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Abstract We consider Hölder continuous linear cocycles over partially hyperbolic diffeo-
morphisms. For fiber bunched cocycles with one Lyapunov exponent we show continuity
of measurable invariant conformal structures and sub-bundles. Further, we establish a con-
tinuous version of Zimmer’s Amenable Reduction Theorem. For cocycles over hyperbolic
systems we also obtain polynomial growth estimates for the norm and the quasiconformal
distortion from the periodic data.
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1 Introduction

A linear cocycle over a dynamical system f : M → M is an automorphism F of a
vector bundle E over M that covers f . In the case of a trivial vector bundle M × R

d , a
linear cocycle can be represented by a matrix-valued function A : M → GL(d,R) via
F(x, v) = ( f (x), A(x)v). In smooth dynamics linear cocycles arise naturally from the
derivative. They play an important role in the study of smooth systems and group actions,
especially in aspects related to rigidity.
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In this paper we consider Hölder continuous linear cocycles with one Lyapunov exponent
over hyperbolic and partially hyperbolic diffeomorphisms. An important motivation comes
from the restriction of the derivative to Hölder continuous invariant sub-bundles such as
center, stable, and unstable bundles. In hyperbolic case we studied such cocycles in [8,9].
We concentrated on obtaining conformality of the cocycle from its periodic data and applying
this to local and global rigidity of Anosov systems [5,8]. From a different angle, such cocycles
over hyperbolic and partially hyperbolic systems were considered in [2,21]. In particular,
it was shown that cocycles with more than one Lyapunov exponent are generic in various
cases, for example in a neighborhood of a fiber bunched cocycle. These results indicated that
having one exponent is an exceptional property. In this paper we show that it is true in a
very strong sense by developing a structural theory for such cocycles. We expect that these
results will be useful in the study of partially hyperbolic systems and in the area of rigidity
of hyperbolic systems and actions.

In the base we consider a partially hyperbolic diffeomorphism f which is is volume-
preserving, accessible, and center bunched. This is the same setting as in the latest results on
ergodicity of partially hyperbolic diffeomorphisms [4], except that we require accessibility
instead of essential accessibility. We assume that the cocycle F over f is fiber bunched,
i.e. non-conformality of F in the fiber is dominated by the expansion/contraction along the
stable/unstable foliations of f in the base. This or similar conditions play a role in all results
on noncommutative cocycles over hyperbolic or partially hyperbolic systems. If F is the
restriction of the derivative of f to the center sub-bundle, fiber bunching for F corresponds to
strong center bunching for f. Thus our results apply to this setup.

For fiber bunched cocycles with one Lyapunov exponent with respect to the volume, we
prove continuity of measurable F-invariant sub-bundles and conformal structures. We use
this to establish a continuous version of Zimmer’s Amenable Reduction Theorem. Passing to
a finite cover and a power of F, if necessary, we show existence of a continuous flag of sub-
bundles such that the induced cocycles on the factor bundles are conformal. For cocycles over
hyperbolic systems we obtain stronger results including Hölder regularity of the invariant
structures. In particular, for cocycles with one exponent at each periodic orbit we obtain the
reduction for F itself and polynomial growth estimates for its quasiconformal distortion.

We formulate the results in Sect. 3 and give the proofs in Sect. 4.

2 Definitions and notations

In this parer M denotes a compact connected smooth manifold.

2.1 Partially hyperbolic diffeomorphisms

(See [4] for more details.)
A diffeomorphism f of M is said to be partially hyperbolic if there exist a nontrivial

Df-invariant splitting of the tangent bundle T M = Es ⊕ Ec ⊕ Eu , and a Riemannian metric
on M for which one can choose continuous positive functions ν < 1, ν̂ < 1, γ, γ̂ such that
for any x ∈ M and unit vectors vs ∈ Es(x), vc ∈ Ec(x), and vu ∈ Eu(x)

‖D f (vs)‖ < ν(x) < γ (x) < ‖D f (vc)‖ < γ̂ (x)−1 < ν̂(x)−1 < ‖D f (vu)‖. (2.1)

The sub-bundles Es, Eu , and Ec are called, respectively, stable, unstable, and center. Es and
Eu are tangent to the stable and unstable foliations W s and W u respectively. An su-path in
M is a concatenation of finitely many subpaths which lie entirely in a single leaf of W s or
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W u . A partially hyperbolic diffeomorphism f is called accessible if any two points in M can
be connected by an su-path.

We say that f is volume-preserving if it has an invariant probability measure μ in the
measure class of a volume induced by a Riemannian metric (the density of μ is not required
to be smooth). It is conjectured that any essentially accessible f is ergodic with respect to
suchμ. This was established if f is C2 and center bunched [4]. The diffeomorphism f is called
center bunched if the functions ν, ν̂, γ, γ̂ can be chosen to satisfy

ν < γ γ̂ and ν̂ < γ γ̂ . (2.2)

This implies that ‖D f |Ec‖ · ‖(D f |Ec )−1‖, which is a measure of non-conformality of f on
Ec, is dominated by the contraction on Es and expansion on Eu .

If f is C1+δ , the ergodicity holds under strong center bunching assumption [4]:

νθ < γ γ̂ and ν̂θ < γ γ̂ , (2.3)

where θ ∈ (0, δ) satisfies

νγ−1 < κθ and ν̂γ̂−1 < κ̂θ (2.4)

for some functions κ and κ̂ such that for all x in M

κ(x) < ‖D f (v)‖ if v ∈ Es(x) and ‖D f (v)‖ < κ̂(x)−1 if v ∈ Eu(x).

It is known that the first inequality in (2.4) implies that Ec ⊕ Es is θ -Hölder, the second one
yields the same for Ec ⊕ Es , and thus (2.4) implies that Ec is θ -Hölder.

2.2 Hölder continuous vector bundles and linear cocycles

We consider a finite dimensional β-Hölder, 0 < β ≤ 1, vector bundle P : E → M. This
means that there exists an open cover {Ui }k

i=1 of M with coordinate systems

φi : P−1(Ui ) → Ui × R
d , φi (v) = (P(v),	i (v))

such that φ j ◦φ−1
i is a homeomorphism and its restriction to the fiber Lx = 	 j ◦	−1

i |{x}×Rd

depends β-Hölder on x, i.e. there is C such that ‖Lx − L y‖ ≤ C dist(x, y)β for all i, j
and all x, y ∈ Ui ∩ U j . One can realize E as a β-Hölder sub-bundle of a trivial bundle by
φ : E → M×R

kd with φ(v) = (P(v), ρ1	1(v)× . . .×ρk	k(v)), where {ρi } is a β-Hölder
partition of unity for {Ui }.

Using such an embedding we equip E with the induced β-Hölder Riemannian metric, i.e.
a family of inner products on the fibers, and fix an identification Ixy : Ex → Ey of fibers at
nearby points. We define the latter as�−1

y ◦�x , where�x is the orthogonal projection in R
kd

from Ex to the subspace which is the middle point of the unique shortest geodesic between
Ex and Ey in the Grassmannian of d-dimensional subspaces. The identifications {Ixy} vary
β-Hölder on a neighborhood of the diagonal in M × M and satisfy for some constant C and
any unit vector u ∈ Ex

Ixy = I −1
yx , ‖Ixyu − u‖ ≤ Cdist(x, y)β, and hence |‖Ixy‖ − 1| ≤ Cdist(x, y)β . (2.5)

Let f be a diffeomorphism of M and P : E → M be a finite dimensional β-Hölder vector
bundle over M. A continuous linear cocycle over f is a homeomorphism F : E → E such that
P ◦ F = f ◦ P and Fx : Ex → E f x is a linear isomorphism. Such an F is called β ′-Hölder,
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0 < β ′ ≤ β, if Fx depends β ′-Hölder on x, more precisely, if there exist C such that for all
nearby points x, y ∈ M

‖Fx − I −1
f x f y ◦ Fy ◦ Ixy‖ ≤ Cdist(x, y)β

′
. (2.6)

2.3 Conformal structures

(See [9] for more details.)
A conformal structure on R

d , d ≥ 2, is a class of proportional inner products. The space
Cd of conformal structures on R

d can be identified with the space of real symmetric positive
definite d × d matrices with determinant 1, which is isomorphic to SL(d,R)/SO(d,R).
The group GL(d,R) acts transitively on Cd via X [C] = (det X T X)−1/d X T C X , and Cd

carries a GL(d,R)-invariant Riemannian metric of non-positive curvature. The distance to
the identity in this metric is

dist(Id,C) = √
d/2 · (

(log λ1)
2 + · · · + (log λd)

2)1/2
, (2.7)

where λ1, . . . , λd are the eigenvalues of C (see [20, p.327] for more details and [12, p.27]
for the formula).

For a vector bundle E → M we can consider a bundle C over M whose fiber Cx is
the space of conformal structures on Ex . Using a background Riemannian metric on E , the
space Cx can be identified with the space of symmetric positive linear operators on Ex with
determinant 1. We equip the fibers of C with the Riemannian metric as above. A continuous
(measurable) section of C is called a continuous (measurable) conformal structure on E .

An invertible linear map A : Ex → Ey induces an isometry from Cx to Cy via A(C) =
(det(A∗ A))1/d(A−1)∗C(A−1), where C is a conformal structure viewed as an operator. If
F : E → E is a linear cocycle over f, we say that a conformal structure τ on E is F-invariant
if F(τ (x)) = τ( f (x)) for all x ∈ M.

3 Statements of results

Standing assumptions. Unless stated otherwise, in this paper

M is a compact connected smooth manifold;
f : M → M is an accessible partially hyperbolic diffeomorphism that preserves a volume
μ and is either C2 and center bunched, or C1+δ and strongly center bunched;
P : E → M is a finite dimensional β-Hölder vector bundle over M;
F : E → E is a β-Hölder linear cocycle over f.

First we establish continuity of measurable invariant conformal structures for fiber bunched
cocycles. A cocycle F over a partially hyperbolic diffeomorphism f is called fiber bunched if
for some β-Hölder norm on E

‖F(x)‖ · ‖F(x)−1‖ · ν(x)β < 1 and ‖F(x)‖ · ‖F(x)−1‖ · ν̂(x)β < 1 (3.1)

for all x in M. This condition allows to establish convergence of certain iterates of the cocycle
along the stable and unstable leaves.

Theorem 3.1 If F is fiber bunched, then any F-invariant μ-measurable conformal structure
on E coincides μ-a.e. with a continuous conformal structure.
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We denote the iterate F f n−1x ◦ . . . ◦ F f x ◦ Fx by Fn
x . A cocycle F is called uniformly

quasiconformal if the quasiconformal distortion

K F (x, n)
def= ‖Fn

x ‖ · ‖(Fn
x )

−1‖ (3.2)

is uniformly bounded for all x ∈ M and n ∈ Z. The cocycle is said to be conformal with
respect to some Riemannian metric on E if K F (x, n) = 1 for all x and n.

Corollary 3.2 If F is uniformly quasiconformal then it preserves a continuous conformal
structure on E , equivalently, F is conformal with respect to a continuous Riemannian metric
on E .

Next we address continuity of measurable invariant sub-bundles. If a cocycle has more
than one Lyapunov exponent, then the corresponding Lyapunov sub-bundles are invariant and
measurable, but not continuous in general. We show that for a fiber bunched cocycle with
only one Lyapunov exponent measurable invariant sub-bundles are continuous. We denote
by λ+(F, μ) and λ−(F, μ) the largest and smallest Lyapunov exponents of F with respect
to μ. We recall that for μ almost every x ∈ M,

λ+(F, μ) = lim
n→∞

1

n
log ‖Fn

x ‖ and λ−(F, μ) = lim
n→∞

1

n
log ‖(Fn

x )
−1‖−1 (3.3)

(see [3, Sect. 2.3] for more details).

Theorem 3.3 Suppose that F is fiber bunched and λ+(F, μ) = λ−(F, μ). Then any
μ-measurable F-invariant sub-bundle of E coincides μ-a.e. with a continuous one.

Using Theorems 3.1 and 3.3 together with Zimmer’s Amenable Reduction Theorem we
obtain the following description of fiber bunched cocycles with one exponent.

For any finite cover p : M̃ → M the pullback of E defines a β-Hölder vector bundle
Ẽ over M̃. If f̃ : M̃ → M̃ is a diffeomorphism covering f, then F lifts uniquely to aβ-Hölder
linear cocycle F̃ : Ẽ → Ẽ over f̃ that covers F. We call such a cocycle F̃ a finite cover of F.

Theorem 3.4 (Continuous Amenable Reduction) Suppose that F is fiber bunched and
λ+(F, μ) = λ−(F, μ). Then there exists a finite cover F̃ : Ẽ → Ẽ of F and N ∈ N

such that F̃ N satisfies the following property. There exist a flag of continuous F̃ N -invariant
sub-bundles

{0} = Ẽ0 ⊂ Ẽ1 ⊂ . . . ⊂ Ẽk−1 ⊂ Ẽk = Ẽ (3.4)

and continuous conformal structures on the factor bundles Ẽ i/Ẽ i−1, i = 1, . . . , k, invariant
under the factor-cocycles induced by F̃ N .

The proof shows that when it is necessary to pass to a cover, the resulting cocycle F̃ N

preserves more than one flag as in (3.4). Their union is preserved by F̃ and is the lift of an
invariant object for F. To illustrate this, in Sect. 4.6 we construct a cocycle F on E = T

2 ×R
2

with no invariant μ-measurable sub-bundles or conformal structures. Its lift F̃ to a double
cover preserves two continuous line bundles, while F preserves a continuous field of pairs of
lines.

In the case when Ẽ1 = Ẽ , the cocycle F itself is conformal on E with respect to some
continuous Riemannian metric. This can be easily seen from the proof or deduced from the
theorem using Corollary 3.2.

If there are d = dim Ex continuous vector fields which give bases for all Ẽ i , then the theo-
rem implies that F̃ N is continuously cohomologous to a cocycle with values in a “standard”
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maximal amenable subgroup of GL(d,R), see Remark 4.8. However, triviality of Ẽ alone
is insufficient for such reduction even if Ẽ = T

2 × R
2 since invariant sub-bundles may be

non-orientable, see [17, Sect. 8.1] or the example in Sect. 4.6.

Remark 3.5 If f is C1+δ and satisfies the strong center bunching condition, then the above
results apply to F = D f |Ec . Indeed, the condition (2.4) implies that Ec is θ -Hölder and
(2.3) yields fiber bunching (3.1) for F = D f |Ec .

We also show that fiber bunching can be replaced by the following assumption (existence
of the invariant volume μ is still assumed).

Corollary 3.6 Suppose that λ+(F, η) = λ−(F, η) for every ergodic f -invariant measure
η. Then the conclusions of Theorems 3.1, 3.3, and 3.4 hold.

This corollary relies on a certain estimate for subadditive sequences of continuous func-
tions. In Proposition 4.9 we give a definitive version of this useful result.

We obtain Hölder continuity of the invariant structures under a stronger accessibility
assumption. The diffeomorphism f is said to be locally α-Hölder accessible if there exists
a number L = L( f ) such that for all sufficiently close x, y ∈ M there is an su-path
{x = x0, x1, . . . , xL = y} such that

distW i (xi−1, xi ) ≤ C dist(x, y)α for i = 1, . . . , L .

Here the distance between xi−1 and xi is measured along the corresponding stable or unstable
leaf W i .

Corollary 3.7 If f is locally α-Hölder accessible then the invariant conformal structures and
sub-bundles in Theorems 3.1, 3.3, 3.4 and Corollaries 3.2, 3.6 are αβ-Hölder.

Now we consider a special case when f is a transitive C1+δ, δ > 0, Anosov diffeo-
morphism. This means that there is no center sub-bundle Ec and thus the center bunching
assumption is not needed. Due to the local product structure of the stable and unstable man-
ifolds, f is locally α-Hölder accessible with α = 1, and hence the corollary above applies.
Moreover, we can takeμ to be any ergodic measure with full support and local product struc-
ture. The latter means that μ is locally equivalent to the product of its conditional measures
on the local stable and unstable manifolds. An invariant volume, if it exists, has these prop-
erties. Other examples include the measure of maximal entropy and equilibrium measures of
Hölder continuous potentials. For the Anosov case, analogs of Theorem 3.1, Corollary 3.2,
and of a weaker version of Theorem 3.3 were obtained in [9].

Corollary 3.8 Let f be a transitive C1+δ Anosov diffeomorphism,μ be an f-invariant ergodic
measure with full support and local product structure, and M, E, F be as in the standing
assumptions. Then Theorems 3.1, 3.3, 3.4 and Corollary 3.2 hold and the resulting invariant
conformal structures and sub-bundles are β-Hölder.

Moreover, the fiber bunching assumption in Theorems 3.1, 3.3, 3.4 can be replaced by the
assumption that for every f-periodic point p the invariant measure μp on its orbit satisfies
λ+(F, μp) = λ−(F, μp).

The assumption that there is only one exponent for every periodic measure implies the
same for every invariant measure [7, Theorem 1.4]. In this case we obtain further results. In
the next theorem we construct an invariant flag for F itself and we normalize the cocycle and
metrics so that factor cocycles are isometries.
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Theorem 3.9 Let f be a transitive C1+δ Anosov diffeomorphism. Suppose that for every f-
periodic point p the invariant measure μp on its orbit satisfies λ+(F, μp) = λ−(F, μp).
Then there exist a flag of β-Hölder F-invariant sub-bundles

{0} = E0 ⊂ E1 ⊂ . . . ⊂ E j−1 ⊂ E j = E (3.5)

and β-Hölder Riemannian metrics on the factor bundles E i/E i−1, i = 1, . . . , j , so that for
some positive β-Hölder function φ : M → R the factor-cocycles induced by the cocycle φF
on E i/E i−1 are isometries.

The stronger conclusion relies on the property that the functions by which the cocycle
rescales the conformal metrics on the factor bundles are cohomologus to each other. The
condition that λ+(F, η) = λ−(F, η) for every f-invariant measure η is necessary for coho-
mology of these functions and for the conclusion of the theorem. This condition is not known
to imply the cohomology for partially hyperbolic f, and thus we do not have an analog of
Theorem 3.9 for such f.

We use Theorem 3.9 to obtain uniform polynomial growth estimates of the quasiconformal
distortion K F (x, n) and the norm of F.

Theorem 3.10 (Polynomial Growth) Let f be a transitive C1+δ Anosov diffeomorphism.
Suppose that for every f-periodic point p the invariant measure μp on its orbit satisfies
λ+(F, μp) = λ−(F, μp). Then there exists m < dim Ex and C such that

K F (x, n) ≤ Cn2m for all x ∈ M and n ∈ Z.

Moreover, if λ+(F, μp) = λ−(F, μp) = 0 for every μp, then there exists m < dim Ex and
C such that

‖Fn
x ‖ ≤ C |n|m for all x ∈ M and n ∈ Z.

One can take m = j − 1, which is the number of non-trivial sub-bundles in (3.5).

4 Proofs

4.1 Stable holonomies

Convergence of products of the type (Fn
y )

−1 ◦ Fn
x has been observed for various types

group-valued cocycles whose growth is slower than the expansion/contraction in the base
(see e.g. [14,15]). It is also related to existence of strong stable/unstable manifolds for the
extended system on the bundle. We follow the notations and terminology form [2,21] for
linear cocycles, where it is more convenient to use the following notion of holonomy.

Definition 4.1 A stable holonomy for a linear cocycle F : E → E is a continuous map
Hs : (x, y) �→ Hs

xy , where x ∈ M, y ∈ W s(x), such that

(i) Hs
xy is a linear map from Ex to Ey ;

(ii) Hs
xx = Id and Hs

yz ◦ Hs
xy = Hs

xz ;
(iii) Hs

xy = (Fn
y )

−1 ◦ Hs
f n x f n y ◦ Fn

x for all n ∈ N.

Unstable holonomy are defined similarly. The following proposition establishes existence
(cf. [2] for trivial bundles) and some additional properties of the holonomies. We use identi-
fications Ixy defined in Sect. 2.2. Holonomies do not depend on the choice of identification
as they are unique by (c). We denote by W s

loc(x) a sufficiently small ball around x in the leaf
W s(x).
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Proposition 4.2 Suppose that the cocycle F is fiber bunched. Then there exists C > 0 such
that for any x ∈ M and y ∈ W s

loc(x),

(a) ‖(Fn
y )

−1 ◦ I f n x f n y ◦ Fn
x − Ixy ‖ ≤ Cdist(x, y)β for every n ∈ N;

(b) Hs
xy = lim

n→∞(F
n
y )

−1 ◦ I f n x f n y ◦ Fn
x satisfies (i), (ii), (iii) of Definition 4.1 and

(iv) ‖Hs
xy − Ixy ‖ ≤ Cdist(x, y)β;

(c) The stable holonomy satisfying (iv) is unique.

Hs
xy can be extended to any y ∈ W s(x) using (iii). Similarly, for y ∈ W u(x), the unstable

holonomy Hu is obtained as Hu
xy = lim

n→−∞(F
n
y )

−1 ◦ I f n x f n y ◦ Fn
x .

Proof (a) We fix x ∈ M and denote xi = f i (x). Then for any y ∈ W s
loc(x) we have

(Fn
y )

−1 ◦ Ixn yn ◦ Fn
x = (Fn−1

y )−1 ◦ (
(Fyn−1)

−1 ◦ Ixn yn ◦ Fxn−1

) ◦ Fn−1
x

= (Fn−1
y )−1 ◦ (Ixn−1 yn−1 + rn−1) ◦ Fn−1

x

= (Fn−1
y )−1 ◦ Ixn−1 yn−1 ◦ Fn−1

x + (Fn−1
y )−1 ◦ rn−1 ◦ Fn−1

x = . . .

= Ixy +
n−1∑

i=0

(Fi
y)

−1 ◦ ri ◦ Fi
x , where ri = (Fyi )

−1 ◦ Ixi+1 yi+1 ◦ Fxi − Ixi yi .

(4.1)

Since F is fiber bunched, there is θ < 1 such that ‖F(x)‖ · ‖F(x)−1‖ · ν(x)β < θ for
every x in M. For the function ν we denote its trajectory product by

νi (x) = ν(x)ν( f x) . . . ν( f i−1x) = ν(x0)ν(x1) . . . ν(xi−1), i ∈ N.

Then one can estimate dist( f n x, f n y) ≤ dist(x, y)νn(y), see e.g. [4, Lemma 1.1].

Lemma 4.3 There is C0 such that for every x ∈ M, y ∈ W s
loc(x), and i ≥ 0, ‖(Fi

y)
−1‖ ·

‖ Fi
x ‖ ≤ C0 θ

i νi (y)−β .

Proof Using (2.5) and (2.6) we obtain

‖Fxk ‖
‖Fyk ‖

≤ ‖Fxk − I −1
xk+1 yk+1

◦ Fyk ◦ Ixk yk ‖
‖Fyk ‖

+ ‖I −1
xk+1 yk+1

◦ Fyk ◦ Ixk yk ‖
‖Fyk ‖

≤ C1(dist(xk, yk))
β + ‖I −1

xk+1 yk+1
‖ · ‖Ixk yk ‖ ≤ 1 + C2(dist(xk, yk))

β .

We estimate

‖(Fi
y)

−1‖ · ‖Fi
x‖ ≤ ‖(Fy)

−1‖ · ‖(Fy1)
−1‖ · · · ‖(Fyi−1)

−1‖ · ‖Fx‖ · ‖Fx1‖ · · · ‖Fxi−1‖

≤
i−1∏

k=0

‖Fyk ‖ ‖(Fyk )
−1‖ ·

i−1∏

k=0

‖Fxk ‖
‖Fyk ‖

<

i−1∏

k=0

θ ν(yk)
−β ·

i−1∏

k=0

(
1 + C2 (dist(xk, yk))

β
)
.

Since the distance between xn and yn decreases exponentially, the second product is uniformly
bounded and we obtain ‖(Fi

y)
−1‖ · ‖ Fi

x ‖ ≤ C0 θ
i νi (y)−β . ��

123

Author's personal copy



Geom Dedicata

Since F is Hölder continuous (2.6) we have

‖ri‖ = ‖((Fyi )
−1 ◦ Ixi+1 yi+1 ◦ Fxi − Ixi yi ‖ ≤ ‖(Fyi )

−1 ◦ Ixi+1‖ ·
·‖Fxi − I −1

xi+1 yi+1
◦ Fyi ◦ Ixi yi ‖ ≤ C3dist(xi , yi )

β ≤ C3(C4 dist(x, y) νi (y))
β

(4.2)

It follows from (4.2) and Lemma 4.3 that for every i ≥ 0,

‖(Fi
y)

−1 ◦ ri ◦ Fi
x‖ ≤ ‖(Fi

y)
−1‖ · ‖Fi

x‖ · ‖ri‖
≤ C0 θ

i νi (y)
−β C3Cβ

4 dist(x, y)βνi (y)
β = C5 dist(x, y)β θ i .

(4.3)

Using (4.1), (4.3) and convergence of
∑
θ i we conclude that

‖(Fn
y )

−1 ◦ Ixn yn ◦ Fn
x − Ixy‖ ≤

n−1∑

i=0

‖(Fi
y)

−1 ◦ ri ◦ Fi
x‖ ≤ C dist(x, y)β .

(b) It follows from (4.1) that

‖(Fn+1
y )−1 ◦ Ixn+1 yn+1 ◦ Fn+1

x − (Fn
y )

−1 ◦ Ixn yn ◦ Fn
x ‖ = ‖(Fn

y )
−1 ◦ rn ◦ Fn

x ‖.
Hence {(Fn

y )
−1 ◦ Ixn yn ◦ Fn

x } is a Cauchy sequence by (4.3), and thus it has a limit Hs
xy :

Ex → Ey . Since the convergence is uniform on the set of pairs (x, y) where y ∈ W s
loc(x),

the map Hs is continuous. Clearly, the maps Hs
xy are linear and satisfy Hs

xx = Id. It follows
from (a) that ‖Hs

xy − Ixy ‖ ≤ Cdist(x, y)β . We also have

Hs
xy = lim

k→∞(F
n
y )

−1 ◦ (Fk−n
f n y )

−1 ◦ I f k x f k y ◦ Fk−n
f n x ◦ Fn

x = (Fn
y )

−1 ◦ Hs
f n x f n y ◦ Fn

x .

To show Hs
yz ◦ Hs

xy = Hs
xz we use (2.5) and Lemma 4.3 to obtain as in (4.3) that

‖Hs
xz − Hs

yz ◦ Hs
xy‖ ≤ ‖(Fn

z )
−1‖ · ‖(Ixn zn − Iyn zn ◦ Ixn yn )‖ · ‖Fn

x ‖ → 0 as n → ∞.

(c) Suppose that H1 and H2 are two stable holonomies satisfying ‖H1,2
xy − Ixy ‖

≤ Cdist(x, y)β . Then using Lemma 4.3 we obtain

‖H1
xy − H2

xy‖ = ‖(Fn
y )

−1 ◦ (H1
f n x f n y − H1

f n x f n y) ◦ Fn
x ‖

≤ C0 θ
n νn(y)

−β Cdist( f n x, f n y)β ≤ C6 θ
n → 0 as n → ∞,

and hence H1 = H2. ��
4.2 Proof of Theorem 3.1

We use the distance between conformal structures described in Sect. 2.3 and the identification
I from Sect. 2.2. We note that the proof works without change under the assumption that E
and F are continuous and that F has continuous holonomies.

Let τ be an F-invariant μ-measurable conformal structure on E . We first show that τ is
essentially invariant under the stable and unstable holonomies of F.

Proposition 4.4 Suppose that Hs is a stable holonomy for a linear cocycle F. If τ is a
measurable F-invariant conformal structure then τ is essentially Hs-invariant, i.e. there is
a set G ⊂ M of full measure such that

τ(y) = Hs
xy(τ (x)) for all x, y ∈ G such that y ∈ W s

loc(x).
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Proof We denote by Fn
x (ξ) the push forward of a conformal structures ξ from E(x) to E( f n x)

induced by Fn
x , and similar notations for push forwards by Hs and I . We also let xi = f i (x).

Since τ is F-invariant, and Fn
y induces an isometry, we obtain

dist (τ (y), Hs
xy(τ (x))) = dist(Fn

y (τ (y)), Fn
y Hs

xy(τ (x)))

= dist(τ (yn), Hs
xn yn

Fn
x (τ (x))) = dist(τ (yn), Hs

xn yn
(τ (xn)))

≤ dist(τ (yn), Ixn yn (τ (xn)))+ dist(Ixn yn (τ (xn)), Hs
xn yn

(τ (xn))).

Since τ is μ-measurable, by Lusin’s Theorem there exists a compact set S ⊂ M with
μ(S) > 1/2 on which τ is uniformly continuous and hence bounded. Let G be the set of
points in M for which the frequency of visiting S equals μ(S) > 1/2. By Birkhoff Ergodic
Theorem, μ(G) = 1.

Suppose that both x and y are in G. Then there exists a sequence {ni } such that xni ∈ S and
yni ∈ S. Since y ∈ W s

loc(x), dist(xni , yni ) → 0 and hence dist(Ixni yni
(τ (xni )), τ (yni )) → 0

by uniform continuity of τ on S. Since Hs and I are continuous and satisfy Hs
xx = Id = Ixx ,

we have ‖I −1
xni yni

◦ Hs
xni yni

− Id‖ → 0. Since τ is bounded on S, the lemma below yields

dist(Ixni yni
(τ (xni )), Hs

xni yni
(τ (xni ))) = dist(τ (xni ), I −1

xni yni
◦ Hs

xni yni
(τ (xni ))) → 0.

We conclude that dist (τ (y), Hs
xy(τ (x))) = 0 and thus τ is essentially Hs-invariant. ��

Lemma 4.5 [9, Lemma 4.5] Let σ be a conformal structure on R
d and A be a linear trans-

formation of R
d sufficiently close to the identity. Then

dist (σ, A(σ )) ≤ k(σ ) · ‖A − Id ‖,
where k(σ ) is bounded on compact sets in Cd . More precisely, if σ is given by a matrix C,
then k(σ ) ≤ 3d ‖C−1‖ · ‖C‖ for any A with ‖A − Id ‖ ≤ (6‖C−1‖ · ‖C‖)−1. ��

Similarly, τ is essentially Hu-invariant. Since the stable and unstable holonomies of F are
continuous we conclude that τ is essentially uniformly continuous along W s and W u . Since
the base system f is center bunched and accessible this implies continuity of τ on M by [2,
Theorem E] or [22, Theorem 4.2]. ��
4.3 Proof of Proposition 3.2

We use the following proposition from [9]. Recall that a measurable conformal structure
τ on E is called bounded if the distance between τ(x) and τ0(x) is essentially bounded on
M for a continuous conformal structure τ0 on E .

Proposition 4.6 [9, Proposition 2.4] Let f be a homeomorphism of a compact manifold
M and let F : E → E be a continuous linear cocycle over f. If F is uniformly quasiconformal
then it preserves a bounded measurable conformal structure τ on E .

Under our standing assumptions, Theorem 3.1 now implies that τ is continuous. We can
normalize it by a continuous function on M to obtain a Riemannian metric with respect to
which F is conformal. ��
4.4 Proof of Theorem 3.3

Let E ′ be a measurable F-invariant sub-bundle of E with dim E ′
x = d ′. We consider a fiber

bundle G over M whose fiber over x is the Grassman manifold Gx of all d ′-dimensional
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subspaces in Ex . Then F induces the cocycle F̃ : G → G over f with diffeomorphisms
F̃x : Gx → G f x depending continuously on x in smooth topology.

The stable holonomy Hs for F induces a stable holonomy H̃ s for F̃ . Similarly, to the
linear case, this is a family of diffeomorphisms H̃ s

xy : Gx → Gy that satisfies properties
(ii) and (iii) Definition 4.1 and depends continuously on x and y ∈ W s

loc(x). Similarly Hu

induces the unstable holonomy H̃u for F̃ .
The sub-bundle E ′ gives rise to a μ-measurable F̃-invariant section φ : M → G. We take

m to be the lift ofμ to the graph	 of φ, i.e. for a set X ⊂ G we define m(X) = μ(π(X ∩	)),
where π : G → M is the projection. Equivalently, m can be defined by specifying that for
μ-almost every x in M the conditional measure mx in the fiber Gx is the atomic measure at
φ(x). Since μ is f-invariant and 	 is F̃-invariant, the measure m is F̃-invariant.

Lemma 4.7 [9, Lemma 4.6] There exists C > 0 such that for any x ∈ M, subspaces
ξ, η ∈ Gx , and n ∈ Z

dist(F̃n
x (ξ), F̃n

x (η)) ≤ C · K F (x, n) · dist(ξ, η) (4.4)

The definitions of K (x, n), λ+(F, μ), and λ−(F, μ) yield that for μ almost all x

lim
n→∞

1

n
log K (x, n) = lim

n→∞
1

n
log(‖Fn

x ‖ · ‖(Fn
x )

−1‖)

= lim
n→∞

1

n
log ‖Fn

x ‖ − lim
n→∞

1

n
log ‖(Fn

x )
−1‖−1

= λ+(F, μ)− λ−(F, μ) = 0. (4.5)

Hence Lemma 4.7 implies that Lyapunov exponent of F̃ along the fiber is zero m a.e. This
together with existence of the stable and unstable holonomies for F̃ allows us to apply
[2, Theorem C] to the measure m and conclude that there exists a system of conditional
measures m̃x on Gx for m which are holonomy invariant and depend continuously on x ∈ M
in the weak∗ topology.

Since the conditional measures mx and m̃x coincide for all x in a set X ⊂ M of full μ
measure, we see that m̃x = mx is the atomic measure at φ(x) for all x ∈ X . Since X is dense
we obtain that m̃x is atomic for all x ∈ M. Indeed, for any x ∈ M we can take a sequence
X � xi → x and assume by compactness of G that φ(xi ) converge to some ξ ∈ Gx . This
implies that m̃xi = mxi converge to the atomic measure at ξ , which therefore coincides with
m̃x by continuity of the family {m̃x }. Denoting φ̃(x) = supp m̃x for x ∈ M, we obtain a
continuous section φ̃ which coincides with φ on X. This shows that E ′ coincides μ-almost
everywhere with a continuous sub-bundle which is invariant under the stable and unstable
holonomies. ��
4.5 Proof of Theorem 3.4

We use the following particular case of Zimmer’s Amenable Reduction Theorem:
[6, Corollary 1.8], [3, Theorem 3.5.9] Let f be an ergodic transformation of a measure

space (X, μ) and let F : X → GL(d,R) be a measurable function. Then there exists a
measurable function C : X → GL(d,R) such that the function A(x) = C−1( f x)F(x)C(x)
takes values in an amenable subgroup of GL(d,R).

There are 2d−1 standard maximal amenable subgroups of GL(d,R). They correspond to
the distinct compositions of d, d1 + · · · + dk = d , and each group consists of all block-
triangular matrices of the form
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⎡

⎢
⎢
⎢
⎢
⎣

A1 ∗ . . . ∗
0 A2

. . .
...

...
. . .

. . . ∗
0 . . . 0 Ak

⎤

⎥
⎥
⎥
⎥
⎦

(4.6)

where each diagonal block Ai is a scalar multiple of a di ×di orthogonal matrix. Any amenable
subgroup of GL(d,R) has a finite index subgroup which is contained in a conjugate of one
of these standard subgroups [13, Theorem 3.4]. The normalizer of the diagonal subgroup is
an example of an amenable group which does not lie in any such conjugate. It is the finite
extension of the diagonal subgroup that contains all permutations of the coordinate axes.

Since E can be trivialized on a set of fullμ-measure [3, Proposition 2.1.2], we can measur-
ably identify E with M × R

d and view F as a function M → GL(d,R). Thus can we apply
the Amenable Reduction Theorem to F and obtain a measurable coordinate change function
C : M → GL(d,R) such that A(x) = C−1( f x)F(x)C(x) ∈ G for μ-a.e. x ∈ M, where
G is an amenable subgroup of GL(d,R). By the above we may assume that G contains a
finite index subgroup G0 which is contained in one of the 2d−1 standard maximal amenable
subgroups.

Case 1 First we consider the case when G itself is contained in a standard subgroup. Then
the conclusion of the theorem holds for F itself rather than for a power of its lift. The
sub-bundle V i spanned by the first d1 + · · · + di coordinate vectors in R

d is A-invariant
for i = 1, . . . , k. Denoting E i

x = C(x)V i we obtain the corresponding flag of measurable
F-invariant sub-bundles

E1 ⊂ E2 ⊂ · · · ⊂ Ek = E with dim E i = d1 + · · · + di .

By Theorem 3.3 we may assume that the sub-bundles E i are continuous. Since A1(x) is a
scalar multiple of a d1 × d1 orthogonal matrix for μ-a.e. x, we conclude that the restriction
of F to E1 is conformal with respect to the push forward by C of the standard conformal
structure on V 1. This gives a measurable F-invariant conformal structure τ1 on E1. Since
F preserves E1, so does the stable holonomy Hs . Hence Hs induces a stable holonomy
Hs,1 for the restriction of F to E1. By Proposition 4.4 the conformal structure τ1 is essen-
tially invariant under Hs,1. Similarly we obtain essential invariance of τ1 under the unstable
holonomy Hu,1. This yields continuity of τ1 on M as in the end of the proof of Theorem 3.1.

Similarly, we can consider continuous factor-bundle E i/E i−1 over M with the natural
induced cocycle F (i). Since the matrix of the map induced by A on V i/V i−1 = R

di is
Ai , it preserves the standard conformal structure on R

di . Pushing forward by C we obtain
a measurable conformal structure τi on E i/E i−1 invariant under F (i). The holonomies
Hs and Hu induce continuous holonomies for F (i) on E i/E i−1. As above, we conclude
that τi is essentially invariant under these holonomies and continuous.

Case 2 Now we consider the case when only a finite index subgroup G0 of G is contained in
a standard maximal amenable subgroup. We again consider the flag of subspaces V i spanned
by the first ni = d1 +· · ·+di coordinate vectors in R

d , i = 1, . . . , k. Let G∗ be the stabilizer
of this flag in G. Then G∗ contains G0 and thus G∗ has a finite finite index l in G. The orbit
of this flag under G consists of l distinct flags in R

d which we denote by

W j = {V j,1 ⊂ . . . ⊂ V j,k−1 ⊂ V j,k = R
d}, j = 1, . . . , l. (4.7)
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Any g ∈ G permutes these flags and preserves their union. First we will construct corre-
sponding flags of continuous invariant sub-bundles. If l ≥ 2 this requires in general to pass
to a finite cover and a power of F. After that we will show existence of continuous invariant
conformal structures on the factor bundles for each flag.

For each i = 1, . . . , k − 1 the subspaces V j,i , j = 1, . . . , l, have dimension ni . Some
of them may coincide, so we denote the number of distinct ones by li . We also denote their
union and its image under C by

U (i) = V 1,i ∪ . . . ∪ V l,i ⊂ R
d and Û (i)x = C(x)U (i) ⊂ Ex forμ-a.e. x (4.8)

Then Û (i) depends measurably on x and is a union of li distinct ni -dimensional sub-
spaces of Ex . Since g(U (i)) = U (i) for any g ∈ G, we see that Û (i)x is invariant under
F, i.e. Fx (Û (i)x ) = Û (i)f x . First we claim that for each x in M there exists U (i)x , a union
of li distinct ni -dimensional subspaces of Ex , which depends continuously on x, coin-
cides with Û (i)x for μ-a.e. x, and is invariant under F. This can be seen as in the proof of
Theorem 3.3. Indeed, we can define the measure m on the corresponding Grassmannian bun-
dle G by choosing the conditional measure m̂x on Gx to be the atomic measure equidis-
tributed on the li points corresponding to Û (i)x . Then m is invariant under the induced
cocycle on G. Thus by the same argument we obtain that there exists a system of condi-
tional measures mx on Gx for m which are holonomy invariant and depend continuously
on x ∈ M in the weak∗ topology. As before, the measures mx are atomic for all x. More-
over, the number of atoms is preserved by the stable and unstable holonomies since they
are induced by linear isomorphisms. Hence accessibility implies that the number of atoms
is li for all x in M. Then mx corresponds to a union U (i)x of li distinct ni -dimensional sub-
spaces in Ex which depends continuously on x and is invariant under F. We also denote
U (i) = ⋃

x∈M U (i)x ⊂ E .

We fix a point q ∈ M and denote the subspaces in U (i)q by U1,i
q , . . . , U li ,i

q . Locally
they can be uniquely extended to continuous sub-bundles U1,i , . . . , U li ,i so that the
union of U1,i

x , . . . , U li ,i
x is U (i)x . Similarly, they can be extended uniquely along any

curve. The extension along a loop based at q produces a permutation of subspaces
U1,i

q , . . . , U li ,i
q , which depends only on the homotopy class of the loop. Thus we obtain

a natural homomorphism ρi : π1(M, q) → �(li ) from the fundamental group of
M to the group of permutations of li symbols. If the homomorphism ρi is triv-
ial, then U1,i

q , . . . , U li ,i
q extend globally to continuous sub-bundles U1,i , . . . , U li ,i over

M.
We consider the homomorphisms ρi for each i = 1, . . . , k − 1 and denote their direct

product by ρ : π1(M, q) → �(l1) × . . . × �(lk−1). If ρ is non-trivial we pass to a finite
cover as follows. The kernel Hq = ker ρ is a normal subgroup of finite index in π1(M, q).
Hence there exists a finite cover p : M̃ → M such that p∗(π1(M̃, q̃)) = Hq for any
q̃ ∈ p−1(q). By taking the pullback under p we obtain the bundle Ẽ over M̃ and for each
i = 1, . . . , k −1 the corresponding union of subspaces Ũ (i)x̃ in Ẽx̃ . Fix some q̃ ∈ p−1(q). We

claim that for each i the subspaces in Ũ (i)q̃ extend to continuous ni -dimensional sub-bundles

Ũ1,i , . . . , Ũ li ,i of Ẽ so that Ũ1,i
x̃ ∪ . . . ∪ Ũ li ,i

x̃ = Ũ (i)x̃ for all x̃ ∈ M̃. It suffices to check that
any loop γ̃ ∈ π1(M̃, q̃) induces trivial permutations. Indeed, p◦ γ̃ ∈ Hq by the construction
of M̃, and γ̃ and p ◦ γ̃ induce the same permutations since the extension along γ̃ projects
to that along p ◦ γ̃ .
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Now we lift f to the cover M̃. Fix any q̃ ∈ p−1(q) and choose any x̃ ∈ p−1( f (q)).

M̃, q̃
f̃−→ M̃, x̃ π1(M̃, q̃) π1(M̃, x̃)

p ↓ p ↓ p∗ ↓ p∗ ↓
M, q

f−→ M, f (q) π1(M, q)
f∗−→ π1(M, f (q))

A necessary and sufficient condition for existence of f̃ : M̃ → M̃ satisfying f̃ (q̃) = x̃ and
covering f ◦ p is the inclusion ( f ◦ p)∗(π1(M̃, q̃)) ⊂ p∗(π1(M̃, x̃)). We will show the equal-
ity. We recall that p∗(π1(M̃, q̃)) = Hq by the construction. It follows that p∗(π1(M̃, x̃)) is
the subgroup H f (q) of π1(M, f (q)) that consists of all loops inducing trivial permutations of
the subspaces at f (q). Indeed, for any natural isomorphism is : π1(M, f (q)) → π1(M, q)
given by a path s from q to f (q) it is easily seen that is(H f (q)) = Hq , and for any cover
is(p∗(π1(M̃, x̃))) = p∗(π1(M̃, q̃)) since the latter is normal. Finally, f∗(Hq) = H f (q)

since for any loop γ ∈ π1(M, q) the cocycle F gives a homeomorphism between the restric-
tions of E to γ and to f ◦ γ , which maps U (i) to U (i) and hence preserves the type of the
induced permutation. We conclude that ( f ◦ p)∗(π1(M̃, q̃)) = p∗(π1(M̃, x̃)) and thus the
lift f̃ exists.

We note that the manifold M̃ is compact and connected, and the lift f̃ satisfies our standing
assumptions. Indeed, since the projection p is a local diffeomorphism, the invariant volume
μ lifts to an invariant volume μ̃, and the partially hyperbolic splitting for f lifts to the one for
f̃ . Moreover, f̃ satisfies the same bunching and its stable/unstable foliations project to those
of f. It follows that f̃ is accessible. Indeed, by compactness and connectedness, it suffices to
show that any point q̃ ∈ M̃ has a neighborhood whose any point ỹ can be connected to q̃
by an su-path. Let q = p(q̃) and y = p(ỹ). By [22, Lemma 4.4] q can be connected to any
sufficiently close y by an su-path arbitrarily close to a certain contractible su-path from q to
q. The lift of such a path to M̃ gives an su-paths connecting q̃ and ỹ.

We denote by F̃ : Ẽ → Ẽ the unique lift of the cocycle F to the cocycle over f̃ . We note
that Ẽ and F̃ are β-Hölder, and F̃ is fiber-bunched. We also lift the matrix functions A and C
to M̃, Ã(x̃) = A(p(x̃)) and C̃(x̃) = C(p(x̃)), and note that Ã(x̃) = C̃−1( f̃ (x̃))F̃(x̃) C̃(x̃)
for μ̃-a.e. x̃ , where μ̃ is the lift of μ.

For each i the cocycle F̃ preserves the union Ũ (i) of sub-bundles Ũ1,i , . . . , Ũ li ,i . Since
the sub-bundles are continuous, the permutation of their order induced by F̃x̃ is continuous in
x̃ and hence is constant on M̃. Hence there exists N such that the cocycle F̂ = F̃ N preserves
every sub-bundle Ũ j,i , i = 1, . . . , k − 1, j = 1, . . . , li . Moreover, these sub-bundles can be
arranged into flags W̃1, . . . , W̃l which are mapped by C̃−1(x̃) to the flags W 1, . . . ,W l in
R

d for μ̃-a.e. x̃ up to a permutation which depends on x̃ . (We can not expect this permutation
to be constant a.e. since modifying C on a set of positive measure by an element of G gives
a different version of A satisfying the conclusion of the Amenable Reduction Theorem.)
Indeed, for each i and for μ̃-a.e. x̃ the isomorphism C̃(x̃)maps U (i) to Ũ (i)x̃ and thus marks the

inclusions between subspaces Ũ1,i−1
x̃ , . . . , Ũ li−1,i−1

x̃ and Ũ1,i
x̃ , . . . , Ũ li ,i

x̃ that correspond to
the inclusions in the flags W 1, . . . ,W l . We can view these inclusions as a measurable function
ψi from M̃ to the set of binary relations between the sets {1, . . . , li−1} and {1, . . . , li }. We
note that the cocycle F̂ is conjugate by C̃ to the matrix cocycle Â = ÃN with values in
the same group G. All elements of G permute the flags W 1, . . . ,W l and thus preserve the
corresponding binary relations. Since F̂ also preserves all sub-bundles Ũ j,i , we conclude ψi

is invariant under f̃ N and hence is constant μ̃-a.e. by ergodicity. The inclusions given by the
functions ψi arrange the sub-bundles Ũ j,i into desired flags W̃1, . . . , W̃l . We fix one these
flags and denote it
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W̃ =
{
{0} = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽk = Ẽ

}
.

It remains to show that each factor bundle Ẽ i/Ẽ i−1, i = 1, . . . , k, has a continuous conformal
structure invariant under the factor cocycle induced by F̂ .

Recall that any matrix A in G0 has the block-triangular form (4.6) and hence preserves
the subspaces V i and V i−1. Its factor map on V i/V i−1 = R

di is given by the block Ai

and thus preserves the standard conformal structure σ on R
di . The orbit of σ under the flag

stabilizer G∗ is a finite set O in the space of conformal structures on R
di . Since O is invariant

under G∗, so is the smallest ball containing O, which is unique in the space of nonpositive
curvature. The center of this ball is a conformal structure σ∗ on V i/V i−1 = R

di preserved
by the factor action of any matrix in G∗. Pushing σ∗ by the action of G we obtain conformal
structures σ j on the factors V j,i/V j,i−1 of the flags W j , j = 1, . . . , l. It follows that if
g ∈ G maps W j to W j ′ then its factor map ḡ : V j,i/V j,i−1 → V j ′,i/V j ′,i−1 takes σ j to
σ j ′ . By the construction of the flag W̃ , for μ̃-a.e. x̃ there is j = j (x) such that Ẽ i

x̃ = C̃(x̃)V j,i

and Ẽ i−1
x̃ = C̃(x̃)V j,i−1. Pushing σ j by C̃(x̃) we obtain a measurable conformal structure

τ on Ẽ i/Ẽ i−1. Since F̂ is conjugate by C̃ to Â, which takes values in G, we conclude that
τ is invariant under the factor of F̂ on Ẽ i/Ẽ i−1. The stable and unstable holonomies for the
fiber-bunched cocycle F̃ give the continuous holonomies for F̂ and for its factor on Ẽ i/Ẽ i−1.
Using Proposition 4.4 and Theorem 3.1 as before we conclude that τ coincides μ̃-a.e. with
a continuous conformal structure on Ẽ i/Ẽ i−1 invariant under the factor cocycle of F̂ . ��
Remark 4.8 Suppose that there exist d continuous vector fields such that Ẽ i is spanned by the
first d1 +· · ·+di of them. Then the theorem implies that F̂ is continuously cohomologous to
a cocycle with values in a standard maximal amenable subgroup of GL(d,R) given by (4.6).
Indeed, since Ẽ ≈ M × R

d we can view the cocycle as a function F̂ : M → GL(d,R),
moreover, the vector fields give a continuous coordinate change C̄ : M → GL(d,R)
such that Ā(x) = C̄−1( f x)F̂(x) C̄(x) has a block triangular form. Each diagonal block Āi

corresponds to the factor cocycle on E i/E i−1 and thus preserves a continuous conformal
structure τi on R

di , i.e. Āi (x)(τi (x)) = τi ( f̃ x). To make the diagonal blocks conformal we
change the coordinates in R

di by the unique positive square root of the matrix of τi (x).

4.6 Example

We give an example of an analytic cocycle F on E = T
2 ×R

2 over an Anosov automorphism f
of T

2 = R
2/Z2 so that F is fiber bunched and has only one Lyapunov exponent with respect to

the Haar measure μ, but has no invariant μ-measurable sub-bundles or conformal structures.
We view cocycles as GL(2,R)-valued functions. We construct F using its 4-cover F̄ on

T̄
2 = R

2/(4Z × Z), which is conjugate to a diagonal cocycle Ā. We define

Ā(x) =
[

a(x) 0
0 b(x)

]
, where a(x) = 1 + ε cos(πx1), b(x) = 1 − ε cos(πx1);

C̄(x) =
[

cos( π2 x1) − sin( π2 x1)

sin( π2 x1) cos( π2 x1)

]
= R

(π
2

x1

)
, the rotation by

π

2
x1.

Both C̄ and Ā are well-defined and analytic on T̄
2. We choose a hyperbolic matrix in SL(2,Z)

congruent to the identity modulo 4, e.g.
[

41 32
32 25

]
, and let f and f̄ be the induced automorphisms

of T
2 and T̄

2, respectively. Then we define the function

F̄(x) = C̄( f̄ x) Ā(x) C̄(x)−1 = C̄( f̄ x) C̄(x)−1 · C̄(x) Ā(x) C̄(x)−1. (4.9)
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The term C̄( f̄ x) C̄(x)−1 is the rotation R
(
π
2 (( f̄ x)1 − x1)

)
and hence is 1-periodic in both

x1 and x2 by the assumption on f̄ . A direct calculation shows that

C̄(x) Ā(x) C̄(x)−1 = 1

2

[
2 + ε(1 + cos(2πx1)) ε sin(2πx1)

ε sin(2πx1) 2 − ε(1 + cos(2πx1))

]
.

Therefore F̄ is 1-periodic in both x1 and x2, and it projects to an analytic function F on T
2.

For small ε, F̄ and F are close to orthogonal, hence are fiber bunched.
Since a(0) �= b(0), the functions a(x) and b(x) are not cohomologous, and hence the

coordinate line bundles E1 and E2 are the only invariant sub-bundles for Ā measurable with
respect to μ̄ [17, Lemma 7.1]. It is easy to see that Ā has one Lyapunov exponent

λ = lim
n→∞

log(a(x) . . . a( f n−1x))

n
=

∫

T̄2

log a(x) dμ̄ =
∫

T̄2

log b(x) dμ̄ for μ̄-a.e. x .

Since F̄ is conjugate by C̄ to Ā, it also has one Lyapunov exponent with respect to μ̄, and
hence so does F. However, F has two exponents at 0 = f (0), log(1+ ε) and log(1− ε), so it
cannot preserve a conformal structure. Also, F̄ preserves exactly two sub-bundles Ū i = C̄ Ei .
Their projections to T

2 are not sub-bundles, as they “twist together into a single object”. (On
the intermediate cover T̃

2 = R
2/(2Z×Z) this object splits into two non-orientable invariant

sub-bundles, illustrating the lift in the proof of Theorem 3.4.) We conclude that F has no
invariant sub-bundle, since lifting one to T̄ 2 would give an invariant sub-bundle for F̄ different
from Ū 1 and Ū 2.

4.7 Subadditive sequences of functions

Proposition 4.9 plays a key role in the proof of Corollary 3.6. It removes extra assumptions
from [16, Proposition 3.5], which was similar to a result in [18], but proved to be more useful
for many applications.

Let f be a homeomorphism of a compact metric space X. A sequence of continuous
functions an : X → R is called subadditive if

an+k(x) ≤ ak(x)+ an( f k x) for all x ∈ X and n, k ∈ N. (4.10)

For any Borel probability measure μ on X we denote an(μ) = ∫
X andμ. If μ if f-invariant,

(4.10) implies that an+k(μ) ≤ an(μ) + ak(μ), i.e. the sequence of real numbers {an(μ)} is
subadditive. It is well known that for such a sequence the following limit exists:

χ(μ) := lim
n→∞

an(μ)

n
= inf

n∈N

an(μ)

n
.

Also, by the Subaddititive Ergodic Theorem, if μ is ergodic then

lim
n→∞

an(x)

n
= χ(μ) forμ-almost all x ∈ X. (4.11)

Proposition 4.9 Let f be a homeomorphism of a compact metric space X and an : X → R

be subadditive sequence of continuous functions. If χ(μ) < 0 for every ergodic invariant
Borel probability measure μ for f, then there exists N such that aN (x) < 0 for all x ∈ X.

Proof We denote by M the set of f-invariant Borel probability measures on X. First we note
that, by the Ergodic Decomposition, if χ(μ) < 0 for every ergodic μ ∈ M, then the same
holds for every μ ∈ M.
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First we show that there exists K such that aK (μ) < c < 0 for allμ ∈ M. Since χ(μ) < 0
there exists nμ and cμ such that anμ(μ) < 2cμ < 0. Since an are continuous, for every
μ ∈ M there is a neighborhood Vμ in the weak∗ topology such that anμ(ν) < cμ for every
ν ∈ Vμ. We choose a finite cover {Vμi , i ∈ I } of M and set R = maxI ni and c = maxI ci .
Take any μ ∈ M and let i be such that μ ∈ Vμi . For any K we can write K = kni + r , where
r < ni ≤ R, and by the subadditivity we get

aK (μ) ≤ kani (μ)+ ar (μ) < kc + ar (μ).

Since ar are uniformly bounded for r < R, we conclude that aK (μ) < c < 0 provided that
K, and hence k, are sufficiently large. ��
Lemma 4.10 Suppose that for a continuous function φ : X → R, φ(μ) < c for all μ ∈ M.
Then there exists n0 such that 1

n

∑n−1
i=0 φ( f i x) < c for all x ∈ X and n ≥ n0.

Proof Suppose on the contrary that there exit sequences x j ∈ X and n j → ∞ such that

S j = 1
n j

∑n j −1
i=0 φ( f i x) ≥ c. Note that S j = ψ(μ j ), where μ j = 1

n j

∑n j −1
i=0 δ( f i x j )

is a probability measure. Using compactness of the set of probability measures on X we
may assume, by passing to a subsequence if necessary, that μ j weak∗ converges to a prob-
ability measure μ. Since the total variation norm ‖ f∗μ j − μ j‖ ≤ 2

n j
it follows that the

limit μ is f-invariant. On the other hand ψ(μ) = limψ(μ j ) ≥ c, which contradicts the
assumption. ��

Applying the lemma to a function aK satisfying aK (μ) < c < 0 we conclude that there
is n0 such that

∑n−1
i=0 aK ( f i x) < cn for all n ≥ n0 and x ∈ X . Let n = K m ≥ n0. Using

subadditivity repeatedly, for i = 0, . . . , K − 1 we obtain

an( f i x) ≤ aK ( f i x)+ an−K ( f K+i x) ≤ . . .

≤ aK ( f i x)+ aK ( f K+i x)+ · · · + aK

(
f (m−1)K+i x

)
.

Adding these K inequalities, we get

an(x)+ an( f x)+ · · · + an( f K−1x) ≤
n−1∑

i=0

aK ( f i x) ≤ cn.

Let N = n + K . For i = 0, . . . , K − 1, we obtain

aN (x) ≤ ai (x)+ an+K−i ( f i x) ≤ ai (x)+ an( f i x)+ aK−i ( f n+i x) =: an( f i x)+�i (x),

where we set a0(x) = 0. Let M = max{ |�i (x)| : 0 ≤ i ≤ K − 1, x ∈ M}. Adding the
inequalities, we get

K · aN (x) ≤ an(x)+ an( f x)+ · · · + an( f K−1x)+ K M ≤ cn + K M

and hence aN (x) ≤ cn/K + M . Since c < 0, taking m = n/K sufficiently large, we can
ensure that aN (x) < 0 for all x. ��

4.8 Proof of Corollary 3.6

The fiber bunching assumption is used in the proofs of Theorems 3.1, 3.3, and 3.4 only to
obtain the stable and unstable holonomies for F. Thus it suffices to show that the assumption
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in the corollary also ensures their existence. Applying Proposition 4.11 below with ξ = 0
we obtain that for every ε > 0 there exists Cε such that

‖Fn
x ‖ · ‖(Fn

x )
−1‖ ≤ Cεe

ε|n| for all x ∈ M and n ∈ Z. (4.12)

We consider ε such that eε < min ν(x)−β . Then (4.12) implies that for all sufficiently large n
the cocycle Fn over f n is fiber bunched and, by Proposition 4.2, has the stable and unstable
holonomies. The holonomies for both F N and F N+1 are also holonomies for F N (N+1) and
hence coincide by uniqueness, Proposition 4.2 (c). This easily implies that they are also
holonomies for F . We only need to check Definition 4.1(iii) for n = 1 which follows from
that for n = N + 1 at x and for n = N at fx:

Hs
xy = (F N+1

y )−1 ◦ Hs
f N+1x f N+1 y ◦ F N+1

x

= (Fy)
−1 ◦ (F N

f y)
−1 ◦ Hs

f N+1x f N+1 y ◦ F N
f x ◦ Fx = (Fy)

−1 ◦ Hs
f x f y ◦ Fx .

Proposition 4.11 Suppose that there exists ξ ≥ 0 such that λ+(F, μ) − λ−(F, μ) ≤ ξ for
every ergodic f-invariant measure μ. Then for any ε > 0 there exists Cε such that

K F (x, n) = ‖Fn
x ‖ · ‖(Fn

x )
−1‖ ≤ Cεe

(ξ+ε)|n| for all x ∈ M and n ∈ Z. (4.13)

Proof The proof is similar to that of [9, Proposition 2.1] but simpler due to the use of
Proposition 4.9. For a given ε > 0 we apply Proposition 4.9 to the functions

an(x) = log K F (x, n)− (ξ + ε)n, n ∈ N.

It is easy to see from the definition of the quasiconformal distortion that

K (x, n + k) ≤ K (x, k) · K ( f k x, n) for every x ∈ M and n, k ≥ 0. (4.14)

It follows that the sequence of functions {an} is subadditive.
Let μ be an ergodic f-invariant measure. As in (4.5) we obtain that

lim
n→∞ n−1 log K (x, n) = λ+(F, μ)− λ−(F, μ) ≤ ξ for μ-a.e. x .

It follows that limn→∞ n−1an(x) ≤ −ε < 0 for μ-a.e. x, and (4.11) implies that χ(μ) < 0
for the sequence {an}. Hence there exists Nε such that aNε (x) < 0, i.e. K (x, Nε) ≤ e(ξ+ε)Nε
for all x ∈ M. The proposition follows for n > 0 from (4.14) by choosing Cε sufficiently
large, and for n < 0 since K (x, n) = K ( f n x,−n). ��

4.9 Proof of Corollary 3.7

Let τ be the continuous F-invariant conformal structure obtained in Theorem 3.1. It fol-
lows as in the proof of Proposition 4.4 that τ(y) = Hs

xy(τ (x)) for all x ∈ M and
y ∈ W s

loc(x). By Proposition 4.2, ‖Hs
xy − Ixy‖ ≤ C dist(x, y)β , and hence by Lemma

4.5 dist(Ixy(τ (x)), τ (y)) ≤ C ′ dist(x, y)β . The same holds for all y ∈ W u
loc(x). Now local

α-Hölder accessibility implies that τ is αβ-Hölder on M.
In the proof of Theorem 3.3 we established that the sub-bundle is invariant under the

stable and unstable holonomies. Thus by the same reason it is β-Hölder along W u and W s ,
and αβ-Hölder on M. Since the lift f̃ in Theorem 3.4 is also locally α-Hölder accessible,
we obtain the same regularity for the sub-bundles Ẽ i and the factor bundles Ẽ i/Ẽ i−1. In
particular, the holonomies for the induced cocycle on Ẽ i/Ẽ i−1 are β-Hölder along W̃ u and
W̃ s . As above, the conformal structure on Ẽ i/Ẽ i−1 is invariant under these holonomies and
hence it is αβ-Hölder on M̃. ��
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4.10 Proof of Corollary 3.8

The difference in the proof for the partially hyperbolic and Anosov case is in obtaining global
continuity on M from that along the stable and unstable foliations, and this argument is more
direct in the Anosov case.

Theorem 3.1 for Anosov case follows from Proposition 4.2 (a) and [9, Proposition 2.3].
Alternatively, as in Theorem 3.1, we obtain that the conformal structure τ is essentially
β-Hölder along W s and W u and then conclude that it is essentially β-Hölder on M using
1-Hölder accessibility and the local product structure of the measure, as in the end of the
proof of [9, Proposition 2.3]. In the proof of Theorem 3.3 we only need to replace the
reference [2, Theorem C] by [1, Theorem D] and then conclude that the invariant distribution is
β-Hölder by Corollary 3.7. Using these results, Corollary 3.2 and Theorem 3.4 can be obtained
as in this paper.

The prove the last statement of the corollary we recall that for Hölder continuous linear
cocycles over hyperbolic systems, the Lyapunov exponents of any ergodic invariant measure
can be approximated by Lyapunov exponents of periodic measures [7, Theorem 1.4]. Hence
we obtain λ+(F, η) = λ−(F, η) for every ergodic f-invariant measure η and the argument in
the proof of Corollary 3.6 applies.

4.11 Proof of Theorem 3.9

By Corollary 3.8 the conclusion of Theorem 3.4 holds, moreover, the invariant sub-bundles
and conformal structures are β-Hölder.

We use notations from the proof of Theorem 3.4. Recall that F̃ : Ẽ → Ẽ is the lift of
F to the cocycle over f̃ : M̃ → M̃, and that the cocycle F̂ = F̃ N preserves the flags
W̃1, . . . , W̃l . We denote these β-Hölder flags by

W̃ j =
{

{0} = Ẽ j,0 ⊂ Ẽ j,1 ⊂ · · · ⊂ Ẽ j,k = Ẽ
}
, j = 1, . . . , l.

Now we define sub-bundles Ê i = ∑l
j=1 Ẽ j,i , where the sum may be not direct, which form

a new β-Hölder flag, where the inclusions may be not strict. By the construction of W̃ j ,
this flag projects to a β-Hölder F-invariant flag {0} = E0 ⊂ E1 ⊆ E2 ⊆ · · · ⊆ Ek = E .
Eliminating unnecessary sub-bundles in case of equalities we obtain the desired flag (3.5).
We will show below that for each i = 1, . . . , k the factor bundle Ê i/Ê i−1 has a continuous
conformal structure invariant under the factor of F̂ . This implies uniform quasiconformality
of the factor cocycle F (i) induced by F on E i/E i−1 and, by Corollaries 3.2 and 3.8, existence
of a β-Hölder conformal structure τi on E i/E i−1 invariant under F (i), i = 1, . . . , k. Then
the proof is completed as follows.

We normalize the conformal structure τi to get a β-Hölder Riemannian metric ‖.‖′
i on

E i/E i−1, i = 1, . . . , k, with respect to which F (i) is conformal. We denote by ai (x) the
scaling coefficients with respect to these norms:

‖F (i)(v)‖′
i = ai (x)‖v‖′

i for all v ∈ E i/E i−1 (x).

These are positive β-Hölder functions, and for each periodic point p = f n p the product
ai ( f n−1 p) · · · ai ( f p) ai (p) is the same for all i. Indeed, the matrix of Fn

p is block triangular
in any basis of Ep appropriate for the flag, and the above product is simply the modulus of
the eigenvalues of the block corresponding to E i/E i−1; all these moduli are equal since Fn

p
has only one Lyapunov exponent. Now by the Livšic theorem [11], [10, Theorem 19.2.1] this

123

Author's personal copy



Geom Dedicata

implies that the functions ai are cohomologous, more precisely there exist positive β-Hölder
functions ψi such that for all x

ai (x) = a1(x)ψi ( f x)ψi (x)
−1, i = 2, . . . , k.

Choosing new metric ‖.‖i = ψ−1
i ‖.‖′

i , i = 2, . . . , k, makes a1 the scaling coefficient for all
F (i). Hence the cocycle a1(x)−1 F(x) induces isometries on each E i/E i−1, i = 1, . . . , k.

It remains to obtain conformal structures on Ê i/Ê i−1 invariant under the factors of F̂ . We
fix 1 ≤ i ≤ k. As we showed in the proof of Theorem 3.4, for each j = 1, . . . , l the factor
of F̂ on Ẽ j,i/Ẽ j,i−1 has an invariant conformal structure, which in our case is β-Hölder. We
normalize these structures to obtain β-Hölder Riemannian metrics g j . As in the argument
above we can show that the scaling coefficients of F̂ are cohomologous functions. Hence
we may assume that the metrics g j are normalized so that for some positive function ϕ the
cocycle F̄ = ϕ F̂ induces an isometry on Ẽ j,i/Ẽ j,i−1 for each j = 1, . . . , l. To simplify
notations we will also write F̄ for its induced map on any factor bundle.

We fix j and consider Ē j = Ẽ j,i/(Ẽ j,i ∩ Ê i−1) as a factor bundle of Ẽ j,i/Ẽ j,i−1. Since F̄
is isometric on Ẽ j,i/Ẽ j,i−1, it preserves the orthogonal complement of (Ẽ j,i ∩ Ê i−1)/Ẽ j,i−1

and the metric gi restricted to it. This orthogonal complement is isomorphic to Ē j , and thus
we obtain an F̄-invariant metric ḡ j on Ē j . Now we view Ē j as a sub-bundle of Ê i/Ê i−1, so
that Ê i/Ê i−1 = ∑l

j=1 Ē j , and combine the metrics ḡ j as follows. Let U = Ē1 ∩ Ē2 and U⊥

be its orthogonal complement in Ē2. As before, F̄ preserves U⊥ and the restriction of ḡ2 to
it. We combine g1 and g2 into F̄-invariant the Riemannian metric on Ē1 + Ē2 = Ē1 ⊕U⊥ by
declaring the last two bundles orthogonal. Continuing this inductively we obtain a β-Hölder
Riemannian metric on Ê i/Ê i−1 with respect to which F̄ is isometric and F̂ conformal.

4.12 Proof of Theorem 3.10

By Theorem 3.9 the cocycle G(x) = φ(x)F(x) induces isometries on each factor bundle
E i/E i−1. Inductive application of the next proposition shows that ‖Gn(x)‖ ≤ Dnk−1. Apply-
ing it to G−1 yields ‖G−n(x)‖ ≤ Dnk−1, and hence the quasiconformal distortion satisfies
KG(x, n) ≤ Cn2(k−1). Since K F (x, n) = KG(x, n), the first part of the theorem follows.

If λ+(F, μp) = λ−(F, μp) = 0, then φ(x) is cohomologous to the constant 1 and, by
rescaling the norm, we obtain that F itself induces isometries on each factor bundle E i/E i−1.
Hence the second part also follows from the next proposition.

Proposition 4.12 Let F : E → E be a continuous linear cocycle over f and let V be an
F-invariant continuous sub-bundle. Suppose that the factor cocycle F̄ : E/V → E/V is an
isometry and that for some C and k the restriction FV = F |V satisfies ‖Fn

V (x)‖ ≤ Cn j for
all x and n ∈ N. Then there exists a constant D such that ‖Fn(x)‖ ≤ Dn j+1 for all x and
n ∈ N.

Proof We denote by P : E → E/V the natural projection and by π : E → V the orthog-
onal projection with respect to some Riemannian metric on E . Then for any x the map
v �→ (P(v), π(v)) identifies E(x) with E/V (x) ⊕ V (x), and max{‖(P(v)‖, ‖π(v)‖} gives
a convenient continuous norm on E . Since the linear map

�′(x) = (π ◦ F − FV ◦ π)(x) : E(x) → V ( f x)
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is identically zero on V (x) we can write it as �′(x) = �(x) ◦ P , where the linear map
�(x) : E/V (x) → V ( f x) depends continuously on x. Thus we have

π ◦ F = FV ◦ π +� ◦ P, P ◦ Fn = F̄n ◦ P, and hence

π ◦ Fn = (FV ◦ π +� ◦ P) ◦ Fn−1 = FV ◦ (π ◦ Fn−1)+� ◦ F̄n−1 ◦ P

= FV ◦ ((FV ◦ π +� ◦ P) ◦ Fn−2)+� ◦ F̄n−1 ◦ P

= F2
V ◦ (π ◦ Fn−2)+ FV ◦� ◦ F̄n−2 ◦ P +� ◦ F̄n−1 ◦ P = . . .

= Fn
V ◦ π +

n−1∑

i=0

Fn−i−1
V ◦� ◦ F̄ i ◦ P.

Let K be such that ‖�(x)‖ ≤ K for all x. Since by the assumptions ‖Fi
V ‖ ≤ Cni and

‖F̄ i‖ = 1, we can estimate

‖π ◦ Fn(x)‖ ≤ Cn j +
n−1∑

i=0

C(n − i − 1) j · K ≤ Cn j + nCn j K ≤ Dn j+1

for some constant D independent of n and x. Since ‖P ◦ Fn‖ = ‖F̄n ◦ P‖ ≤ 1, we conclude
that

‖Fn(x)‖ = max {‖P ◦ Fn(x)‖, ‖π ◦ Fn(x)‖} ≤ Dn j+1.

��
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