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Abstract. We construct a diffeomorphism preserving a non-hyperbolic measure whose
pointwise dimension does not exist almost everywhere. In the one-dimensional case we
also show that such diffeomorphisms are typical in certain situations.

1. Introduction

We consider an ergodic measure µ invariant under a diffeomorphism f of a compact
Riemannian manifold M. Such a measure µ is called hyperbolic if all its Lyapunov
exponents are different from zero. The main goal of this paper is to show that hyperbolicity
of a measure is essential for existence of its pointwise dimension.

We recall that the pointwise dimension at a point x of a Borel measure µ on a metric
space X is defined as the following limit:

dµ(x) = lim
r→0

logµ(B(x, r))

log r
,

where B(x, r) is a ball of radius r centered at x ∈ X. This limit does not exist in general.
However the upper and lower pointwise dimensions dµ(x) and dµ(x) can be defined at
any point x as corresponding upper and lower limits.

The study of pointwise dimension of hyperbolic measures in [3] has led to the problem
known as the Eckmann–Ruelle conjecture. The complete affirmative solution of this
problem was obtained by Barreira et al [2] as follows.

THEOREM. Let f : M → M be a C1+α diffeomorphism of a compact smooth
Riemannian manifold M. If µ is a hyperbolic ergodic measure for f then the pointwise
dimension of µ exists for µ-almost every x ∈ M and is constant.
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One may ask what happens if the requirement that µ is hyperbolic is omitted.
The first result along this direction was obtained by Ledrappier and Misiurewicz in [7].
They constructed an example of a Cr -smooth map of an interval preserving an ergodic
measure with zero Lyapunov exponent whose pointwise dimension does not exist almost
everywhere. For a discussion of the above results see [8].

In this paper, we consider circle diffeomorphisms with irrational rotation number which
are known to be uniquely ergodic and have zero Lyapunov exponent.

In §2 we prove the genericity of circle diffeomorphisms f with irrational rotation
number whose unique invariant measure µf has lower pointwise dimension 0 and upper
pointwise dimension 1 for µf -almost every point in S1. We also prove density of circle
diffeomorphisms with irrational rotation number and given lower pointwise dimension of
the unique invariant measure.

In §3 we show that circle homeomorphisms g with given upper and lower pointwise
dimension of the unique invariant measure µg are dense in the set of all circle
homeomorphisms with any given irrational rotation number.

In §4 we prove the genericity of analytic circle diffeomorphisms f with irrational
rotation number whose unique invariant measure µf has lower pointwise dimension 0
and upper pointwise dimension 1 for µf -almost every point.

Let f be a circle diffeomorphism such that its unique invariant measure µf has
lower pointwise dimension 0 and upper pointwise dimension 1 for µf -almost every
point. Consider the direct product of a volume-preserving Anosov diffeomorphism
and f . It is easy to see that we obtain a partially hyperbolic diffeomorphism with
only one zero Lyapunov exponent. The product measure is ergodic with respect to this
diffeomorphism and its pointwise dimension does not exist almost everywhere. This shows
that hyperbolicity of the measure is crucial in the Eckmann–Ruelle conjecture.

2. Circle diffeomorphisms
We adopt the following notation. Denote by DrI ⊂ Diffr (S1) the set of all Cr circle
diffeomorphisms with irrational rotation number (see [6] for a definition and properties of
rotation number).

Let Y r ⊂ DrI be the set of all Cr circle diffeomorphisms f with irrational rotation
number satisfying the following properties:
(1) dµ(x) = 0 and dµ(x) = 1 for µ-a.e. x ∈ S1;

(2) dimH µ = dimBµ = 0 and dimBµ = 1;
where µ is the invariant measure for f .

We recall the following definitions of Hausdorff, upper and lower box dimensions of a
Borel probability measure µ:

dimH µ = inf{dimH X : µ(X) = 1},
dimBµ = lim

ε→0
inf{dimBX : µ(X) > 1 − ε},

dimBµ = lim
ε→0

inf{dimBX : µ(X) > 1 − ε}

(see [4] for a definition and properties of Hausdorff and box dimensions).
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Our main results for circle diffeomorphisms are Theorem 2.1, Corollary 2.1 and
Theorem 2.2.

THEOREM 2.1. For any 0 ≤ r ≤ ∞, Y r is a residual subset of both DrI and DrI
(the closure of DrI in Cr -topology).

Let Drτ be the set of all Cr circle diffeomorphisms with rotation number τ .

COROLLARY 2.1. For any 0 ≤ r ≤ ∞, there exists a set T r ⊂ [0, 1] \ Q which is a
residual subset of [0, 1] such that for any τ ∈ T r , Y r ∩Drτ is a residual subset of Drτ .

Remark 2.1. Recall that a number τ is called Diophantine if it satisfies the following
condition. There exist δ > 0 andK > 0 such that for any p/q ∈ Q,

|τ − p/q| > K

|q|2+δ .

Let f be a C2+ε circle diffeomorphism, where ε > 0, and its rotation number τ satisfies
the Diophantine condition with some K > 0 and 0 < δ < ε. Then f is conjugate to the
rotation by τ via a C1 diffeomorphism (see [5]). This implies that the pointwise dimension
of the invariant measure for f exists at every point x ∈ S1 and is equal to 1.

Note that for any δ > 0 the set of all numbers satisfying the Diophantine condition
with some K > 0 has full Lebesgue measure. Therefore, the set T r has zero Lebesgue
measure for any r > 2. We can also show that dimH T

r ≤ 2/r for any 2 < r < ∞, and
dimH T

∞ = 0.

The following theorem shows that any given number β, 0 < β < 1, can be the value of
the lower pointwise dimension of the invariant measure for a circle diffeomorphism.

THEOREM 2.2. For any given 0 < β < 1 and 0 ≤ r ≤ ∞ the set of all Cr circle
diffeomorphisms f with irrational rotation number satisfying the following properties:
(1) dµ(x) = β and dµ(x) = 1 for µ-a.e. x ∈ S1;

(2) dimH µ = dimBµ = β and dimBµ = 1;
is a dense subset of DrI .

Note that the set of diffeomorphisms described in Theorem 2.2 is not residual.
We begin with a construction of a uniquely ergodic circle diffeomorphism which is

close to a given diffeomorphism and whose invariant measure µ does not have pointwise
dimension almost everywhere. Our construction is closely related to the construction
in [6] of circle diffeomorphisms conjugated to rotations via maps with specific degrees of
regularity. The latter construction is based on a method developed by Anosov and Katok
in [1] to construct examples of diffeomorphisms with specific ergodic properties.

PROPOSITION 2.1. Let f∗ : S1 → S1 be a C∞ circle diffeomorphism such that f∗ =
h−1∗ ◦Rτ∗ ◦ h∗, where h∗ is a C∞ circle diffeomorphism and Rτ∗ is a circle rotation by τ∗.

Then in any C∞ neighborhood of f∗ there exists a C∞ diffeomorphism f : S1 → S1

with irrational rotation number such that for its unique invariant measure µ, dµ(x) = 0

and dµ(x) = 1 for µ-a.e. x ∈ S1.
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Proof. The desired diffeomorphism f will be obtained as a limit of a sequence of
diffeomorphisms fn = h−1

n ◦ Rτn ◦ hn, where τn = pn/qn is a rational number and hn
is a C∞ diffeomorphism of S1.

The sequences τn and hn will be defined inductively as follows. We take h0 = h∗ and a
rational number τ0 close to τ∗. Once τn−1 = pn−1/qn−1 and hn−1 are chosen, we construct
hn as the composition hn = An ◦ hn−1. The diffeomorphismAn will be constructed in the
form An = Id + an, where Id is the identity map and an is a 1/qn−1-periodic C∞ function
on S1 such that an is zero in disjoint neighborhoods of points k/qn−1, k = 1, . . . , qn−1.
A particular choice of An will be described later. Once An is constructed we choose τn in
the form τn = τn−1 + (1/Knqn−1), where Kn is an integral number. We choose Kn large
enough as follows to ensure C∞ convergence of diffeomorphisms fn and C0 convergence
of diffeomorphisms hn.

The C0 distance between hn and hn−1 (and between h−1
n and h−1

n−1) is bounded by
1/qn−1, the period of an. Therefore the sequence of diffeomorphisms hn converges in C0

topology to a homeomorphism h = limn→∞ hn if the sequence qn grows sufficiently fast.
This can be easily ensured by choosingKn large enough.

Since Rpn−1/qn−1 and A−1
n commute due to the form in which An is constructed we can

rewrite fn in the following way:

fn = h−1
n ◦ Rτn ◦ hn = h−1

n−1 ◦ A−1
n ◦ Rpn−1/qn−1 ◦ R1/Knqn−1 ◦ An ◦ hn−1

= h−1
n−1 ◦ Rpn−1/qn−1 ◦ A−1

n ◦ R1/Knqn−1 ◦ An ◦ hn−1.

So we see that given a map An in the described form we can choose Kn so large that the
map A−1

n ◦ R1/Knqn−1 ◦ An is close to Id in C∞. It follows that we can make fn as close
to fn−1 in C∞ as we wish. This allows us to choose any An within described restrictions
and then choose Kn so that the sequence fn converges in C∞ and its limit f is as close to
f0 as we wish. Taking τ0 close to τ∗ we can make f close to f∗.

Note that for the diffeomorphism f the rotation number τ = limn→∞ τn is irrational
onceKn grow to infinity. Indeed, suppose that τ = p/q ∈ Q. Then

τ − τn = p

q
− pn

qn
= pqn − qpn

qqn
≥ 1

qqn
.

On the other hand,

τ − τn =
∞∑
i=1

1

qnKn+1 · · ·Kn+i ≤ 1

qn

∞∑
i=1

1

Ki
n+1

= 1

qn(Kn+1 − 1)
,

which contradicts the previous estimate if n is sufficiently large.
We now specify the choice of An. Let µ be the invariant measure for f . We note

that h is the distribution function of µ, i.e. µ([x1, x2)) = h(x2) − h(x1) for any interval
[x1, x2) ⊂ S1. Let &h(x, r) = h(x + r)− h(x − r). Then

dµ(x) = lim sup
r→0

log&h(x, r)

log r
and dµ(x) = lim inf

r→0

log&h(x, r)

log r
.

We think of An and an as C∞ functions on the unit interval. Recall that an is periodic
with period sn = 1/qn−1 and An is monotone. We would like to concentrate most of the
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growth of An on a set Ẽn = ⋃qn−1
i=1 I

i
n, where I in is a subinterval of ((i − 1)/qn−1, i/qn−1)

of length dn. More precisely, we choose An such that on each I in it is linear with the slope
d−1
n sn(1 − 2−n).

Let En be the preimage of Ẽn under hn−1. Then hn(En) = An(Ẽn) and hence

µn(En) > 1 − 2−n (1)

where µn is the measure with the distribution function hn.
Now we will show how to choose a length dn and two ‘scales’ rn and r̃n, n ≥ 0, such

that

log&hn(x, rn)

log rn
<

1

n
for any x ∈ En, (2)

log&hn(x, r̃n)

log r̃n
> 1 − 1

n
for any x ∈ [0, 1]. (3)

This means that for the measure µn the pointwise dimension ‘on the scale rn’ is less than
n−1 on a set of µn-measure at least 1 − 2−n and ‘on the scale r̃n’ it is at least 1 − n−1.

Let us introduce the following notations:

mn−1 = min[0,1] h
′
n−1 and Mn−1 = max

[0,1]
h′
n−1.

Note that the set En consists of qn−1 intervals whose lengths are bounded above by
dn/mn−1. It follows that for rn = dn/mn−1 and any x ∈ En,

log&hn(x, rn)

log rn
≤ log(sn(1 − 2−n))

log dn − logmn−1
−→
dn→0

0,

so we can take dn so small that (2) holds. This completes the description of the choice of
dn and rn and the construction of An.

Note that &hn(x, r) ≤ 2rMn. This implies that

log&hn(x, r)

log r
≥ 1 + log(2Mn)

log r
.

Since log(2Mn)/log r → 0 as r → 0, there exists r̃n satisfying (3).
The distance between hn and h is bounded by

∑∞
i=n 1/qi . Since Ki , i ≥ n, can be

taken as large as we wish we may assume that h is so close to hn in C0 topology that the
following properties hold true for the limit function h:

µ(En) > 1 − 2−n+1, (1′)
log&h(x, rn)

log rn
<

2

n
for any x ∈ En, (2′)

log&h(x, r̃n)

log r̃n
> 1 − 2

n
for any x ∈ [0, 1]. (3′)

Thus for any n > 0, there exists a set En and two ‘scales’ rn and r̃n satisfying (1′)–(3′).
Obviously rn, r̃n → 0 as n → ∞.

Take x ∈ [0, 1]. If for any N > 0 there exists n > N such that x ∈ En, then dµ(x) = 0

and dµ(x) ≥ 1.
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Otherwise, x ∈ J = ⋃∞
m=1

⋂∞
n=m([0, 1] \ En). However µ

(⋂∞
n=m([0, 1] \ En)

) = 0
by (2′). Hence µ(J ) = 0 and we conclude that for µ-almost all x ∈ S1, dµ(x) = 0 and

dµ(x) ≥ 1.
It remains to note that dµ(x) ≤ 1, µ-almost everywhere. This fact is probably well

known and we include the following lemma for the sake of completeness.

LEMMA 2.1. Let µ be a Borel probability measure on S1. Then dµ(x) ≤ 1 for µ-a.e.
x ∈ S1.

Proof. The function dµ(x) is measurable. If dµ(x) > 1 on a set of positive measure, then
there exists δ > 0 and a set X ⊂ S1 of positive measure such that dµ(x) ≥ 1 + 2δ for all
x ∈ X. It follows from the definition of the upper pointwise dimension that for any ε > 0
and any x ∈ X there exists r(x) ≤ ε such that µ(B(x, r(x))) ≤ r(x)1+δ, where B(x, r(x))
is the interval in S1 centered at x of length 2r(x). Since X ⊂ ⋃

x∈X B(x, 1
4r(x)) ⊂ S1, by

the Vitali Covering Lemma there exists an at most countable subset {xn}n≥1 of X such that
X ⊂ ⋃

n B(xn, r(xn)) and the balls B(xn, 1
4 r(xn)) are disjoint. Then

µ(X) ≤
∑
n

µ(B(xn, r(xn))) ≤
∑
n

r(xn)
1+δ ≤ εδ

∑
n

r(xn)

and hence ∑
n

1

4
r(xn) ≥ µ(X)

4εδ
> 1

for ε sufficiently small. This contradicts the fact that B(xn, 1
4r(xn)) are disjoint intervals

in S1. ✷

It follows that dµ(x) = 1 for µ-a.e. x ∈ S1. This completes the proof of
Proposition 2.1. ✷

We now construct a C∞ circle diffeomorphism f with irrational rotation number such
that for its unique invariant measure µ, the lower pointwise dimension is equal to a given
number β, 0 < β < 1, and the upper pointwise dimension is equal to 1 µ-almost
everywhere.

PROPOSITION 2.2. Let f∗ : S1 → S1 be a C∞ circle diffeomorphism such that f∗ =
h−1∗ ◦Rτ∗ ◦ h∗, where h∗ is a C∞ circle diffeomorphism and Rτ∗ is a circle rotation by τ∗.

Given β, 0 < β < 1, in any C∞ neighborhood of f∗ there exists a C∞ diffeomorphism
f : S1 → S1 with irrational rotation number τ such that:
(1) f is conjugate to the rotation Rτ ;
(2) the conjugacy map h is Hölder continuous with Hölder exponent β;
(3) if µ is the invariant measure for f then dµ(x) = β and dµ(x) = 1 for µ-a.e. x ∈ S1.

Proof. We follow the same approach as in the proof of Proposition 2.1, but we would like
to make log&hn(x, rn)/log rn close to β rather than to 0. For this we make the following
modifications.

We choose the period sn of the function an smaller than 1/qn−1 in the form sn =
1/lnqn−1. Then we take Ẽn = ⋃lnqn

i=1 I
i
n, where I in is a subinterval of ((i − 1)/ lnqn−1,

i/ lnqn−1) of length dn. We again concentrate most of the growth of An on Ẽn. We take
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An to be linear on each interval I in with the slope d−1
n sn(1 − 2−n). We may also assume

that sn/dn is the upper bound for the derivative of An. Let us again introduce the following
notations:

mn−1 = min[0,1] h
′
n−1 and Mn−1 = max

[0,1]
h′
n−1.

The preimageEn of Ẽn under hn−1 consists of lnqn−1 intervals whose lengths are bounded
above by dn/mn−1 and below by dn/Mn−1. Then for any x ∈ En and rn = dn/mn−1 we
have

&hn(x, rn) ≥ sn(1 − 2−n) and &hn(x, rn) ≤ sn

dn
Mn−12rn = 2sn

Mn−1

mn−1
,

where&hn(x, rn) = hn(x + r)− hn(x − r). Hence

log sn
log rn

+ log(2Mn−1/mn−1)

log rn
≤ log&hn(x, rn)

log rn
≤ log sn

log rn
+ log(1 − 2−n)

log rn
.

We note that the error terms

log(2Mn−1/mn−1)

log rn
and

log(1 − 2−n)
log rn

are small once dn is chosen so small that rn = dn/mn−1 is small enough. Now we can
choose dn small and ln large to satisfy the following properties:

(1) the absolute values of the error terms are less than n−1;
(2) (log sn)/(log rn) = β + n−1;
(3) rn ≤ (Mn−1 + 1)−n, rn ≤ (mn−1/Mn−1)

n, sn ≤ 2−(n+1)sn−1,

where sn = 1/lnqn−1.

The third property will be used to prove Hölder continuity of h.

So we conclude that for any x ∈ En:

β <
log&hn(x, rn)

log rn
< β + 2

n
.

This means that for the measure µn the pointwise dimension ‘on the scale rn’ is about β
on a set of large µn-measure.

Now it follows in the same way as in the previous proposition that dµ(x) ≤ β and

dµ(x) = 1 for µ-a.a. x ∈ S1, where µ is the unique invariant measure for f .

It remains to show that dµ(x) ≥ β. Recall that h = lim hn is the distribution function
of µ.

LEMMA 2.2. h is Hölder continuous with the exponent β.

Proof. It suffices to show that |hn(x)− hn(y)| ≤ C|x − y|β for all x, y ∈ S1 and n ≥ 0.
We will prove by induction that for all n ≥ 0, hn has the following properties:

(i) |hn(x)− hn(y)| ≤ |x − y|β for all x, y ∈ S1 with |x − y| ≤ sn;
(ii) |hn(x)− hn(y)| ≤ (4 − 2−n)|x − y|β for all x, y with |x − y| ≥ sn.
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For h0 = Id this holds true. We now show that hn has properties (i) and (ii) provided that
all hi with i < n do. If |x − y| ≤ rn, then

|hn(x)− hn(y)| ≤ sn

dn
Mn−1|x − y| ≤ r

β+n−1

n

rnmn−1
Mn−1|x − y|

≤ Mn−1

mn−1
|x − y|β+n−1 ≤ |x − y|β

since |x − y|1/n ≤ r
1/n
n ≤ mn−1/Mn−1 by the choice of dn. If rn ≤ |x − y| ≤ sn then

|hn(x)− hn(y)| ≤ sn(Mn−1 + 1) = rβ+n−1

n (Mn−1 + 1) ≤ |x − y|β

since r1/n
n ≤ (Mn−1 + 1) again by the choice of dn, and |An(x) − An(y)| ≤ sn if

|x − y| ≤ sn. So we conclude that hn has property (i). If sn ≤ |x − y| ≤ sn−1 then

|hn(x)− hn(y)| ≤ 2sn + |hn−1(x)− hn−1(y)| ≤ 2sn + |x − y|β ≤ 3|x − y|β.
If sn−1 ≤ |x − y| then

|hn(x)−hn(y)| ≤ 2sn+|hn−1(x)−hn−1(y)| ≤ 2sn+(4−2−n+1)|x−y|β ≤ (4−2n)|x−y|β
since 2sn ≤ 2−nsn−1 by the choice of ln.

So we conclude that hn also has property (ii). This completes the proof of the lemma. ✷

Lemma 2.2 implies that dµ(x) ≥ β for all x ∈ S1. This completes the proof of
Proposition 2.2. ✷

Now we will prove Theorem 2.1 using the construction in Proposition 2.1.

Proof. Let f̃ ∈ DrI . In any Cr -neighborhood of f̃ there exists a C∞ diffeomorphism f∗
with a Diophantine rotation number. Such diffeomorphisms are known to beC∞-conjugate
to corresponding rotations, i.e. f∗ = h−1∗ Rτ∗h∗, where h∗ is a C∞ circle diffeomorphism
(see [5]). f∗ can be used as a starting point for a sequence of iterations fn constructed as
in the proof of Proposition 2.1. Then the sequence fn converges in Cr -topology to some
diffeomorphism f which can be made as close to f∗ as we wish and satisfies the following
condition. For any n > 0 there exists a set En with µ(S1 \ En) < 2−n+1 and positive
numbers rn > r̃n such that

logµ(B(x, rn))

log rn
<

2

n
for any x ∈ En,

logµ(B(x, r̃n))

log r̃n
> 1 − 2

n
for any x ∈ S1,

where µ is the unique invariant measure for f , and rn, r̃n ≤ n−1. So we see that DrI
contains a dense subset Z of diffeomorphisms satisfying the above condition.

For any diffeomorphism f ∈ Z we can construct a sequence of its neighborhoods,
{V fn }∞n=1, such that any uniquely ergodic diffeomorphism g in V fn satisfies the condition

log ν(B(x, rn))

log rn
<

3

n
for any x ∈ En,

log ν(B(x, r̃n))

log r̃n
> 1 − 3

n
for any x ∈ S1,
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where ν is the unique invariant measure for g, En, rn and r̃n are the same as for f , and
ν(S1\En) < 2−n+2. Indeed, if f and g are sufficiently close inC0-topology, their invariant
measures are sufficiently close in the weak topology.

Let Y r0 = ⋂∞
n=1

⋃
f∈Z V

f
n . Then Y r0 ∩DrI and Y r0 ∩DrI are residual subsets of DrI and

DrI , respectively.
Any uniquely ergodic diffeomorphism g in Y r0 satisfies the above condition for some

sequence of scales {rn} and {r̃n} which converge to zero. It follows that dν(x) = 0,
dν(x) = 1 for ν-a.a. x ∈ S1.

It is easy to see that the set En can be covered by 1/sn balls of radius rn (recall that sn
is the period of the function an; see the proof of Proposition 2.1). Since log sn/log rn → 0
as n → ∞ we see that dimB

(⋂∞
n=k En

) = 0 for any k > 0. Since ν
( ⋂∞

n=k En
)
>

1 − 2−n+3 → 1 we conclude that dimBν = 0.

On the other hand, since ν(B(x, r̃n)) < r̃1−3n−1

n for any x ∈ S1 the minimal number N

of balls of radius needed to cover a set of ν measure 1 − ε is at least (1 − ε)r̃
−(1−3n−1)
n .

Hence
logN

−log r̃n
≥ 1 − 3

n
+ log(1 − ε)

−log r̃n
−→
n→∞ 1

and we conclude that dimBν ≥ 1. Since

0 ≤ dimH ν ≤ dimBν ≤ dimBν ≤ 1

for any finite measure on S1 we see that

dimH ν = dimBν = 0 and dimBν = 1.

We conclude that any uniquely ergodic diffeomorphism g in Y r0 lies in Y r . Since the set
of the diffeomorphisms in DrI which are not uniquely ergodic is of the first category, we
conclude that Y r is a residual subset in bothDrI and DrI . ✷

The proof of Theorem 2.2 uses Proposition 2.2 and follows the corresponding steps of
the proof of Theorem 2.1 almost identically. The lower bound for the Hausdorff dimension
of the measure is provided in this case by the following fact (see [8]): if dµ(x) ≥ β for
µ-a.a. x then dimH µ ≥ β.

We now complete the section with the proof of Corollary 2.1.

Proof. It suffices to show that for any open and dense subsetU ⊂ DrI there exists a residual
subset T ⊂ [0, 1] such that for any τ ∈ T the intersectionU ∩Drτ is open and dense inDrτ .
Since U ∩Drτ is open in the induced topology we only need to check whether it is dense.

Let us suppose that there exists a subset S ⊂ [0, 1] of the second category such that for
any τ ∈ S the intersection U ∩Drτ is not dense in Drτ . In other words, for any τ ∈ S there
exist fτ ∈ Drτ and rτ > 0 such that B(fτ , rτ ) ∩Drτ ∩ U = ∅, where B(fτ , rτ ) is the ball
in Dr centered at fτ of radius rτ . Then for some ε > 0 there exists S1 ⊂ S of the second
category in [0, 1] such that rτ > 3ε for all τ ∈ S1. Since DrI is second countable there
exists a countable ε-spanning set {gn} ⊂ DrI . Then for some i > 0 there exists S2 ⊂ S1 of
the second category in [0, 1] such that fτ ∈ B(gi , ε) for all τ ∈ S2. Set I = τ (B(gi, ε))

and by Iu = τ (B(gi, ε)) ∩ U , where τ : Dr → [0, 1] is the rotation number function.
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We obtain S2 ⊂ I and S2 ∩ Iu = ∅ since for all τ ∈ S2 we have B(fτ , 3ε) ∩Drτ ∩ U = ∅
and fτ ∈ B(gi, ε) whence B(gi, ε) ∩ Drτ ∩ U = ∅. We note that Iu is open in I \ Q and
I \ Iu is of the second category in I since S2 is. We conclude that I \ Iu has a non-empty
interior. It follows that there exists an interval Is ⊂ I such that Is ∩ Iu = ∅. This implies
that the set τ−1(Is)∩B(gi , ε)∩DrI is open inDrI and does not intersectU . This contradicts
to the fact that U is dense and completes the proof of the corollary. ✷

3. Circle homeomorphisms
In the previous section we have shown that for a circle diffeomorphism we can make the
lower pointwise dimension of its invariant measureµ equal to any number between 0 and 1.
We do not know whether there exists a circle diffeomorphism such that dµ(x) = γ < 1
for µ-a.e. x ∈ S1. However, we can obtain such pinching in the case of Hölder circle
homeomorphisms. Moreover, we can construct Hölder circle homeomorphisms such that
the pointwise dimension exists almost everywhere and is equal to a given number α,
0 < α < 1. We show that such homeomorphisms are dense in the set of all circle
homeomorphisms with a given irrational rotation number.

Denote by Hτ , τ ∈ [0, 1] \ Q, the set of all homeomorphisms of S1 with rotation
number τ .

THEOREM 3.1.
(1) For any β, γ , 0 < β < γ ≤ 1, the set of all Hölder homeomorphisms whose

invariant measure has lower pointwise dimension equal to β and upper pointwise
dimension equal to γ for a.e. x ∈ S1 is everywhere dense in Hτ .

(2) For any α ∈ (0, 1] the set of all Hölder homeomorphisms whose invariant measure
has pointwise dimension α for a.e. x ∈ S1 is everywhere dense in Hτ .

The proof of Theorem 3.1 is based on the following proposition.

PROPOSITION 3.1.
(1) For any β, γ such that 0 < β < γ ≤ 1, the set of all Borel probability measures µ

on S1 such that dµ(x) = β and dµ(x) = γ for µ-a.e. x ∈ S1 is everywhere dense

(in the weak topology) in the set of all Borel probability measures on S1.
(2) For any α ∈ (0, 1] the set of all Borel probability measures ν on S1 such that

dν(x) = α for ν-a.e. x ∈ S1 is everywhere dense in the set of all Borel probability
measures on S1.

Proof of Proposition 3.1. To obtain measures with desired properties on S1 we first
construct their counterparts on the symbolic space

62 = {ω = (ω0ω1 · · · ) : ωi ∈ {0, 1}, i ∈ N0}.
Then we use the binary coding of the unit interval to carry the measures to S1.

(1) Let us fix β and γ such that 0 < β < γ ≤ 1 and take the numbers p, q, p̃, q̃ such
that

0 < p ≤ q < 1, p + q = 1, p logp + q log q = β log 1
2 ,

0 < p̃ ≤ q̃ < 1, p̃ + q̃ = 1, p̃ log p̃ + q̃ log q̃ = γ log 1
2 .
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Let

s0
n = p, s1

n = q for 2(2k)! ≤ n < 2(2k+1)!

s0
n = p̃, s1

n = q̃ for 2(2k+1)! ≤ n < 2(2k+2)!.

For any cylinder Cωm...ωn we set µ̂(Cωm...ωn) = ∏n
i=m s

ωi
i .

Consider the independent random variables

ξi =




logp, if ωi = 0 and 2(2k)! ≤ i < 2(2k+1)!

log q, if ωi = 1 and 2(2k)! ≤ i < 2(2k+1)!

log p̃, if ωi = 0 and 2(2k+1)! ≤ i < 2(2k+2)!

log q̃, if ωi = 1 and 2(2k+1)! ≤ i < 2(2k+2)!.

Denote the expectation and the dispersion of ξi by Ai andDi , respectively. We have that

Ai =
∫
62

ξi dµ =
{
β log 1

2 if 2(2k)! ≤ i < 2(2k+1)!

γ log 1
2 if 2(2k+1)! ≤ i < 2(2k+2)!

Di =
∫
62

|ξi − Ai |2 dµ.

One can see that Di is bounded by a constant independent of i. Therefore
∑∞
i=0 i

−2Di

< ∞, and the Law of Large Numbers yields

lim
n→∞

(
1

n

n−1∑
i=0

ξi(ω)− 1

n

n−1∑
i=0

Ai

)
= 0 for µ̂-a.e. ω ∈ 62,

in particular,

lim inf
n→∞

(
1

n

n−1∑
i=0

ξi(ω)

)
= lim inf

n→∞

(
1

n

n−1∑
i=0

Ai

)
= β log

1

2

lim sup
n→∞

(
1

n

n−1∑
i=0

ξi(ω)

)
= lim sup

n→∞

(
1

n

n−1∑
i=0

Ai

)
= γ log

1

2

for µ̂-a.e. ω ∈ 62. It follows that for µ̂-a.e. ω ∈ 62

lim inf
n→∞

n−1 log µ̂(Cω0...ωn−1)

log(1/2)
= lim inf

n→∞
n−1 ∑n−1

i=0 ξi(ω)

log(1/2)
= β,

lim sup
n→∞

n−1 log µ̂(Cω0...ωn−1)

log(1/2)
= γ.

Let us consider the binary coding φ : 62 → [0, 1] of the interval [0, 1]. Recall that
each number has at most two binary expansions and any irrational number has exactly one.

Fix a measure κ0 on S1. Consider a measure κ with no atoms which is positive on open
intervals and close to κ0 in the weak topology. Let κ̂ be its pull back to 62 by φ.

Fix n ∈ N. For any cylinder Cω0···ωm set

κ̂j (Cω0···ωm) =
{
κ̂(Cω0···ωm), if m < j

κ̂(Cω0···ωn−1)µ̂(Cωn···ωm), if m ≥ j
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where µ̂ is the measure constructed above. It is easy to see that for any j we have that

lim inf
n→∞

n−1 log κ̂j (Cω0···ωn−1)

log(1/2)
= β, lim sup

n→∞
n−1 log κ̂j (Cω0···ωn−1)

log(1/2)
= γ

for κ̂j -a.e. ω ∈ 62.
Let us denote by κj the push forward of κ̂j to [0, 1] by φ. Clearly, the measure κj is

close to κ for large j , positive on open intervals and has no atoms. To complete the proof
of the second statement of the proposition it remains to prove the following lemma.

LEMMA 3.1. dκj (x) = β and dκj = γ for κj -a.e. x ∈ S1.

Proof. Note that φ(Cω0···ωn−1) is one of 2n closed binary intervals of length 2−n. So we
see that φ−1(B(x, 2−n)) ⊃ Cω0···ωn+1 for any x ∈ S1, where φ(ω0ω1 · · · ) = x. It follows
that, for κj -a.e. x ∈ S1

dκj (x) = lim inf
n→∞

log κj (B(x, 2−n))
log 2−n ≤ lim

n→∞
log κ̂j (Cω0...ωn+1)

n log(1/2)

= lim
n→∞

(
n+ 2

n

log κ̂j (Cω0···ωn+1)

(n+ 2) log(1/2)

)
= β,

dκj (x) = lim sup
n→∞

log κj (B(x, 2−n))
log 2−n ≤ lim

n→∞
log κ̂j (Cω0···ωn+1)

n log(1/2)
= γ.

To obtain the estimates below we introduce the following sets:

Bk =
2k⋃
i=1

[
i

2k
− 1

2k+[√k] ,
i

2k
+ 1

2k+[√k]

]
⊂ S1

and

Gm = S1
∖( ∞⋃

k=m
Bk

)
.

It is easy to see that for any x ∈ Gm and any n > m, we have

φ−1(B(x, 2−(n+[√n]))) ⊂ Cω0···ωn−1 .

Hence, for κj -a.e. x ∈ Gm,

dκj (x) = lim inf
n→∞

log κj (B(x, 2−(n+[√n])))
log 2−(n+[√n]) ≥ lim

n→∞
log κ̂j (Cω0···ωn−1)

(n+ [√n]) log(1/2)

= lim
n→∞

(
n

n+ [√n]
log κ̂j (Cω0···ωn−1)

n log(1/2)

)
= β,

dκj (x) = lim sup
n→∞

log κj (B(x, 2−(n+[√n])))
log 2−(n+[√n]) ≥ lim

n→∞
log κ̂j (Cω0···ωn−1)

(n+ [√n]) log(1/2)
= γ.

For any k > j we observe that κj (Bk) ≤ 2q
√
n, where q < 1 is from the construction

of the measure ν̂. Hence, κj (Gm) ↗ 1 as m → ∞. It follows that dκj ≥ β and dκj ≥ γ

for κj -a.e. x ∈ S1, and this completes the proof of the lemma. ✷
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This completes the proof of the first statement of Proposition 3.1.
(2) Let us fix α ∈ (0, 1] and take the numbers p and q such that

0 < p ≤ q < 1, p + q = 1 and p logp + q log q = α log 1
2 .

Let us consider the Bernoulli measure ν = ν(p, q) on 62 which is defined as follows.
For any cylinder

Cωm···ωn = {ω′ ∈ 62 : ω′
i = ωi,m ≤ i ≤ n},

ν̂(Cωm···ωn) = ∏n
i=m s

ωi
i , where s0

i = p and s1
i = q .

This measure is ergodic with respect to the shift σ . Clearly, it has no atoms and is
positive on any cylinder.

Consider the function

g(ω) =
{

logp, if ω0 = 0

log q, if ω0 = 1.

By the Birkhoff Ergodic Theorem

lim
n→∞

1

n

n−1∑
i=0

g(σ i(ω)) =
∫
62

g dν̂ = p logp + q log q for ν̂-a.e. ω ∈ 62.

This implies that for ν̂-a.e. ω ∈ 62,

lim
n→∞

n−1 log ν̂(Cω0···ωn−1)

log(1/2)
= p logp + q log q

log(1/2)
= α.

We now use the measure ν̂ to modify a given measure κ0 in the same way as we used µ̂
in the proof of the first statement, and the rest of the proof follows similarly. ✷

Now we will prove Theorem 3.1.

Proof of Theorem 3.1. Fix an irrational rotation number τ and consider a diffeomorphism
f̃ ∈ Hτ . In any neighborhood of f̃ there exists a C2 circle diffeomorphism f∗ with an
irrational rotation number. By the Denjoy Theorem it is conjugate to the corresponding
rotation: f∗ = h−1∗ ◦ Rτ∗ ◦ h∗. Consider the homeomorphism f0 = h−1∗ ◦ Rτ ◦ h∗. It is
close to f̃ and has the same rotation number.

(2) Let κ0 be the invariant measure for f0. Consider a sequence of measures κj without
atoms and positive on open intervals which have pointwise dimension equal to α for
κj -a.a. x ∈ S1 and weakly converge to κ (constructed as in Proposition 3.1). Let hn be
the distribution function of κj and fn = h−1

n ◦ Rτ ◦ hn. Then it is easy to see that fn
converge uniformly to f0 and f−1

n converge uniformly to f−1
0 .

LEMMA 3.2. The homeomorphisms fn constructed above are Hölder continuous with
Hölder exponent log q/2 logp.

Proof. Let A and B be binary intervals, |A| = 2−m, |B| = 2−k, such that κj (A) ≤ κj (B).
We will show that m/k ≥ log q/2 logp, i.e. |A| ≤ |B|(logq)/(2 logp).

Recall that φ−1(A) = Cω0···ωm−1 and φ−1(B) = Cω′
0···ω′

k−1
for some (ω0 · · ·ωm−1) and

(ω′
0 · · ·ω′

k−1) (up to countably many elements). We can assume that m, k > n. Then

κ̂j (Cω0···ωm) = κ̂(Cω0···ωn−1)

m−1∏
i=n

s
ωi
i ≤ κ̂(Cω′

0···ω′
n−1
)

k−1∏
j=n

s
ω′
j

j = κ̂j (Cω′
0···ω′

m
).
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Let

Mn = max
κ̂(Cω0···ωn)
κ̂(Cω′

0···ω′
n
)
,

where maximum is taken over all cylinders of length n + 1. The ratio m/k is the smallest

when s
ωi
i = p, i = n, . . . ,m − 1 and s

ω′
j

j = q , j = n, . . . , k − 1. Therefore

pm−n ≤ Mqk−n and

m

k
≥ log q

logp
+ logM + n log(p/q)

k logp
≥ log q

2 logp

if k is big enough.
Let I be an interval, A ⊂ I be a binary interval (i.e. the image of a cylinder in 62

under φ) of the largest possible length and B ⊃ fn(I) a binary interval of the smallest
possible length. Then κj (A) = κj (fn(A)) ≤ κj (fn(I)) ≤ κj (B). Hence

|I | ≤ 2|A| ≤ 2|B|(logq)/(2 logp) ≤ 2(2|fn(I)|)(logq)/(2 logp)

= 2(logq)/(2 logp)+1|fn(I)|(logq)/(2 logp).

The same argument shows that |fn(I)| ≤ 2(logq)/(2 logp)+1|I |(logq)/(2 logp). ✷

This completes the proof of the second part of the theorem. The first part can be proven
similarly. ✷

4. Analytic circle diffeomorphisms
Let us fix an annulus A ⊂ C containing S1 and denote by Dω = Dω(A) ⊂ Diffω(S1)

the set of all orientation-preserving circle diffeomorphisms f such that f and f−1 extend
to analytic functions on A. We endow Dω with the topology of uniform convergence on
compact subsets of A. Denote byDωI the subset of Dω consisting of all diffeomorphisms
with irrational rotation number.

Let Yω be the subset of DωI consisting of diffeomorphisms f such that:
(1) dµ(x) = 0 and dµ(x) = 1 for µ-a.a. x ∈ S1;

(2) dimH µ = dimBµ = 0 and dimBµ = 1,
where µ is the invariant measure for f . The following statements are analytic counterparts
of Theorem 2.1 and Corollary 2.1.

THEOREM 4.1. Yω is a residual subset of both DωI andDωI .

The proof of Theorem 4.1 is based on Propositions 4.2 and 4.3 below.
Let Dωτ be the set of all diffeomorphisms in Dω with rotation number τ .

COROLLARY 4.1. There exists a set T ω ⊂ [0, 1] \ Q which is a residual subset of [0, 1]
such that for any τ ∈ T ω, Yω ∩Dωτ is a residual subset of Dωτ .

Proof. The proof is identical to the proof of Corollary 2.1. ✷

Remark 4.1. The set T ω has zero Lebesgue measure and zero Hausdorff dimension
(compare to Remark 2.1).
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We have a natural projection π : R → S1 = R/Z. This provides a lift of a
diffeomorphism f : S1 → S1 to a diffeomorphism F : R → R such that f ◦ π = π ◦ F .

Let f be an analytic orientation-preserving diffeomorphism. We say that f satisfies the
property (@) if for any α ∈ [0, 1], no power of the diffeomorphism

fα = f + α (mod 1)

is the identity map.
The following proposition proves the existence of diffeomorphisms satisfying the

property (@).

PROPOSITION 4.1. Let f : S1 → S1 be an orientation-preserving diffeomorphism such
that it is not a rotation and its lift F : R → R extends to an entire function. Then f
satisfies the property (@).

Proof. Suppose f qα = Id for some q ∈ N and α ∈ [0, 1]. Then Fqα = Id +p on C for some
p ∈ Z. This implies that F : C → C is a bijection. Since F is entire it must be a liner
function. It follows that the diffeomorphism f is a rotation. ✷

The following proposition shows that property (@) diffeomorphisms are typical.

PROPOSITION 4.2. The diffeomorphisms inDωI satisfying the property (@) form a residual
subset of DωI .

The following proof was communicated to us by Keith Burns.

Proof. We will prove that the set

{f ∈ DωI : f nα �= Id for all α ∈ [0, 1] and n ≥ 1}
is a residual subset of DωI . It suffices to show that for every n ≥ 1 the set

Gn = {f ∈ DωI : f nα �= Id for all α ∈ [0, 1]}
is open and dense in DωI .

Fix n ≥ 1. It is easy to see that the complement ofGn is closed so it is enough to check
thatGn is dense inDωI . LetU ⊂ DωI be an open set. We will show thatU∩Gn �= ∅. Let us
take a diffeomorphism f ∈ U with irrational rotation number and suppose that f /∈ Gn.

Let F be a lift of f , then Fα = F + α is a lift of fα . The equality f nα = Id is equivalent
to Fnα = Id +p for some p ∈ Z. Since Fnα (x) is increasing in α there are only finitely
many values of α in [0, 1] for which f nα = Id. Let us denote these values by α1, . . . , αk .

Let E = [0, 1] \ (I1 ∪ · · · ∪ Ik), where Ij , j = 1, . . . , k, are open intervals centered
at αi of length (max(2, sup |f ′|))−(n+1). Since f nα �= Id for any α ∈ E there exists a
neighborhoodU0 ⊂ U of f such that gnα �= Id for any g ∈ U0 and any α ∈ E.

LEMMA 4.1. Let f ∈ DωI be such that Fα = Id +p for some p ∈ Z and α ∈ [0, 1].
Then in any neighborhood of f there exists f̃ ∈ DωI such that for its lift F̃ ,

F̃ nα (x
′) < x ′ + p and F̃ nα (x

′′) > x ′′ + p

for some x ′, x ′′ ∈ R.
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Proof. Let us fix x ∈ S1 and consider its orbit x, f x, . . . , f mx, wherem+1 is the minimal
period of x. There exists an analytic flow φt on S1 for which x, f x, . . . , f mx are repelling
fixed points. In other words, for t > 0, 1 ≤ i ≤ m, and for all y sufficiently close to f ix
we have Bty > y if y > x and Bty < y if y < x, where Bt is the lift of φt such that
B0 = Id. It is easy to see that if x ′ < x and x ′′ > x are sufficiently close to x and if t > 0
is small then f̃ = f ◦ φt satisfies the conditions of the lemma. We note that since f has
irrational rotation number, f̃ can be also chosen to have an irrational rotation number and
can be made as close to f as we wish. ✷

Since Fα1 = Id +p1 for some p1 ∈ Z, Lemma 4.1 implies that there exists f̃ ∈ U0 such
that F̃ nα1

(x ′) < x ′ + p1 and F̃ nα1
(x ′′) > x ′′ + p1 for some x ′, x ′′ ∈ R. It follows that for

α ∈ I1 we have F̃ nα (x
′) < x ′ + p1 if α < α1, and F̃ nα (x

′′) > x ′′ + p1 if α > α1.
If f̃ is chosen close to f then |F̃α(x)−Fα1(x)| < |I1| for any α ∈ I1 and x ∈ R. So by

the choice of the length |I1| it follows that

|F̃ nα (x)− (x + p1)| = |F̃ nα (x)− Fnα1
(x)| < 1

and therefore
x + p1 − 1 < F̃nα (x) < x + p1 + 1

for any α ∈ I1 and x ∈ R. So we conclude that f̃α �= Id for α ∈ I1 ∪E.
We can choose a neighborhood U1 ⊂ U0 of f̃ such that gnα �= Id for any g ∈ U1 and

any α ∈ E ∪ I1. The proposition now follows by consecutive application of Lemma 4.1. ✷

PROPOSITION 4.3. Let f ∈ DωI satisfy the property (@). Then for any δ > 0 there exists
α∗, 0 < α∗ < δ, such that the diffeomorphism fα∗ = f + α∗ (mod 1) has irrational
rotation number and for its unique invariant measure µ, dµ(x) = 0 and dµ(x) = 1 for

µ-a.a. x ∈ S1.

Proof. Our construction uses the method of constructing analytic circle diffeomorphisms
with singular conjugacy described in [6].

Consider the family of analytic circle diffeomorphisms

fα = f + α (mod 1), where 0 < α < δ.

Denote by τ (α) the rotation number of fα . This family has the following properties:
(a) τ (α) is non-decreasing in α;
(b) fα never has infinitely many periodic points (by the property (@));
(c) suppose that α is the right endpoint of some interval J such that τ (α′) = p/q ,

α′ ∈ J . Then the lift of fα satisfies Fqα − Id −p ≥ 0 and the zeros of Fqα − Id −p project
to the periodic orbits of fα . Hence all periodic orbits of fα are semistable, i.e. attract on
one side and repel on the other side. All non-periodic points move in the same direction
under iterations of f qα (see [6] for more details).

We will inductively choose two sequences of numbers {αn}∞n=1 and {α̃n}∞n=1 satisfying:
(1) αn, α̃n < δ/2;
(2) αn−1 < α̃n−1 < αn;
(3) αn = max τ−1(pn/qn);
(4) τ (α̃n) is Diophantine;
(5) pn/qn − pn−1/qn−1 < (2(n− 1)2 max1≤k≤n−1 q

2
k )

−1.
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Let Pn be the number of periodic points of fαn . Choose rn > 0 so small that
rn ≤ (2nPn)−n and open intervals of length rn centered at the periodic points of fαn are
disjoint. Let In be the union of these intervals. By (c), there exists a number k(αn, In) such
that the orbit of any point x ∈ S1 has at most k(αn, In) points outside I .

Any sufficiently small perturbation of fαn satisfies the following two properties.
(i) The time of the first return to In is bounded above by k(αn, In)+ 1.
(ii) Once a trajectory enters In, the next 2n+2k(αn, In) iterations belong to In.
It follows that there exists εn > 0, such that for any α ∈ [αn, αn + εn)

1

N

N∑
k=0

χIn (f
k
α (x)) > 1 − 1

2n

for any N > 2n+2k(αn, In) and any x ∈ S1.
We will choose αm, m > n, and α̃l , l ≥ n, such that:
(5) αm, α̃l ∈ [αn, αn + εn/2).
Now we choose a number α̃n ∈ [αn, αn + εn/2) such that τ (α̃n) is Diophantine.

This implies that fα̃n is smoothly conjugate to the rotation Rτ(α̃n) [5]. Denote by µα̃n
the unique invariant measure corresponding to fα̃n . Since µα̃n has a smooth density there
exists r̃n > 0 such that for any x ∈ S1

logµα̃n(B(x, r̃n))

log r̃n
> 1 − 1

2n+1
.

There exists ε̃n > 0 such that for any α ∈ [α̃n, α̃n + ε̃n) with irrational τ (α),
logµα(B(x, r̃n))

log r̃n
> 1 − 1

2n

for all x ∈ S1.
We will choose αm, α̃m, m > n, such that:
(6) αm, α̃m ∈ [α̃n, α̃n + ε̃n/2).
Let α∗ = limn→∞ αn. Note that the limit exists since the sequence {αn} is monotone

and bounded from above, and α∗ ≤ δ/2.
Now we will show that τ (α∗) is indeed irrational. By continuity, τ (α∗) =

limn→∞ pn/qn. Therefore,

τ (α∗)− pn

qn
=

∞∑
k=n

(
pk+1

qk+1
− pk

qk

)

≤
∞∑
k=n

1

2k2 max1≤i≤k q2
i

≤
∞∑
k=n

1

2k2q2
n

≤ π2

12q2
n

<
1

q2
n

.

On the other hand, if τ (α∗) = p/q then for n ∈ N such that qn > q we have
p

q
− pn

qn
= pqn − qpn

qqn
>

1

q2
n

.

Let us denote by µ the invariant measure for fα∗ . Since α∗ ∈ (αn, αn + εn/2],
1

N

N∑
k=0

χ
In
(f kα∗(x)) > 1 − 2−n

for all N > 2n+2k(αn, In), and hence µ(In) ≥ 1 − 2−n.
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Recall that the set In consists of Pn open intervals of length rn. Let În be the union of
those intervals&n ⊂ In for which µ(&n) ≥ (2nPn)−1. Since rn ≤ (2nPn)−n, we have

logµ(B(x, rn))

log rn
≤ 1

n

for any x ∈ În. Therefore, if a point x belongs to În for infinitely many n then dµ(x) = 0.

Otherwise, x ∈ ⋃∞
m=1

⋂∞
n=m(S1 \ În) = F .

Note that µ(În) ≥ µ(In) − Pn(2nPn)−1 ≥ 1 − 2−n+1. It follows that µ
(⋂∞

n=m
(S1 \ În)

) = 0, and µ(F) = 0. So we conclude that dµ(x) = 0 for µ-a.a. x ∈ S1.

Since α∗ ∈ (α̃n, α̃n + ε̃/2] for any n, dµ(x) ≥ 1 for all x ∈ S1. This together with
Lemma 2.1 implies that dµ(x) = 1 for µ-a.a. x ∈ S1. ✷

Now we will prove Theorem 4.1 using Propositions 4.2 and 4.3. The proof is similar to
the proof of Theorem 2.1.

Proof. By Proposition 4.2 uniquely ergodic property (@) diffeomorphisms are dense inDωI .
Hence using Proposition 4.3 we can construct a dense subset Z ⊂ DωI with the following
property. For every f ∈ Z and n > 0 there exist positive numbers r̃n < rn < 2−n and a
set În with µ(În) > 1 − 2−n+1 (constructed in the proof of Proposition 4.3) such that

logµ(B(x, rn))

log rn
<

1

n
for any x ∈ În,

logµ(B(x, r̃n))

log r̃n
> 1 − 1

n
for any x ∈ S1,

where µ is the unique invariant measure for f .
For any diffeomorphism f ∈ Z we can construct a sequence of its neighborhoods,

{V fn }∞n=1, such that for any uniquely ergodic diffeomorphism g in V fn and its unique
invariant measure ν we have

log ν(B(x, rn))

log rn
<

2

n
for any x ∈ În,

log ν(B(x, r̃n))

log r̃n
> 1 − 2

n
for any x ∈ S1,

and ν(În) > 1 − 2−n+2, where În, rn and r̃n are the same as for f . Indeed, if f and g
are sufficiently close in C0-topology, their invariant measures are sufficiently close in the
weak topology.

Let Yω0 = ⋂∞
n=1

⋃
f∈Z V

f
n . Then Yω0 ∩ DωI and Yω0 ∩ DωI are residual subsets of DωI

andDωI , respectively.
Any uniquely ergodic diffeomorphism g in Yω0 satisfies the above condition for some

sequence of scales {rn} and {r̃n} which converge to zero. It follows that dν(x) = 0,
dν(x) = 1 for ν-a.a. x ∈ S1.

Since rn, r̃n and În are as in the proof of Proposition 4.3, we see that the set În can
be covered by at most Pn intervals of length rn ≤ (2nPn)n. Hence logPn/log rn → 0 as
n → ∞ and we conclude that dimB

(⋂∞
n=k În

) = 0 for any k > 0. Since ν
( ⋂∞

n=k În
)
>

1 − 2−n+3 → 1, it follows that dimBν = 0.
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On the other hand, since ν(B(x, r̃n)) < r̃1−2n−1

n for any x ∈ [0, 1], the minimal number

N of balls of radius needed to cover a set of ν-measure 1 − ε is at least (1 − ε)r̃
−(1−2n−1)
n .

Hence
logN

−log r̃n
≥ 1 − 2

n
+ log(1 − ε)

−log r̃n
−→
n→∞ 1

and we conclude that dimBν ≥ 1. Since

0 ≤ dimH ν ≤ dimB ν ≤ dimB ν ≤ 1

for any finite measure on S1, we see that

dimH ν = dimB ν = 0 and dimB ν = 1.

This implies that any uniquely ergodic diffeomorphism g in Yω0 lies in Yω. Since the
set of the diffeomorphisms in DωI which are not uniquely ergodic is of the first category,
we conclude that Yω is a residual subset in both DωI and DωI . ✷
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