitting Rd = Emax⊕Êmax. We
also denote by (Emax)⊥ the orthogonal complement of Emax with respect to the standard
inner product.

For be the characteristic polynomial p of L we consider its prime decomposition over Q

p(t) =
K∏
k=1

(pk(t))
dk

and the corresponding splitting of Rd into L-invariant rational subspaces

Rd = ⊕Vk , where Vk = ker (pdkk (L)).

Lemma 4.1. For any matrix L ∈ GL(d,Q) the following are equivalent.

(1) Each pk has a root of modulus ρmax,

(2) Êmax ∩ Zd = {0},
(3) (Emax)⊥ ∩ Zd = {0}.

Since we focus on Wu we deal only with ρmax. A similar result holds for ρmin, the
smallest modulus of eigenvalues of L, and the corresponding spaces (Emin)⊥ and Êmin. It
would be used in the proof of smoothness of hs.

Proof. (2) ⇒ (1) If some pk has no roots of modulus ρmax, then Vk ⊂ Êmax. Since Vk is a

rational subspace, it contains nonzero points of Zd and hence so does Êmax.
(1)⇒ (2) Suppose there is 0 6= n ∈ (Zd∩ Êmax). Then for some k the component nk of

n in Vk is nonzero and rational. We note that nk ∈ Êmax as Êmax = ⊕k(Êmax ∩ Vk). Then

W = span{Lmnk : m ∈ Z}
is a rational L-invariant subspace contained in Êmax ∩ Vk. Then the characteristic poly-
nomial of L|W is a power of pk and hence has a root of modulus ρmax by (1). Thus

W ∩ Emax 6= 0, contradicting W ⊂ Êmax.

(1) ⇔ (3) Since the transpose Lτ has the same characteristic polynomial p, (1) is the
same as the corresponding property (1τ ) for Lτ , and hence it is equivalent to (2τ ) with the

corresponding subspace for Lτ : Êτ
max∩Zd = {0}. It remans to note that (Emax)⊥ = Êτ

max.
Indeed, the polynomial

q(x) =
∏

|λ|=ρmax

(x− λ)d,

where the product is over all eigenvalues of L of modulus ρmax, is real and we obtain

(Emax)⊥ = (ker q(L))⊥ = range (q(L))τ = range (q(Lτ )) = Êτ
max(4.1)

since q(Lτ ) is invertible on Êτ
max and zero on Eτ

max. �

Definition 4.2. We say that a subspace V of Rd has Diophantine property if there exists
K > 0 such that for any n ∈ Zd and any orthonormal basis {v1, . . . , vdimV } of V we have

dimV∑
i=1

|n · vi| ≥ K‖n‖−d,(4.2)
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where ‖n‖ is the standard norm of n and n · vi is the standard inner product in Rd.

Lemma 4.3. The space Ei,` has Diophantine property for each i ∈ {1, . . . , `},

Proof. It suffices to prove the lemma for i = ` as it gives the smallest subspace E`. For
any orthonormal basis {v1, . . . , vdimE`} of E` we have

dimE`∑
j=1

|n · vi| ≥ ‖πE`(n)‖ = dist(n, (E`)⊥),

where πE` denotes the orthogonal projection to E`. To complete the proof we need to show
that dist(n, (E`)⊥) ≥ K‖n‖−d. Here we use Katznelson’s Lemma, see e.g. [3, Lemma 4.1]
for a proof.

Lemma 4.4 (Katznelson’s Lemma). Let A be a d × d integer matrix. Assume that Rd

splits as Rd = V1 ⊕ V2, where V1 and V2 are invariant under A, and A|V1 and A|V2 have
no common eigenvalues. If V1 ∩ Zd = {0}, then there exists a constant K such that

dist(n, V1) ≥ K‖n‖−d for all 0 6= n ∈ Zd,

where ‖n‖ denotes Euclidean norm and dist is Euclidean distance.

We apply this lemma with the matrix A = Lτ and its invariant splitting Rd = Êτ
max ⊕

Eτ
max. We use the notations of Lemma 4.1, so that E` = Emax and by (4.1) we have

(Emax)⊥ = Êτ
max. By very weak irreducibility of L and Lemma 4.1(3) we have (Emax)⊥ ∩

Zd = {0}. Thus the assumptions of Katznelson’s Lemma are satisfied and it yields
dist(n, (E`)

⊥) ≥ K‖n‖−d as desired. �

4.2. Fractional Sobolev spaces. We will use fractional Sobolev spaces Hβ on Td which
can be defined in terms of Fourier coefficients as follows. For any function ω ∈ L2(Td,C)
we denote its Fourier coefficients by ω̂n, n ∈ Zd, and write its Fourier series

ω(x) =
∑
n∈Zd

ω̂ne
2πin·x.

For any β > 0 we define the norm

‖ω‖Hβ =
Ä ∑
n∈Zd

(1 + ‖n‖2)β · |ω̂n|2
ä1/2 ≥ ‖ω‖L2(4.3)

and the fractional Sobolev space

Hβ = {ω ∈ L2(Td) : ‖ω‖Hβ <∞} and Hβ
0 = {ω ∈ Hβ : ω̂0 = 0}.(4.4)

For k ∈ N, the space Hk coincides with the usual Sobolev space W k,2 of L2 functions
whose weak derivatives of order up to k are in L2. By the Sobolev embedding theorem,
for any k, r ∈ N such that k > r + d/2 we have

Hk ⊂ Cr and ‖ω‖Cr ≤M‖ω‖Hk .(4.5)

We will work with Hβ for 0 < β < 1 and use the inclusion of the space of α-Hölder
functions

Cα ⊂ Hβ for any 0 < β < α .(4.6)



12 BORIS KALININ1, VICTORIA SADOVSKAYA2, AND ZHENQI JENNY WANG3

This can be easily seen by using the Hölder estimate in the numerator of the norm

(‖ω‖′Hβ)2 =
∫
Td

∫
Td

|ω(x)− ω(y)|2

|x− y|d+2β
dx dy.

which is equivalent to the norm (4.3), see e.g. [2].

4.3. Diophantine regularity result. Now we state the main analytical result which
uses the Diophantine property. It relates differentiability of a function to that of its
first derivatives along a foliation V with the Diophantine property. Here we consider
distributional derivatives. For a function ω ∈ L2(Td) and a C∞ test function ψ : Td → C
we denote their pairing as

〈ω, ψ〉 =
∫
T d
ω(x) ψ̄(x) dx,(4.7)

where the integral is with respect to the Lebesgue measure.
For a multi-indexm = (m1, . . . ,mdimE) the distributional derivativeDm

Eω of ω is defined
as the functional on the space of C∞ test functions by

〈Dm
Eω, ψ〉 = (−1)|m|

¨
ω,Dm

Eψ
∂
, where |m| =

dimE∑
k=1

mk.(4.8)

We write that Dm
Eω ∈ L2(Td) if this distribution is given by an L2 function.

Proposition 4.5. Let V be a subspace in Rd with Diophantine property and let E be
any subspace of Rd. Let {v1, . . . , vdimV } and {e1, . . . , edimE} be their orthonormal bases.
Suppose that ω ∈ L2(Td) satisfies Dm

E ∂vjω ∈ L2(Td) for every 1 ≤ j ≤ dimV and
every multi-index m = (m1, . . . ,mdimE). Then for any 0 < β < 1 and every multi-index
m = (m1, . . . ,mdimE) there exists a constant K = K(d,m, β, V, ω) such that

|〈Dm
Eω, ψ〉| = |

¨
ω,Dm

Eψ
∂
| ≤ K‖ψ‖Hβ for every C∞ test function ψ.(4.9)

Proof. For any C∞ function ω, multi-index m = (m1, . . . ,mdimE), and n ∈ Zd we have

(÷Dm
Eω)n = 〈Dm

Eω, e
2πin·x〉 = (−1)|m|〈ω,Dm

E e
2πin·x〉 = (−1)|m| (2πi)|m|nm ω̂n(4.10)

and hence

|(÷Dm
Eω)n| = (2π)|m||nm| |ω̂n| where nm =

dimE∏
k=1

(n · ek)mk .(4.11)

These equalities hold for any L2 function ω by the definition of distributional derivative.
First we express the assumption Dm

E ∂vjω ∈ L2(Td) in terms of Fourier coefficients using

|‘∂vωn| = 2π|n · v| |ω̂n| and (4.11)∑
n∈Zd
|ω̂n|2 |nm|2 |n · vj|2 = (2π)−2(|m|+1)‖Dm

E ∂vjω‖2
L2 <∞.

Using Cauchy-Schwarz inequality we obtain∑
n∈Zd
|ω̂n|2 |nm| |n · vj| =

∑
n∈Zd

(|ω̂n| |nm| |n · vj|) |ω̂n|

≤
Ä ∑
n∈Zd
|ω̂n|2 |nm|2 |n · vj|2

ä1/2 ·
Ä ∑
n∈Zd
|ω̂n|2

ä1/2 ≤ ‖Dm
E ∂vjω‖L2 · ‖ω‖L2 <∞.
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Using this inductively to divide exponent of |nm| |n · vj| by 2 we obtain that for any m
and any k ∈ N∑

n∈Zd
|ω̂n|2 |nm|2/2

k |n · vj|2/2
k

=
∑
n∈Zd

(|ω̂n| |nm|2/2
k |n · vj|2/2

k

) |ω̂n| ≤

≤
Ä ∑
n∈Zd
|ω̂n|2 |nm|2/2

k−1|n · vj|2/2
k−1ä1/2 · ‖ω‖L2 ≤ K1(k,m, ω) <∞.

Since m is arbitrary, taking m = 2km′ we can rewrite it as∑
n∈Zd
|ω̂n|2 |nm

′|2 |n · vj|2/2
k ≤ K1(k, 2km′, ω) for all k ∈ N and all m′.(4.12)

Informally, the last inequality means that Dm′
E ∂1/2k

vj
ω ∈ L2(Td). More precisely, for any

θ ∈ Hβ(Td) we define the following “fractional derivative”

|∂vj |β θ =
∑
n∈Zd

θ̂n |n · vj|β e2πin·x ∈ L2(Td).(4.13)

To prove (4.9) we will use (4.12) along with a representation of the test function ψ as a
sum of suitable fractional derivatives. The latter is given by the next lemma, which relies
on the Diophantine property of V .

Lemma 4.6. Suppose that 0 < β < 1 and k ∈ N satisfy d/2k < β/2. Then there exists
K3 = K3(V, k) such that for any ψ ∈ Hβ there exist

θj ∈ Hβ/2
0 with ‖θj‖β/2 ≤ K2‖ψ‖Hβ , 1 ≤ j ≤ dimV, such that(4.14)

ψ = ψ̂0 +
dimV∑
j=1

|∂vj |1/2
k

θj.(4.15)

Proof. For each 0 6= n ∈ Zd we define ι(n) ∈ {1, . . . , dimV } to be the smallest index for
which |n · vι(n)| is maximal, and hence

|n · vι(n)| ≥
1

dimV

dimV∑
i=1

|n · vi|.

Then we can write ψ = ψ̂0 +
∑dimV
j=1 ψj, where the function ψj =

∑
06=n∈Zd

“ψn e2πin·x is
defined by

(ψ̂j)n = “ψn if ι(n) = j and otherwise (ψ̂j)n = 0.

Now for each 1 ≤ j ≤ dimV we construct θj =
∑

06=n∈Zd θ̂n e
2πin·x satisfying

|∂vj |1/2
k

θj = ψj by taking (“θj)n = |n · vj|−1/2k(ψ̂j)n ∀ 0 6= n ∈ Zd.

We note that (“θj)n = 0 unless ι(n) = j, in which case we have

|n · vj| ≥
1

dimV

dimV∑
i=1

|n · vi| ≥ K2(V )‖n‖−d
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by the Diophantine property (4.2) of V . Thus every nonzero Fourier coefficient of θj can
be estimated as

|(“θj)n| = |(ψ̂j)n|
|n · vj|1/2k

≤ |(ψ̂j)n|K3(V, k) ‖n‖d/2k = K3(V, k) |“ψn| ‖n‖d/2k .
Since ψ ∈ Hβ, see (4.3) and (4.4), it follows that θj ∈ Hβ−(d/2k) and ‖θj‖β−(d/2k) ≤
C‖ψ‖Hβ . Since d

2k
< β

2
we have β − d

2k
> β

2
, and hence θj satisfies (4.14). �

Now we finish the proof of Proposition 4.5 using Lemma 4.6. We consider ψ ∈ Hβ and
choose k = k(d, β) sufficiently large so that the lemma applies. Then we can estimate

|〈Dm
Eω, ψ〉|

(1)

≤
dimV∑
j=1

∣∣∣∣¨Dm
Eω, |∂vj |1/2

k

θj
∂∣∣∣∣ (2)

≤
dimV∑
j=1

∑
n∈Zd

(2π)|m||ω̂n| |nm| |n · vj|1/2
k |(θ̂j)n|

(3)

≤ (2π)|m|
dimV∑
j=1

Ä ∑
n∈Zd
|ω̂n|2 |nm|2 |n · vj|2/2

kä1/2 ·
Ä ∑
n∈Zd
|(θ̂j)n|2

ä1/2

(4)

≤ (2π)|m|
Ä
K1(k, 2km,ω)

ä1/2
dimV∑
j=1

‖θj‖L2

(5)

≤ (2π)|m|
Ä
K1(k, 2km,ω)

ä1/2
(K3 dimV ) ‖ψ‖Hβ = K(β,m, d, V, ω) ‖ψ‖Hβ .

Here in (1) we use (4.15) and 〈Dm
Eω, ψ̂0〉 = 0, in (2) we use (4.11) and (4.13), in (3) we

use Cauchy-Schwarz inequality, in (4) we use (4.12), and in (5) we use (4.14).

This completes the proof of Propositions 4.5. �

4.4. Completing the proof of Proposition 3.3. We fix coordinates in Ei and we
write the vector-valued function ω = hi ◦ Γ−1

i : Td → Ei as (ω1, . . . , ωdimEi). We apply
Proposition 4.5 with

V = Ei,`, E = Eu, and ωj, j = 1, . . . , ωdimEi .

Since hi ◦ Γ−1
i is α-Hölder continuous, all ωj are in Hβ for any β < α by (4.6).

Now Proposition 3.3 follows from the next lemma, which upgrades the derivatives to
L2. While the statement is natural, we do not know if it holds with Hβ replaced by Cβ.

Lemma 4.7. Suppose that ω ∈ Hβ and that for some multi-index m and K > 0 we have

|
¨
D2m
E ω, ψ

∂
| ≤ K‖ψ‖Hβ(4.16)

for every C∞ test function ψ. Then Dm
Eω ∈ L2(Td).

Proof. We consider the smoothing of ω by truncation of its Fourier series,

ωN =
∑

n∈Zd, ‖n‖≤N
ω̂ne

2πin·x.(4.17)
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Each ωN is C∞and satisfies ‖ωN‖Hβ ≤ ‖ω‖Hβ . Then (4.16) and (4.11) yield

K‖ω‖Hβ ≥ K‖ωN‖Hβ ≥ |
¨
D2m
E ω, ωN

∂
| = |

¨
ω, D2m

E ωN
∂
| = |

∫
Td
ω(x)D2m

E ωN(x) dx |

= |
∑
‖n‖≤N

ω̂n (◊�D2m
E ω)n | = |

∑
‖n‖≤N

ω̂n (2πi)2|m| n2m ω̂n |

=
∑
‖n‖≤N

(2π)2|m| n2m |ω̂n|2 =
∑
‖n‖≤N

Ä
(2π)|m||nm| |ω̂n|

ä2
for any N ∈ N.

We conclude using (4.11) that∑
n∈Zd
|(÷Dm

Eω)n|2 =
∑
n∈Zd

Ä
(2π)|m||nm| |ω̂n|

ä2 ≤ K‖ω‖Hβ

and hence the distribution Dm
Eω is given by the L2 function

∑
n∈Zd(

÷Dm
Eω)n e

2πin·x. �

5. Proof of Proposition 3.2

We prove the proposition in Section 5.1. In Section 5.2 we state and prove derivative
estimates that are used in this proof as well as in Section 6.

5.1. Main part of the proof. For a vector-valued function f = (f1, . . . , fN) : Td → RN

we define its norm as the maximum ‖f‖ = maxi‖fi‖ of the corresponding norms of the
components. We also adopt vector-valued notations for the inner product in L2(Td) with
respect to the Lebesgue measure and for pairing of a distribution with a test function
ψ : Td → R

〈f, ψ〉 :=
Ä
〈f1, ψ〉, , · · · , 〈fN , ψ〉

ä
∈ RN .(5.1)

First, we obtain a suitable series representation for the distribution Dm
Eu∂xj(hi ◦ Γ−1

i ),

where 1 ≤ j ≤ dimEi,`. Specifically, we will show that¨
hi ◦ Γ−1

i , Dm
Eu∂xjψ

∂
=

∞∑
k=1

Lk−1
i

¨
Ri ◦ f−k ◦ Γ−1

i , Dm
Eu∂xjψ

∂
.(5.2)

As we discussed in the introduction, this is different from differentiating series (1.3) for hi
and instead corresponds to differentiating series (1.4). However, (1.4) does not converge
in C0 and even its distributional convergence is a priory not clear. In contrast, the series
(5.2) converges distributionally. To show this we work directly with a finite iteration of
the conjugacy equation (2.8). Rewriting Lihi(x)− hi(f(x)) = Ri(x) we obtain

hi(x) = Lihi(f
−1(x))−Ri(f

−1(x)) for all x ∈ Td.
Iterating this, we see that for any n ∈ N,

hi = Lni hi ◦ f−n −
n∑
k=1

Lk−1
i Ri ◦ f−k,

and hence

hi ◦ Γ−1
i = Lni hi ◦ f−n ◦ Γ−1

i −
n∑
k=1

Lk−1
i Ri ◦ f−k ◦ Γ−1

i .

Now we show that the error term Lni hi ◦ f−n ◦ Γ−1
i paired with Dm

Eu∂xjψ tends to zero as

n→∞. Recalling that Γi, Γ−1
i , H, H−1, and hi are C1+α we obtain
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Lni
¨
hi ◦ f−n ◦ Γ−1

i , Dm
Eu∂xjψ

∂
(5.3)

(1)
= −Lni

¨
∂xj(hi ◦ f−n ◦ Γ−1

i ), Dm
Euψ

∂
(2)
= −Lni

¨
∂xj(hi ◦H−1 ◦ L−n ◦H ◦ Γ−1

i ), Dm
Euψ

∂
= −Lni

¨
DEi,`(hi ◦H−1)L−n◦H◦Γ−1x · L−n|Ei,` · ∂xj(H ◦ Γ−1

i )x, D
m
Euψ

∂
(3)
= −ρ−ni Lni

¨
DEi,`(hi ◦H−1)L−ny ·Bn · ∂xj(H ◦ Γ−1)Γi◦H−1y, D

m
Eu(ψ)Γi◦H−1y · J(y)

∂
Here in (1) we integrate by parts, noting that the left side is C1+α and so the pairing
is given by integration; in (2) we use that H conjugates L−n and f−n; in (3) we denote
Bn = ρni L

−n|Ei,` , change the variable to y = H ◦Γ−1
i (x), and denote by J(y) the Jacobian

of the coordinate change.
To estimate (5.3) we will use exponential mixing of Hölder functions with respect to the

volume for ergodic automorphisms of tori. It was obtained by Lind [25, Theorem 6] and
by Gorodnik and Spatizer [21, Theorem 1.1] for nilmanifolds, which use for the estimate.

Theorem 5.1. [25, 21] Let L be an ergodic automorphism of Td. Then for any 0 < α < 1
and any g1, g2 ∈ Cα(Td) there exists γ = γ(α) > 0 and K = K(α) such that∣∣∣∣〈g1 ◦ Ln, g2〉 −

Ä ∫
Td
g1(x)dx

äÄ ∫
Td
g2(x)dx

ä∣∣∣∣ ≤ K‖g1‖Cα‖g2‖Cα e−γ|n| for all n ∈ Z.

Now we estimate the last line of (5.3). The norms ‖ρ−ni Lni ‖ and ‖Bn‖ grow at most
as K1n

d since the moduli of all their eigenvalues are at most one. Also, the derivative
DEi,`(hi ◦ H−1) is α-Hölder with zero average, and ∂xj(H ◦ Γ−1)Γi◦H−1y and J(y) are
α-Hölder functions as well. Hence we can use Theorem 5.1 to estimate

‖ρ−ni Lni
¨
DEi,`(hi ◦H−1)L−ny ·Bn · ∂xj(H ◦ Γ−1

i )Γi◦H−1y, D
m
Eu(ψ)Γi◦H−1y · J(y)

∂
‖

≤ K2 n
2d ‖DEi,`(hi ◦H−1)‖Cα ‖∂xj(H ◦ Γ−1

i )Γi◦H−1y ·Dm
Eu(ψ) · J(y)‖Cα · e−γn.(5.4)

Thus the pairing (5.3) decays exponentially, specifically, there is C = C(K2, hi, H,Γi, J)
such that

‖Lni
¨
hi ◦ f−n ◦ Γ−1

i , Dm
Eu∂xjψ

∂
‖ ≤ Cn2de−γn ‖Dm

Eu(ψ)‖Cα for all n ∈ N.(5.5)

Now we estimate the terms in representation (5.2), which are similar to the error term
(5.3) with hi replaced by Ri. However, we want to estimate by Hölder norm of ψ in place of
‖Dm

Eu(ψ)‖ and so we want to move the derivative Dm
Eu to the left and use differentiability

of R = f − L:¨
Ri ◦ f−k ◦ Γ−1

i , Dm
Eu∂xjψ

∂
= (−1)|m|+1

¨
Dm
Eu∂xj(Ri ◦ f−k ◦ Γ−1

i ), ψ
∂
.(5.6)

However, having higher order derivatives on the left does not allow to use exponential
mixing directly.

Instead, we split ψ into its truncation smoothing ψN as in (4.17) and the error ψ−ψN .
Then for any β > 0 and N ≥ 1 the following estimates hold

‖ψ − ψN‖L2 ≤ N−β‖ψ‖Hβ and(5.7)

‖ψN‖Hβ ≤ 2β/2Nβ‖ψ‖L2 .(5.8)
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Indeed,

‖ψ − ψN‖2
L2 =

∑
‖n‖>N

|“ψn|2 ≤ N−2β
∑
‖n‖>N

‖n‖2β|“ψn|2 ≤ N−2β‖ψ‖2
Hβ and

‖ψN‖2
Hβ =

∑
‖n‖≤N

(1 + ‖n‖2)β|“ψn|2 ≤ (1 +N2)β
∑
‖n‖>N

|“ψn|2 ≤ 2βN2β‖ψ‖2
L2 .

To estimate the pairing with ψN we use bounds (5.8) on the derivative Dm
EuψN in terms

of ψ. This allows us to repeat the estimates (5.3) and (5.5) above replacing n by k, hi by
Ri, and ψ by ψN . Thus we obtain∥∥∥∥Lk−1

i

¨
Ri ◦ f−k ◦ Γ−1

i , Dm
Eu∂xj(ψN)

∂∥∥∥∥ ≤ Ck2d · ‖Dm
Eu(ψN)‖Cα · e−γk

≤ C1k
2d · ‖ψN‖C|m|+1 · e−γk ≤ C1k

2d · ‖ψN‖H|m|+1+d · e−γk using (4.5)

≤ C2k
2d ·N |m|+d+1 · ‖ψ‖L2 · e−γk using (5.8).

To estimate the pairing with ψN−ψ we use the bounds on norms higher order derivatives
of f , which we obtain in Lemma 5.3 in Section 5.2 below. Specifically, using the second
part of (5.15) with g = f−1, φ = Ri, W = Wu, W ′ = W i,`, and λ = ρ−1

i we obtain that
for each m and δ > 0 there exists K = K(δ,m, ‖Ri|Wu‖Cm+1) such that for all k ∈ N,

‖Dm
Wu(DWi,`(Ri ◦ f−k))‖C0 ≤ K(ρ−1

i + δ)k ‖Ri|Wu‖Cm+1·

Using this and (5.6) we estimate∥∥∥∥Lk−1
i

¨
Ri ◦ f−k ◦ Γ−1

i , Dm
Eu∂xj(ψ − ψN)

∂∥∥∥∥
=
∥∥∥∥Lk−1

i

¨
Dm
Eu∂xj(Ri ◦ f−k ◦ Γ−1

i ), (ψ − ψN)
∂∥∥∥∥

≤ ‖Lk−1
i ‖ · ‖Dm

Wu(DWi,`(Ri ◦ f−k))‖C0 · ‖ψ − ψN‖L2

≤ Ckdρki · ‖Ri|Wu‖Cm+1 ·K(ρ−1
i + δ)k · ‖ψ − ψN‖L2

≤ C3k
d · (1 + ρiδ)

k ·N−β‖ψ‖Hβ using (5.7).

Finally we combine the two estimates above to get an estimate for terms in (5.2)

‖Lk−1
i

¨
Ri ◦ f−k ◦ Γ−1

i , Dm
Eu∂xjψ

∂
‖ ≤ C4k

2d ‖ψ‖Hβ (N |m|+d+1e−γk + (1 + ρiδ)
kN−β).

For each k we choose N = N(k) = eγk/(2(|m|+d+1)) so that we can write the last term as

N |m|+d+1e−γk + (1 + ρiδ)
kN−β = e−γk/2 + (1 + ρiδ)

ke−βγk/(2(|m|+d+1))

and get an exponentially converging series for small enough δ.
We conclude that there is 0 < ξ < 1 and a constant C such that for all k ∈ N we have

‖Lk−1
i

¨
Ri ◦ f−k ◦ Γ−1

i , Dm
Eu∂xjψ

∂
‖ ≤ Cξk‖ψ‖Hβ(5.9)

and hence

‖
¨
Dm
Eu∂xj(hi ◦ Γ−1

i ), ψ
∂
‖ = ‖

∞∑
k=1

Lk−1
i

¨
Ri ◦ f−k ◦ Γ−1

i , Dm
Eu∂xjψ

∂
‖ ≤ Cm‖ψ‖Hβ .(5.10)

Now we complete the proof of Proposition 3.2 by showing thatDm
Eu∂xj(hi◦Γ−1

i ) ∈ L2(Td)
for any m. We denote ω = ∂xj(hi ◦Γ−1

i ) and recall that it is α-Hölder since the conjugacy
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H and the global chart Γ are C1+α diffeomorphisms. It follows that ω is in Hβ for any
β < α by (4.6). Then (5.10) shows that for any m and any C∞ function ψ we have

|
¨
D2m
Euω, ψ

∂
| = |

¨
ω, D2m

Euψ
∂
| ≤ C2m‖ψ‖Hβ .

Hence we can apply Lemma 4.7 to conclude that Dm
Euω is in L2(Td).

5.2. Derivative estimates. In this section we prove the derivative estimates used above.
While estimates of derivatives of compositions along the stable manifold are not new, a
precise reference is hard to give as we need a specific result involving faster part. We will
also need similar estimates along the center foliation in the next section. For a function φ,
a foliationW , and m ∈ N we will denote by Dm

Wφ the derivative of order m of φ restricted
to the leaves of W . We view it here as an m-linear form on TW and we denote its norm
by ‖Dm

Wφ‖.

Lemma 5.2. Let W be a foliation of Td with uniformly C∞ leaves invariant under a C∞

diffeomorphism g such that ‖Dg|W‖ ≤ σ.

(i) If σ < 1 then for each m and δ > 0 there exists C = C(δ,m, ‖g|W‖Cm) such that

‖Dm
Wg

n‖ ≤ C(σ + δ)n and ‖Dm
W(φ ◦ gn)‖ ≤ C(σ + δ)n‖φ|W‖Cm(5.11)

for any φ ∈ C∞(Td), where Dm
W is the derivative of order m along W.

(ii) If σ > 1 then for each m there exists C = C(m, ‖g|W‖Cm) such that

‖Dm
Wg

n‖ ≤ Cσmn and ‖Dm
W(φ ◦ gn)‖ ≤ Cσm

2n‖φ|W‖Cm for any φ ∈ C∞(Td).(5.12)

Proof. (i) We abbreviate DW to D in this proof. We will show inductively that for some
c and all m ≤ m0 we have ‖Dmgn‖ ≤ cm−1(σ + δ)n for all n ∈ N. In the base case m = 1
by the assumption we have ‖Dgn‖ ≤ σn for all n ∈ N. Suppose the estimate holds for
derivatives of orders up to m− 1.

Now we show that ‖Dmgn‖ ≤ cm−1(σ + δ)n for all n ∈ N by induction on n. The
base case n = 0 is trivial. For the inductive step we apply Faà di Bruno’s formula to
Dmgn+1 = Dm(g ◦ gn). We slightly abuse notations by suppressing the base points, as
they are not important in the estimate.

Dm(g ◦ gn) =
∑

k1,...,km

Ck1,...,kmD
kg [(D1gn)⊗k1 ⊗ · · · ⊗ (Dmgn)⊗km ],(5.13)

where k = k1 + · · · + km and the sum is taken over all k1, . . . , km such that k1 + 2k2 +
· · · + mkm = m. We note that km = 0 unless km = 1 = k and we can separate the
corresponding term as

Dm(g ◦ gn) = Dg [Dmgn] +
∑

k1,...,km−1

Ck1,...,km−1D
kg [(D1gn)⊗k1 ⊗ · · · ⊗ (Dm−1gn)⊗km−1 ].

We need to show ‖Dm(g ◦ gn)‖ ≤ cm−1(σ + δ)n+1 provided that ‖Dmgn‖ ≤ cm−1(σ + δ)n,
which yields

‖Dg [Dmgn]‖ ≤ ‖Dg‖ · ‖Dmgn‖ ≤ σ cm−1(σ + δ)n.

Hence it suffices to estimate the norm of the sum from above by the difference

cm−1(σ + δ)n+1 − σ cm−1(σ + δ)n = δ cm−1(σ + δ)n.(5.14)
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We estimate the norms of the terms using inductive assumptions as

‖Dkg‖
m−1∏
j=1

‖Djgn‖kj ≤ ‖g|W‖Ck
m−1∏
j=1

[cj−1(σ + δ)n]kj = ‖g|W‖Ck cm−k(σ + δ)nk.

All terms in the sum have k > 1 and hence each can be estimated as

‖Dkg [(D1gn)⊗k1 ⊗ · · · ⊗ (Dm−1gn)⊗km−1 ]‖ ≤ ‖g|W‖Ck cm−2(σ + δ)n.

for σ + δ < 1. The ratio of this to (5.14) is ‖g|W‖Ck (cδ)−1. Hence the inductive step will
hold if we choose c > N(m) ‖g|W‖Cm δ−1 > 1, where N(m) is the sum of the coefficients
Ck1,...,km−1 . We can choose the same c for all m ≤ m0. Thus the first estimate in the
lemma holds with C = cm−1 for any m ≤ m0.

To prove the second estimate in (5.11) we apply Faà di Bruno’s formula to Dm(φ ◦ gn).
Each term can be estimates as

‖Dk
Wg [(D1

Wg
n)⊗k1 ⊗ · · · ⊗ (Dm−1

W gn)⊗km ]‖ ≤ ‖φ|W‖Ck
m∏
j=1

‖Dj
Wg

n‖kj ≤

‖φ|W‖Ck
m∏
j=1

[cj−1(σ + δ)n]kj ≤ ‖φ|W‖Cm cm−k(σ + δ)nk ≤ ‖φ|W‖Cm C(σ + δ)n

since σ + δ < 1 and cm−k ≤ cm−1 = C. The estimate for the sum follows by adjusting C.

(ii) The proof of the second part is similar so we just indicate the changes. We look
for the inductive estimate of the form ‖Dmgn‖ ≤ cm−1σmn, with the base m = 1 given by
the assumption. Writing Dm(g ◦ gn) = Dg [Dmgn] +

∑
. . . we need to estimate ‖∑ . . . ‖

from above by the gap similar to (5.14):

cm−1σm(n+1) − σcm−1σmn = cm−1σmn(σm − σ) ≥ cm−1σmn(σ2 − σ) for m ≥ 2.

The terms in ‖∑ . . . ‖ have k > 1 and can be estimated as before

‖Dkg [(D1gn)⊗k1 ⊗ · · · ⊗ (Dm−1gn)⊗km−1 ]‖ ≤ ‖g|W‖Ck cm−kσnk ≤ ‖g|W‖Ck cm−2σmn

as 2 ≤ k ≤ m and σ > 1. Hence we can again choose c large enough to obtain the
estimate ‖Dm

Wg
n‖ ≤ Cσmn with C = cm−1. To prove the second inequality in (5.12) we

estimate each term Dm(φ ◦ gn) similarly to the above with σ > 1

‖Dk
Wg [(D1

Wg
n)⊗k1 ⊗ · · · ⊗ (Dm−1

W gn)⊗km ]‖ ≤ ‖φ|W‖Ck
m∏
j=1

‖Dj
Wg

n‖kj ≤

‖φ|W‖Ck
m∏
j=1

[cj−1σmn]kj ≤ ‖φ|W‖Cm cm−kσmnk ≤ ‖φ|W‖Cm Cσm
2n.

�

Lemma 5.3. Let W and W ′ be foliations of Td invariant under a C∞ diffeomorphism
g with uniformly C∞ leaves such that W ′ is a C∞ foliation of each leaf of W. Suppose
that ‖Dg|W‖ ≤ σ < 1 and ‖Dg|W ′‖ ≤ λ. Then for each m and δ > 0 there exists
K = K(δ,m, ‖g|W‖Cm+1) such that for all n ∈ N,

(5.15)
‖Dm
W(DW ′g

n)‖ ≤ K(λ+ δ)n and

‖Dm
WDW ′(φ ◦ gn)‖ ≤ K(λ+ δ)n ‖φ|W‖Cm+1 for any φ ∈ C∞(Td).
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Proof. We again abbreviate DW to D in this proof. We also denote Gx = Dg|W ′(x) and
Gn
x = Dgn|W ′(x). We will show inductively that for some c and all m ≤ m0 we have

‖DmGn
x‖ ≤ cm(λ+ δ)n for all n ∈ N.

In the base case m = 0 we have ‖Gn
x‖ ≤ λn for all n ∈ N by the assumption. Suppose the

estimate holds for the derivatives of orders up to m− 1.
Now we show that ‖DmGn

x‖ ≤ cm(λ + δ)n for all n ∈ N by induction on n. The base
case n = 1 holds if c is large. For the inductive step we differentiate Gn+1

x = Ggnx ◦Gn
x as

the product of two linear maps which depend on x:

Dm(Ggnx ·Gn
x) =

m∑
k=0

(
m

k

)
Dk(Ggnx) ·Dm−k(Gn

x) =(5.16)

= Ggnx ·Dm(Gn
x) +

m∑
k=1

(
m

k

)
Dk(Ggnx) ·Dm−k(Gn

x).(5.17)

We want to show that ‖Dm(Ggnx · Gn
x)‖ ≤ cm(λ + δ)n+1 provided that ‖Dm(Gn

x)‖ ≤
cm(λ+ δ)n, which yields

‖Ggnx ·Dm(Gn
x)‖ ≤ ‖Ggnx‖‖Dm(Gn

x)‖ ≤ λ cm(λ+ δ)n.

Hence it suffices to estimate the norm of the sum on the right from above by the difference

cm(λ+ δ)n+1 − λ cm(λ+ δ)n = δ cm(λ+ δ)n(5.18)

Now we estimate the norms of the terms in the sum. By the inductive assumption we get

‖Dm−k(Gn
x)‖ ≤ cm−k(λ+ δ)n.

To estimate Dk(Ggnx) = Dk[(G ◦ gn)(x)] we use Lemma 5.2(i) with φ = G:

‖Dk(Ggnx)‖ ≤ C(σ + δ)n‖G|W‖Cm ≤ C(σ + δ)n‖g|W‖Cm+1 ≤ C‖g|W‖Cm+1 .

for σ + δ < 1. Hence terms in the sum with k ≥ 1 can be estimated as

‖Dk(Ggnx) ·Dm−k(Gn
x)‖ ≤ Cg|W‖Cm+1 · cm−k(λ+ δ)n ≤ Ccm−1(λ+ δ)n‖g|W‖Cm+1 .

The ratio of this to (5.18) is C‖g|W‖Cm+1(cδ)−1. Hence the inductive step will hold if we
choose c > 2mC‖g|W‖Cm+1δ−1, where 2m is the sum of the binomial coefficients. Thus we
can choose the same c for all m ≤ m0 and the lemma holds with K = cm for any m ≤ m0.

The second estimate in the lemma follows from the first one by applying Faà di Bruno’s
formula to φ ◦ gn and adjusting K in the same way as in Lemma 5.2. �

6. Proof of Theorem 1.3

In this section we prove Theorem 1.3 by describing the adjustments we need to make
in the proof of Theorem 1.1.

Since L is partially hyperbolic we have the L-invariant partially hyperbolic splitting

Rd = Es ⊕ Ec ⊕ Eu,

where Ec is the sum of all generalized eigenspaces of L corresponding to eigenvalues of
modulus 1. Since f is C1+α conjugate to L, it is also partially hyperbolic and it preserves
the corresponding splitting

TTd = Es ⊕ Ec ⊕ Eu
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into α-Hölder sub-bundles E∗ = DH−1(E∗) for ∗ = s, c, u, called stable, center, and
unstable respectively. Denoting the corresponding foliations for L and f by W s, W c, W u

and Ws, Wc, and Wu respectively, we have H(W∗) = W ∗ for ∗ = s, c, u.
In general, the center foliation of a partially hyperbolic system may fail to be absolutely

continuous, and the regularity of individual leaves may be lower than that of f , depending
on the rate of expansion/contraction in Ec. However, in our case C1+α regularity of H
means that foliations Ws, Wc, and Wu are C1+α, and hence all three are absolutely
continuous with the conditional measures on the leaves given by the restriction of the
volume form to their tangent spaces. In addition, the growth of Dfn|Ec as n→ ±∞ is the
same as for Ln|Ec , that is, at most polynomial. This implies that f is so called strongly
r-bunched for any r and hence Wc has uniformly C∞ leaves [27]. Existence of H also
implies that Ec ⊕ Es, Ec ⊕ Eu, and Es ⊕ Eu are tangent to C1+α foliations Wcs, Wcu, and
Wsu respectively. It follows that these foliations also have uniformly C∞ leaves, see for
example [22, Lemma 4.1].

As in the proof of Theorem 1.1, we can assume that H is in the homotopy class of the
identity satisfying H(0) = 0 and f is in the homotopy class of L satisfying f(0) = 0.

Using the splitting Rd = Es ⊕ Ec ⊕ Eu for L we define the projections h∗ and R∗ for
∗ = s, u, c, of h = H − Id and R = f − L respectively. Similarly to the hyperbolic case,
projecting the second equation in (2.3) to E∗ we obtain for ∗ = s, u, c

(6.1) h∗ = L−1
∗ (h∗ ◦ f) + L−1

∗ R∗, where L∗ = L|E∗ .

In particular, hu is given by (2.6), and similarly hs = −∑∞k=1 L
k−1
s (Rs ◦ f−k). Moreover,

the following analog of Lemma 2.1 holds.

Lemma 6.1. The unstable component hu is uniformly C∞ along Wcs. The stable com-
ponent hs is uniformly C∞ along Wcu. The center component hc is uniformly C∞ along
Wsu.

Proof. The proof is the same since Hu = Idu + hu is locally constant along the leaves of
the foliation Wsc, which are uniformly C∞. Similarly, Hc = Idc + hc is locally constant
along the leaves of Wsu, which are uniformly C∞. �

Now we explain why hu and hs are C∞ on Td. For hu we use Lemma 6.1 in place
of Lemma 2.1 and modify the charts Γi by including the center component. Then we
can apply the proof of Theorem 2.2 without change, as the arguments work within the
unstable foliation. Thus we obtain that hu, and similarly hs, are C∞ on Td, and hence so
are Hu and Hs.

It remains to show that hc is C∞ on Td. We give a proof by modifying our arguments
for hu. By Lemma 2.1 we already have that hc is uniformly C∞ along Wsu. Using the
next proposition, we obtain global smoothness of hc on Td from [6, Theorem 3]. The
required properties of Wc were givend above.

Proposition 6.2. Dm
Wchc ∈ L2(Td) for every every multi-index m.

Proof. The proof is a significantly simplified version of the proof of Proposition 3.2. Since
we study the derivatives of hc along Wc, so we do not need any further splitting of Ec

and we do not need to separate derivative ∂xk as in that proposition. In particular we do
not need Proposition 3.3 to remove ∂xk .
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We will use the foliation chart Γc obtained as in Proposition 3.1 by smoothing hc

component of H similarly to (3.2) and (3.3)

Γc = Id + h̃ε, where h̃ε =
Ä
hs, sε(h

c), hu
ä
.

The diffeomorphism Γc is C1+α on Td, uniformly C∞ alongWc, and satisfies Γc(Wc) = W c.
The reason why the neutral case is simpler is that the equation (6.1) for hc is already

“neutral” since Ln|Ec has at most polynomial growth. Since this growth is dominated by
the exponential mixing one can easily see that hc itself, unlike hu, can be written as a
series hc = −∑∞k=1 L

k−1
c (Rc ◦ f−k) in distributional sense. More formally, we obtain the

following series representation for Dm
Wc in the same way as (5.2) replacing ρi with ρc = 1¨

hc ◦ Γ−1
c , Dm

Ecψ
∂

=
∞∑
k=1

Lk−1
c

¨
Rc ◦ f−k ◦ Γ−1

c , Dm
Ecψ

∂
.(6.2)

Then we use the same estimates as in the proof of (5.9) to obtain the analog of (5.10)

‖
¨
Dm
Ec(h

c ◦ Γ−1
c ), ψ

∂
‖ = ‖

∞∑
k=1

Lk−1
c

¨
Rc ◦ f−k ◦ Γ−1

c , Dm
Ecψ

∂
‖ ≤ Cm‖ψ‖Hβ .(6.3)

The only differences are the absence of ∂xk term, replacing ρi with ρc = 1, and estimating
norms of higher order derivatives of f using Lemma 5.2(ii). Specifically, we use the second
part of (5.12) with g = f−1, φ = Rc, W =Wc, and σ = 1 + δ with δ small enough.

Finally we apply Lemma 4.7 in the same way as in the proof of Proposition 6.2 to
conclude that Dm

Ec(h
c ◦ Γ−1

c ) is in L2(Td) for all m.
This completes the proof of Theorem 1.3. �
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