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NEW PROGRESS IN NONUNIFORM MEASURE AND

COCYCLE RIGIDITY

BORIS KALININ, ANATOLE KATOK, AND FEDERICO RODRIGUEZ HERTZ

Abstract. We consider an ergodic invariant measure µ for a smooth action
α of Z

k , k ≥ 2, on a (k + 1)-dimensional manifold or for a locally free smooth
action of R

k, k ≥ 2, on a (2k + 1)-dimensional manifold. if µ is hyperbolic
with the Lyapunov hyperplanes in general position and if one element in Z

k

has positive entropy, then µ is absolutely continuous. The main ingredient is
absolute continuity of conditional measures on Lyapunov foliations which holds
for a more general class of smooth actions of higher rank abelian groups. We
also consider actions on the torus T

N with induced action on the first homol-
ogy corresponding to a finite index subgroup of a maximal semisimple abelian
subgroup of SL(N, R). Such an action has a unique invariant measure, called
large measure, which projects to the Lebesgue measure under the semiconju-
gacy with the linear action and this measure is absolutely continuous. Finally,
we consider cocycles over an action on the torus with Cartan homotopy data.
Every cocycle which is Hölder with respect to a Lyapunov Riemannian metric
a.e. for the large invariant measure is cohomologous to a constant cocycle via
a Lyapunov-Hölder transfer function.

1. Formulation of results

1.1. Introduction. A general program started in [6] and [11] aims at showing that
actions of higher rank abelian groups, i.e Z

k × R
l, k + l ≥ 2, by diffeomorphisms

of compact manifolds under global conditions of topological or dynamical nature
which ensure both infinitesimal hyperbolic behavior and sufficient global complexity
of the orbit structure must preserve a geometric structure, such as an absolutely
continuous invariant measure.

In [6] and [11] we proved existence of an absolutely continuous measure with
strong additional properties for Zk actions on the torus Tk+1, k ≥ 2, that induce
on H1(T

k+1, R) the action of a maximal rank free abelian subgroup of SL(k+1, Z)
diagonalizable over R. We say that such an action has Cartan homotopy data.

If the action on the first homology group induced by a Zk action α on a torus
TN contains a hyperbolic element, then there is a semi-conjugacy h between α,
and the corresponding linear action α0 by automorphisms of the torus, i.e. a
unique surjective continuous map h : TN → TN homotopic to identity such that
h ◦ α = α0 ◦ h. This gives desired global complexity right away and in the Cartan
case allows to produce nonuniform hyperbolicity (non-vanishing of the Lyapunov
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exponents) with little effort (see [6, Lemma 2.3]). Existence of the semi-conjugacy
allows to use specific properties of the linear action α0 and reduces the proofs
to showing that the semi–conjugacy is absolutely continuous and bijective on an
invariant set of positive Lebesque measure.1 Thus, this may be considered as a
version in the setting of global measure rigidity of the a priori regularity method
developed for the study of local differentiable rigidity in [16] and successfully applied
to the global conjugacy problem on the torus in [21].

Definitions of Lyapunov exponents and related notions for Zk and Rk actions
by measure preserving diffeomorphisms and their basic properties as well as the
suspension construction can be found in [5, Sections 5.1 and 5.2] and [6]. We
summarize some essential information in Section 2.

In the present paper we proceed along three different directions.

1.2. Maximal rank actions on arbitrary manifolds. Here we make no assump-
tions on the topology of the ambient manifold or the action under consideration
and instead assume directly that the action preserves a measure with non-vanishing
Lyapunov exponents whose behavior is similar to that of the exponents for a Cartan
action. Namely, we consider a Zk, k ≥ 2, action on a (k + 1)-dimensional manifold
or an R

k, k ≥ 2, action on a (2k + 1)-dimensional manifold with an ergodic hyper-
bolic invariant measure for which the kernels of the non-zero Lyapunov exponents
called Lyapunov hyperplanes are in general position. This means that the dimen-
sion of the intersection of any l of those hyperplanes is equal to k − l. Dynamical
complexity is provided by the assumption that at least one element of the action
has positive entropy. Our results for Zk actions are direct corollaries of those for
Rk actions via suspension construction.

Theorem 1. Let µ be an ergodic invariant measure for a C1+θ, θ > 0, action α

of Zk, k ≥ 2, on a (k + 1)-dimensional manifold, or for a locally free C1+θ, θ > 0,
action α of Rk, k ≥ 2, on a 2k + 1-dimensional manifold.

Suppose that the Lyapunov exponents of µ are in general position and that at
least one element in Zk has positive entropy with respect to µ. Then µ is absolutely
continuous.

In Section 3 we present a detailed outline of the proof of Theorem 1 including
the key construction of a “uniformizing” time change. For a complete proof see
[7].2

We develop principal elements of the basic geometric approach of [15] in this
general non-uniform setting. This has been done partially already in [6] and we
rely on the results and constructions of that paper which do not depend on exis-
tence of the semi-conjugacy. The main difference is that the elements within the
Lyapunov hyperplanes no longer have the desired derivative estimates for which
the semi-conjugacy was used in a critical way. The main difficulty is producing se-
quences of elements with both the derivative estimates and enough recurrence. One
main innovation here is a construction of a particular time change which is smooth
along the orbits of the action but only measurable transversally that “straightens
out” the expansion and contractions coefficients. This is somewhat similar to the

1And in fact smooth in the sense of Whitney on smaller non-invariant sets of positive Lebesgue
measure.

2 We are not aware of any examples of R
k actions satisfying assumptions of (2) other than

time changes of suspensions of Z
k actions satisfying (1).
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“synchronization” time change for Anosov flows introduced by Bill Parry in [20].
The main technical difficulty is showing the new action to possess certain properties
as if it were smooth.

Theorem 1 is the first case of existence of an absolutely continuous invariant
measure for actions of abelian groups whose orbits have codimension two or higher,
which is derived from general purely dynamical assumptions. Nothing of that sort
takes places in the classical dynamics for actions of orbit codimension two or higher.3

Only for codimension one actions (diffeomorphisms of the circle and fixed point free
flows on the torus) of sufficient smoothness Diophantine condition on the rotation
number (which is of dynamical nature) guarantees existence of a smooth invariant
measure [4, 22], and even in those cases the proofs consist of showing that the
topological conjugacy by the classical Denjoy theorem is smooth.

1.3. Actions with linear models with complex eigenvalues. Aside from the
maximal ranks subgroups there are other maximal semisimple (diagonalizable over
C) subgroups of SL(k + 1, Z). Free elements of such subgroups have j real eigen-
values and l pairs of complex eigenvalues where j + 2l = k. Let us call an action
of Zj+l which induces on H1(T

k+1, R) such a linear action an action with maximal
homotopy data. We are able to extend results from [6] and a part of those from [11]
to actions with maximal homotopy data.

Let M be the set of ergodic, α-invariant measures that project to Lebesgue
measure λ by the semiconjugacy: h∗ν = λ.

Theorem 2. For any action α of Zj+l, j + l ≥ 2 on Tj+2l+1 by C1+θ, θ > 0 dif-
feomorphisms with maximal homotopy data the set M consist of a single absolutely
continuous measure.

Detailed outline of the proof of existence of absolutely continuous invariant mea-
sure in M is presented in Section 4. For a complete proof of the theorem see
[12].

1.4. Cocycle rigidity for actions with Cartan homotopy data. Generally
speaking, cocycle rigidity means that one-cocycles of certain regularity over a group
action are cohomologous to constant cocycles via transfer functions of certain (often
lower) regularity. Cocycle rigidity is prevalent in hyperbolic and partially hyper-
bolic actions of higher rank abelian groups, see e.g.[10, 13, 14, 3]. Many of those
proofs use harmonic analysis and are thus restricted to algebraic actions. The
method of [10] based on the TNS (totally non-symplectic) condition (no negatively
proportional Lyapunov exponents) can be used in the non-uniformly hyperbolic
case and is in particular applicable in the settings considered in the present paper.

One can apply it to smooth or Hölder continuous cocycles but there are reasons
to consider two more general classes of cocycles which are in general defined only
almost everywhere with respect to a hyperbolic absolutely continuous invariant
measure: (i) Lyapunov Hölder cocycles: Hölder continuous with respect to a prop-
erly defined Lyapunov metric which is equivalent to a smooth metric on Pesin sets
and changes slowly along the orbits, and (ii)Lyapunov smooth cocycles: smooth
along invariant foliations at the points of Pesin sets with a similar slow change

3In our situation the codimension of orbits is at least three. When codimension of orbits equals
two there is not enough space for nontrivial behavior of higher rank actions involving any kind of
hyperbolicity, see [9].
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condition. Notice that the most important intrinsically defined cocycles, the loga-
rithms of the Jacobians along invariant foliations (Lyapunov, stable, and likewise)
are Lyapunov smooth.

Theorem 3. For any action α of Zk on Tk+1 with Cartan homotopy data any
Lyapunov Hölder (corr. Lyapunov smooth) cocycle is cohomologous to a constant
cocycle via a Lyapunov Hölder (corr. Lyapunov smooth) transfer function.

In Section 5 we define pertinent notions more precisely and present a brief in-
formal outline of the proof of Theorem 3. The proof uses full force of measure
rigidity results from [11], specifically Theorem 2.1 and Proposition 2.9. Notice that
rigidity of logarithms of Jacobians is already proved in [6]. For a complete proof of
Theorem 3 see [12].

In the setting of Theorem 1 we are not able to prove cocycle rigidity (although
we conjecture that it should be true) but only a weaker property which, while
conceptually interesting, has not found any applications yet.

Proposition 4. Let µ be a measure from Theorem 1. The spaces of classes of Lya-
punov Hölder (corr. Lyapunov smooth) cocycles with respect to cohomology with
Lyapunov Hölder (corr. Lyapunov smooth) transfer functions are finite dimen-
sional.

2. Properties of Lyapunov exponents and invariant manifolds

For a smooth Rk action α on a manifold M and an element t ∈ Rk we denote
the corresponding diffeomorphism of M by α(t). Sometimes we will omit α and
write, for example, tx in place of α(t)x and Dt in place of Dα(t) for the derivative
of α(t)x.

Proposition 2.1. Let α be a locally free C1+θ, θ > 0, action of Rk on a manifold
M preserving an ergodic invariant measure µ. There are linear functionals χi,
i = 1, . . . , l, on Rk and an α-invariant measurable splitting, called the Lyapunov

decomposition, of the tangent bundle of TM = TO ⊕
⊕l

i=1 Ei over a set of full
measure R, where TO is the distribution tangent to the Rk orbits, such that for
any t ∈ Rk and any nonzero vector v ∈ Ei the Lyapunov exponent of v is equal to
χi(t), i.e.

lim
n→±∞

n−1 log ‖D(nt) v‖ = χi(t),

where ‖ · ‖ is any continuous norm on TM . Any point x ∈ R is called a regular
point.

Furthermore, for any ε > 0 there exist positive measurable functions Cε(x) and
Kε(x) such that for all x ∈ R, v ∈ Ei(x), t ∈ Rk, and i = 1, . . . , l,

(1) C−1
ε (x)eχi(t)−

1

2
ε‖t‖‖v‖ ≤ ‖Dt v‖ ≤ Cε(x)eχi(t)+

1

2
ε‖t‖‖v‖;

(2) Angles ∠(Ei(x), TO) ≥ Kε(x) and ∠(Ei(x), Ej(x)) ≥ Kε(x), i 6= j;

(3) Cε(tx) ≤ Cε(x)eε‖t‖ and Kε(tx) ≥ Kε(x)e−ε‖t‖;

The stable and unstable distributions E−
α(t) and E+

α(t) of an element α(t) are

defined as the sums of the Lyapunov distributions corresponding to the negative
and the positive Lyapunov exponents for α(t) respectively. Stable distributions and
hence their transversal intersections are always Hölder continuous (see, for example,
[2]).
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Proposition 2.2. Let α be a C1+θ, θ > 0 action of Rk as in Proposition 2.1.
Suppose that a Lyapunov distribution E is the intersection of the stable distributions
of some elements of the action. Then E is Hölder continuous on any Pesin set

(2.1) R
l
ε = {x ∈ R : Cε(x) ≤ l, Kε(x) ≥ l−1}

with Hölder constant which depends on l and Hölder exponent δ > 0 which depends
on the action α only.

Let α be an R
k action as in Theorem 1. Since (k + 1) nontrivial Lyapunov

exponents of α with respect to µ are nonzero functionals and the Lyapunov hy-
perplanes are in general position, the total number of Weyl chambers is equal to
2k+1−2. Each Weyl chamber corresponds to a different combination of signs for the
Lyapunov exponents. In fact, 2k+1 − 2 Weyl chambers correspond to all possible
combinations of signs except for all pluses and all minuses. The fact that these
two combinations are impossible can be seen as follows. First we note that µ is
non-atomic since it is ergodic for α and the entropy for some element is positive.
Now assume that there is an element t ∈ R

k such that all exponents for α(t) are
negative. Then every ergodic component for α(t) is an isolated contracting periodic
orbit [9, Proposition 1.3] and hence the measure µ must be atomic. In particular,
we obtain the following property. Let χi, i = 1, . . . , k + 1, be the non-zero Lya-
punov exponents of the action α and let Ei, i = 1, . . . , k + 1, be the corresponding
Lyapunov distributions.

(C) For every i ∈ {1, . . . , k + 1} there exists a Weyl chamber Ci such that for
every t ∈ Rk ∩ Ci the signs of the Lyapunov exponents are

χi(t) < 0 and χj(t) > 0 for all j 6= i.

In other words, property (C) implies that each Lyapunov distribution Ei is the full
stable distribution for any t ∈ Ci.

We will use standard material on invariant manifolds corresponding to the nega-
tive and positive Lyapunov exponents (stable and unstable manifolds) for C1+θ

measure preserving diffeomorphisms of compact manifolds, see for example [1,
Chapter 4].

We will denote by W−
α(t)(x) the (global) stable manifold for α(t) at a regular

point x. This manifold is an immersed Euclidean space tangent to the stable
distribution E−

α(t). The unstable manifold W+
α(t)(x) is defined as the stable one for

α(−t) and thus have similar properties. For an action as in the Theorem 1 property
(C) gives that each Lyapunov distribution E coincides with some stable distribution
and thus we have the corresponding manifolds W(x) tangent to E. More generally,
these manifolds are defined for any Lyapunov distribution E as in Proposition 2.2.
We will call them the leaves of the Lyapunov foliation W . It is customary to use
words “distributions” and “foliations” in this setting although these objects are
correspondingly measurable families of tangent spaces defined a.e. and measurable
families of smooth manifolds which fill a set of full measure.

3. Outline of Proof of Theorem 1

3.1. Reduction to the Technical Theorem. The following result is the principal
technical tool in our proof of Theorem 1.
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Theorem 3.1. Let µ be a hyperbolic ergodic invariant measure for a locally free
C1+θ, θ > 0, action α of Rk, k ≥ 2, on a compact smooth manifold M . Suppose
that a Lyapunov exponent χ is simple and there are no other exponents proportional
to χ. Let E be the one-dimensional Lyapunov distribution corresponding to χ.

Then E is tangent µ-a.e. to a Lyapunov foliation W and the conditional mea-
sures of µ on W are either atomic a.e. or absolutely continuous a.e.

The assumptions on the Lyapunov exponents in Theorem 3.1 are considerably
more general than in the Theorem 1. In particular they may be satisfied for all
exponents of a hyperbolic measure for an action of any rank greater than one on
a manifold of arbitrary large dimension. As an example one can take restriction
of an R

k action satisfying the assumption of Theorem 1 to any lattice L ⊂ Z
k of

rank at least two which has trivial intersection with all Lyapunov hyperplanes. For
this reason Theorem 3.1 has applications beyond the maximal rank case considered
in the Theorem 1. On the other hand, positivity of entropy for some or even
all non-zero elements is not sufficient to exclude atomic measures on some of the
Lyapunov foliations. Thus application to more general actions may include stronger
assumptions on ergodic properties of the measure.

Theorem 1 for Rk actions is deduced from from the technical Theorem 3.1 as
follows.

First we show that existence of an element with positive entropy implies that
the conditional measures on every Lyapunov foliation are non-atomic a.e. Applying
Theorem 3.1 we obtain that all these measures are absolutely continuous. We
conclude the proof by showing that this implies absolute continuity of µ.

We recall that a diffeomorphism has positive entropy with respect to an ergodic
invariant measure µ if and only if the conditional measures of µ on its stable and
unstable foliations are non-atomic a.e. This follows for example from [19]. Thus if
the entropy hµ(t) is positive for some element t ∈ Rk then the conditional measures

of µ on W+
α(t) are non-atomic. Then there exists an element s in a Weyl chamber Ci

such that the one-dimensional distribution Ei = E−
α(s) is not contained in E+

α(t) and

thus E+
α(t) ⊂ E+

α(s) =
⊕

j 6=i Ej . Hence the conditional measures on W+
α(s) are also

non-atomic. This gives hµ(s) > 0 which implies that the conditional measures on

Wi = W−
α(s) must be also non-atomic. Now for any j 6= i consider the codimension

one distribution E′
j =

⊕

k 6=j Ek = E+
α(tj) for any tj in the Weyl chamber Cj . Since

Ei ⊂ E′
j we see that the conditional measures on the corresponding foliation W ′

j

are non-atomic. Hence hµ(tj) > 0 and the conditional measures on Wj = W−
α(tj)

are non-atomic too. We conclude that the conditional measures on every Lyapunov
foliation Wi, i = 1, . . . , k + 1, are non-atomic and therefore absolutely continuous
by Theorem 3.1.

The remaining argument is similar to that in [6]. To prove that µ is absolutely
continuous we use the following theorem which is the flow analogue of results in
Section 5 of [17] (see [17, Theorem (5.5)] and [19, Corollary H]).

Theorem 3.2. Let f : M → M be a C1+α diffeomorphism with invariant measure
µ and assume that hµ(f) is equal both to the sum of the positive Lyapunov exponents
and to the absolute value of the sum of the negative Lyapunov exponents. If the
directions corresponding to zero Lyapunov exponents integrate to a smooth foliation
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and the conditional measures with respect to this central foliation are absolutely
continuous, then µ is absolutely continuous with respect to Lebesgue measure.

Consider t ∈ −Ci. Then χi(t) > 0 and χj(t) < 0 for all j 6= i. Since
the conditional measures on W+

α(t) are absolutely continuous hµ(α(t)) = χi(t)

for any t ∈ −Ci. By the Ruelle inequality hµ(α(t)) ≤ −
∑

j 6=i χj(t) and hence
∑k+1

j=1 χj(t) ≤ 0. If the equality holds then Theorem 3.2 gives the absolute continu-

ity. If
∑k+1

j=1 χj(t) < 0 for all t in all −Ci, i = 1, . . . k + 1 then
⋃k+1

i=1 Ci lies in the

positive half space of the linear functional
∑k+1

j=1 χj . But this is impossible since

there are ti ∈ Ci, i = 1, . . . k + 1 with
∑k+1

i=1 ti = 0.

3.2. Outline of the proof of Theorem 3.1. First we show that the Lyapunov
distribution E is an intersection of some stable distributions of α. An element
t ∈ Rk is called generic singular if it belongs to exactly one Lyapunov hyperplane.
Let t ∈ L = Kerχ be a generic singular element. Thus

TM = TO ⊕ E−
α(t) ⊕ E ⊕ E+

α(t)

We can take a regular element s close to t for which χ(s) > 0 and all other non-
trivial exponents have the same signs as for t. Thus

(3.1) E−
α(s) = E−

α(t) and E+
α(s) = E+

α(t) ⊕ E.

Similarly, we can take a regular element s′ close to t on the other side of L for
which χ(s′) < 0 and E+

α(s′) = E+
α(t) and E−

α(s′) = E−
α(t) ⊕ E. Therefore,

E = E+
α(s) ∩ E−

α(s′) = E−
α(−s) ∩ E−

α(s′).

We conclude that the Lyapunov distribution E is an intersection of stable distribu-
tions and, as in Proposition 2.2, is Hölder continuous on Pesin sets. As in Section 2,
E is tangent µ-a.e. to the corresponding Lyapunov foliation W = W−

α(−s) ∩W−
α(s′).

We denote by µW
x the system of conditional measures of µ on W and by BW

r (x)
the ball in W(x) of radius r with respect to the induced smooth metric. By ergod-
icity of µ these conditional measures are either non-atomic of have atoms for µ-a.e.
x. Since W is contracted by some elements of the action, it is easy to see that in
the latter case the conditional measures are atomic with a single atom for µ-a.e.
x (see, for example, [15, Proposition 4.1]). The main part of the proof is to show
that if the conditional measures µW

x are non-atomic for µ-a.e. x, then they are
absolutely continuous µ-a.e. To prove this we show that they are Haar with respect
to the invariant family of smooth affine parameters on the leaves of W given by
[6, Proposition 3.1, Remark 5], see also Proposition 4.3 below). As in [6], we use
existence of a sufficient family of maps on the leaves, which are affine with respect
to these parameters and preserve µW

x up to a scalar multiple.

Proposition 3.3. [6, Lemmas 3.9 and 3.10] For µ- a.e. x ∈ Rl
ε (see (2.1)) and

for µW
x - a.e. y ∈ Rl

ε ∩ BW
r (x) there exists an affine map g : W(x) → W(x)

with g(x) = y which preserves the conditional measure µW
x up to a positive scalar

multiple. This implies that for µ - a.e. x the conditional measure µW
x is Haar with

respect to the affine parameter on W(x) and thus is absolutely continuous.

Such a map g is constructed in [6] as a limit of the restrictions of certain elements
of the action to W(x). To verify the assumptions of Lemmas 3.9 and 3.10 of [6] we
establish the following
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Proposition 3.4. For any Pesin set Rl
ε there exist positive constants K and l′ so

that for µ- a.e. x ∈ Rl
ε and for µW

x - a.e. y ∈ Rl
ε ∩ BW

r (x) there exists a sequence
of elements tj ∈ Rk with

(1) xj = α(tj)x ∈ Rl′

ε ,
(2) xj → y,
(3) K−1 ≤ ‖DE

x α(tj)‖ ≤ K.

In [6] it was possible to choose elements tj within the Lyapunov hyperplane L =
kerχ. In our case, to satisfy (3) we have to consider elements outside of L. The main
part of the proof is to produce a sequence of such elements with enough recurrence
to guarantee (1) and (2). While it is easy to choose some elements satisfying (3),
they will typically not lie in a subgroup and their recurrence properties are not
clear. To overcome this difficulty we construct a special measurable time change.

First we define a Lyapunov metric on the Lyapunov distribution E. With some
fixed smooth metric < ·, · > on M and ε > 0 we define the Lyapunov metric (or
scalar product) for vectors u, v ∈ E(x) at a regular point x by

(3.2) < u, v >x,ε=

∫

Rk

< (Ds)u, (Ds)v > exp(−2χ(s) − 2ε‖s‖) ds

We observe using (1) of Proposition 2.1 that for any ε > 0 the integral above
converges for any regular point x. The norm generated by this scalar product will
be called the Lyapunov norm and denoted by ‖·‖x,ε. Note that the Lyapunov norm
is only measurable, but the original smooth metric gives a uniform below estimate
for it, i.e. there exists C > 0 such that ‖u‖x,ε ≥ C‖u‖ for all regular x ∈ M and
all u ∈ E(x).

Proposition 3.5. There exist positive constants γ, K(l, ǫ), and C(l, ε) such that
the ε-Lyapunov metric is Hölder continuous on Rl

ε with exponent γ and constant
K(l, ǫ) and satisfies

(3.3) ‖u‖x,ε ≤ C(l, ε)‖u‖.

The exponent γ depends only on ε and the action, while K(l, ǫ) and C(l, ε) also
depend on the Pesin set Rl

ε.

Denote by DE
x the restriction of the derivative to E.

Proposition 3.6. For any regular point x and any t ∈ Rk

(3.4) exp(χ(t) − ε‖t‖) ≤ ‖DE
x t‖ε ≤ exp(χ(t) + ε‖t‖).

While convenient, this estimate in itself is insufficient for obtaining (3) of Propo-
sition 3.4. For this we construct a measurable time change for which the expansion
or contraction in E with respect to this Lyapunov metric is given exactly by the
Lyapunov exponent χ. This is the principal new construction of the paper and the
proof of the next proposition is one its main technical parts. Let w ∈ Rk be a
vector transversal to the Lyapunov hyperplane L = kerχ.

Proposition 3.7. For µ-a.e. x ∈ M and any t ∈ Rk there exists a unique real
number g(x, t) such that the function g(x, t) = t + g(x, t)w satisfies the equality

(3.5) ‖DE
x α(g(x, t))‖ε = eχ(t).
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The function g(x, t) is measurable, Hölder continuous in x with exponent γ > 0 on
any Pesin set Rl

ε, and C1 close to identity in t:

(3.6) ‖
∂g

∂t
(x, t) − Id ‖ ≤ ε for a.e. x

Proposition 3.8. The formula β(t, x) = α(g(x, t))x defines a measurable time
change of α. The new action β preserves an invariant measure ν on M which is

equivalent to µ with dν
dµ

= ∆−1, where ∆(x) = det
(

∂g

∂t
(x,0)

)

The definition and uniqueness of g(x, t) ensures that β is a time change, and
(3.6) implies that its determinant ∆(x) is a measurable function which is L∞ close
to constant 1 on M . Then the existence of the invariant measure ν for β and the
formula for its Radon-Nikodim derivative follow from [8].

The time change β is not smooth and β(t, x) has no derivative transversally to
the orbit. The derivative in (3.5) is that of α for the fixed element g(x, t) ∈ Rk.
This equation, together with the properties of the Lyapunov norm on Pesin sets,
gives the desired estimate (3) of Proposition 3.4 for tj of the form g(x, t) with
t ∈ L. However, to prove recurrence for such elements we use the action of the
time change β(t, x) with t in a one-parameter subgroup in L. This is established
by the following proposition, which can be applied to both (α, µ) and (β, ν). We
say that partition ξ1 is coarser than ξ2 and write ξ1 < ξ2 if ξ2(x) ⊂ ξ1(x) for a.e.
x.

Proposition 3.9. For any generic singular element t ∈ L the partition ξt into
ergodic components of element t is coarser than the measurable hull ξ(E) of the
foliation corresponding to distribution E.

The proof is given by the following “π-partition trick”, which was first introduced
in [15] for actions by toral automorphisms and then adapted to the nonuniform
setting in [6]. Using a regular element s as in (3.1) we get

ξt ≤ ξ(E−
t ) = ξ(E−

s ) = π(s) = ξ(E+
s ) ≤ ξ(E).

The first inequality follows from the Hopf argument. The fact that the Pinsker
algebra π(s) coincides with the measurable hulls of both stable and unstable folia-
tions is given by Theorem B in [18]. This explains the proposition for the smooth
action (α, µ).

However, we need to use this proposition with (β, ν). This action is not smooth
and one has to first make sense of the stable and unstable foliations for β. This
is done in the next proposition. We denote by N the orbit foliation of the one-
parameter subgroup {tw}.

Proposition 3.10. For any element s ∈ Rk there exists stable “foliation” W̃−
β(s)

which is contracted by β(s) and invariant under the new action β. It consists of

“leaves” W̃−
β(s)(x) defined for almost every x. The “leaf” W̃−

β(s)(x) is a measurable

subset of the leaf (N ⊕W−
α(s))(x) of the form

W̃−
β(s)(x) = {α(ϕx(y)w)y : y ∈ W−

α(s)(x)},

where ϕx : W−
α(s)(x) → R is an almost everywhere defined measurable function. For

x in a Pesin set the ϕx the restriction of ϕx to the Pesin set is Hölder continuous
with exponent γ.
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The proof gives an explicit formula for the function ϕx in terms of the time change
so that its graph is contracted by β(s). The calculation is similar to finding stable

manifolds for a time change of a flow. The corresponding unstable “foliation” W̃+
β(s)

can be obtained as W̃−
β (−s). The ”foliation” W̃ corresponding to E is obtained as

an intersection of stables. Now all ingredients of Proposition 3.9 are defined. One
has to establish equality of the Pinsker algebras for these objects. Extending [18,
Theorem B] to this case is of one of the main technical difficulties in our proof.

4. Outline of Existence Proof in Theorem 2

4.1. Lyapunov exponents. Let µ ∈ M. Denote by χi, i = 1, . . . , j the Lyapunov
exponents of the linear action α0 corresponding to real eigenvalues and by χi, i =
j +1, . . . , j + l the Lyapunov exponents of α0 corresponding to the pairs of complex
eigenvalues. Notice that α0 has the following property similar to the property (C)
of linear Cartan actions,

(M) For every i = 1, . . . , j + l there is an element m ∈ Zk such that χi(m) < 0 and
χs(m) > 0 for every s 6= i.

Lemma 4.1. The Lyapunov half-spaces and Weyl chambers for α with respect to
µ are the same as those for α0.

This does not exclude the possibility of zero exponents. But those may only
appear in complex pairs, at most one per pair. Hence, we can order the Lyapunov
exponents χ̃ for (α, µ) in such a way that there are constants

ci > 0, i = 1, . . . , j; c+
i > c−i ≥ 0, i = j + 1, . . . , j + l such that

χ̃i = ciχi for i = 1, . . . , j

χ̃+
i = c+

i χi, χ̃−
i = c−i χi for i = j + 1, . . . , j + l.

Corollary 4.2. For µ a.e. x and every i = 1, . . . , j there is the manifold Wi(x)
associated to χ̃i, such that hWi(x) ⊂ Wi(h(x)) = h(x)+Ei. For i = j +1, . . . j + l,
there are three possibilities:

(1) if c+
i = c−i then there is the two-dimensional manifold Wi(x) associated to

χ̃±
i , such that h(Wi(x)) ⊂ Wi(h(x)) = h(x) + Ei

(2) if c+
i > c−i > 0 then there is the two dimensional manifold Wi(x) associ-

ated to χ̃±
i , such that h(Wi(x)) ⊂ Wi(h(x)) = h(x) + Ei, and also a one

dimensional manifold W+
i (x) ⊂ Wi(x) associated to χ̃+

i .
(3) if c+

i > c−i = 0 then there is only the one-dimensional manifold W+
i (x)

associated to χ̃+
i such that h(Wi(x)) ⊂ Wi(h(x)) = h(x) + Ei.

We will use generic notation W for all Lyapunov foliations. Eventually we will
show that only case (1) takes place.

4.2. Affine structures.

Proposition 4.3. There exists a unique measurable family of C1+ǫ smooth α-
invariant affine parameters on the leaves of W(x). Moreover, they depend uniformly
continuously in C1+ǫ topology on x within a given Pesin set.

Our goal is to prove that the semi-conjugacy h is affine as the map from this affine
structure to the standard affine structure on the torus. The case of the Lyapunov
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foliations associated with real eigenvalues, i.e. i = 1, . . . , j is treated the same way
as in [6].

Lemma 4.4. If i is in case 1 or 2 of Corollary 4.2, we have that for a.e. x,
diam(h(Wi(x))) > 0 and Leb2(h(Wi(x))) > 0. On the other hand, if i is in case
(3) of Corollary 4.2, we have that for a.e. x, diam(h(W+

i (x))) > 0.

Proposition 4.5. There are sets Λ of measure arbitrary close to one and K =
K(Λ) > 0 such that if t ∈ kerχi, x ∈ Λ, α(t)(x) ∈ Λ and

(1) if i as the in case (1) or (2) of Corollary 4.2, then for every unit vector
v ∈ Ei(x)

K−1 ≤ ‖Dα(t)v‖ ≤ K,

(2) if i as in the case (3) of Corollary 4.2, then for v ∈ E+
i (x)

K−1 ≤ ‖Dα(t)(v)‖ ≤ K.

The proof follows the same general scheme as the proof of Lemma 3.6 in [6].
Proposition 4.5 allows us to prove the intertwining of the affine structures.

Let us showfirst that cases (2) and (3) of Corollary 4.2 cannot occur. Assume the
opposite. Following the same proof as in [6] we have that the conditional invariant
measures µ+

i,x are absolutely continuous with respect to Lebesgue on W+
i (x), and

using this we can prove the following analog of Lemma 4.3. of [6].

Lemma 4.6. For almost every x, the semiconjugacy intertwines the actions of the
group of translations of W+

i (x) and the groups of isometries of Wi(h(x)). More
precisely, for any translation τ̃ with respect to the affine structure on W+

i (x) there
is an isometry τ of the plane Wi(h(x)) = h(x) + Ei such that h ◦ τ̃ = τ ◦ h.

This implies impossibility of these two cases because α0 acts with complex eigen-
values on Ei. Now consider case (1) of Corollary 4.2. In this case we have also
recurrence along Weyl chamber walls, that is the π-partition trick applies. Let us
denote the conditional measure along Wi(x) by µi

x .

Lemma 4.7. Given r > 0 there are sets Λ of measure arbitrary close to one such
that for µ a.e. x ∈ Λ and for µi

x-a.e. y ∈ Λ ∩ Wi,r(x) there exists an affine map
g : Wi(x) → Wi(x) with g(x) = y which preserves the conditional measure up to
a positive scalar multiple. Furthermore the norms of the derivative of these affine
maps are bounded and bounded away of zero uniformly in x and y, for given Λ and
r. Moreover, for every such affine map g : Wi(x) → Wi(x), there is an isometry
τ(g) : h(x) + Ei → h(x) + Ei such that h ◦ g = τ(g) ◦ g.

So let us call G(x) the set of all affine maps, g : Wi(x) → Wi(x) such that

(1) g preserves the conditional measure µi
x up to a positive scalar multiple,

(2) there is an isometry τ(g) : h(x)+Ei → h(x)+Ei such that h◦ g = τ(g)◦ g.

Clearly G(x) is a closed subgroup of affine transformations. Lets as call A(x) =
{g(x) s.t. g ∈ G(x)}. By Lemma 4.7 we have that µi

x(A(x)c) = 0 for a.e. x. On
the other hand, by the entropy assumption we have that µi

x is not atomic, so we
get that A(x) is not discrete. So we have that dimA(x) is either 1 or 2. In the
latter case, we are done, and get that µi

x is absolutely continuous and that h is a
diffeomorphism for a.e. x. If dimA(x) = 1 we still have that h is a diffeomorphism

when restricted to A(x). Let us call Êi(x) = TxA(x). Clearly Êi(x) is α-invariant

and defined on a set of full µ measure. Then DxhÊi(x) will give us an α0-invariant
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one-dimensional sub-bundle of Ei, which is impossible since α0 does not support
such object. Thus µi

x is absolutely continuous with respect to Lebesgue for a.e.
point. Then the proof ends exactly us in the case of Cartan homotopy data [6].

For reasons of space we do not discuss the uniqueness proof.

5. Outline of proof of Theorem 3

We first need to describe properly the classes of cocycles considered in Theorem 3.
Let us fix a small positive number ǫ and consider Pesin sets Rl

ε as defined in (2.1).
Let us consider Lyapunov Riemannian metric defined on the set of full measure
Rε =

⋃

l R
l
ε. It is defined similarly to (3.2) with summation over Zk instead of

integration. By Proposition 3.5 this metric is Hölder continuous on each Rl
ε. Now

consider a system of neighborhoods Pε(x) sometimes called Pesin boxes of points
in Rε whose size depends on l and slowly oscillates with the action, similarly to
the function Kε from Proposition 2.1. Now using a local coordinate system from
a fixed finite atlas project the Lyapunov metric from Tx to the Pesin box around
x with constant coefficients. Thus we obtain a system of locally defined metrics
and cocycle β defined on Rε is called Lyapunov Hölder if for any l, x ∈ Rl

ε β is
Hölder continuous on Rl

ε ∩ Pε(x) with Hölder exponent and constant independent
of x and l. Similarly we define Lyapunov smooth cocycles by requiring smoothness
along local stable manifolds of points in Rl

ε with uniform bounds on derivative with
respect to a Lyapunov metric within Pesin boxes.

Notice that the semi-conjugacy h between α and the linear Cartan action α0

is bijective on an increasing sequence of compact Pesin sets as well on stable and
unstable manifolds of points from those sets with respect to all elements of the
action α. The strategy of the proof is to use these bijections to construct cocycles
over α0 and then use the method of [10]. Take the image of a Pesin set P under the
semi-conjugacy. Solution of the coboundary equation along any stable manifold W
of is given by the familiar telescoping sum. By the absolute continuity W ∩P has
large conditional measure in W and the union of our Pesin sets has full conditional
measure. Now one considers periodic cycles anchored at points of the Pesin sets.
Any two successive points in such a cycle lie on a one-dimensional Lyapunov line
and any three successive points lie in a stable manifold of some element. One can
simply consider the situation after the semi-conjugacy, as a cocycle over the linear
action. Arguing as in [10] we deduce that solution can be constructed consistently
from a single typical point to the union of Pesin sets which has full measure. Since
the semi-connjugacy is bijective on a full measure set and is smooth along almost
every stable manifold the solution can be brought back and to be shown Lyapunov
Hölder or Lyapunov smooth.

In the absence of semi-conjugacy one can still extend the solution along Lyapunov
lines but due to the “holes” in the union of Pesin sets the argument works only
locally. This leads to Proposition 4. Even in the absence of such holes the solution
can be constructed on the universal cover but cannot in general be projected to the
original manifold since a possibility of the action preserving a non-trivial homology
class cannot be excluded.
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