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ABSTRACT. Let f be a measure-preserving transformation of a Lebesgue space
(X ,µ) and let F be its extension to a bundle E = X ×Rm by smooth fiber maps
Fx : Ex → E f x so that the derivative of F at the zero section has negative Lya-
punov exponents. We construct a measurable system of smooth coordinate
changes Hx on Ex for µ-a.e. x so that the maps Px =H f x ◦Fx ◦H −1

x are sub-
resonance polynomials in a finite dimensional Lie group. Our construction
shows that such Hx and Px are unique up to a sub-resonance polynomial. As
a consequence, we obtain the centralizer theorem that the coordinate change
H also conjugates any commuting extension to a polynomial extension of the
same type. We apply our results to a measure-preserving diffeomorphism f
with a non-uniformly contracting invariant foliation W . We construct a mea-
surable system of smooth coordinate changes Hx : Wx → TxW such that the
maps H f x ◦ f ◦H −1

x are polynomials of sub-resonance type. Moreover, we
show that for almost every leaf the coordinate changes exist at each point on
the leaf and give a coherent atlas with transition maps in a finite dimensional
Lie group.

1. INTRODUCTION

The theory of normal forms for smooth maps originated in the works of
Poincaré and Sternberg [26], and normal forms at fixed points and invariant
manifolds have been extensively studied [4]. More recently, non-stationary nor-
mal form theory was developed in the context of a diffeomorphism f contract-
ing a foliation W . The goal is to obtain a family of diffeomorphisms Hx : Wx →
TxW such that the maps

f̃x =H f x ◦ f ◦H −1
x : TxW → T f xW(1.1)

are as simple as possible, for example, linear maps or polynomial maps in a
finite dimensional Lie group. Such a map f̃x is called a normal form of f on Wx .

The non-stationary normal form theory started with the linearization along
one-dimensional foliations obtained by Katok and Lewis [15]. In a more general
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setting of contractions with narrow band spectrum, it was developed by Guysin-
sky and Katok [11, 10], and a differential geometric point of view was presented
by Feres [7]. For the linearization, further results were obtained by the second
author in [25], and it was shown in [19] that the coordinates Hx give a con-
sistent affine atlas on each leaf of W . In [20] we extended these results to the
general narrow band case. More precisely, we gave a construction of Hx that de-
pend smoothly on x along the leaves and proved that they define an atlas with
transition maps in a finite dimensional Lie group. Non-stationary normal forms
were used extensively in the study of rigidity of uniformly hyperbolic dynamical
systems and group actions, see, for example, [17, 18, 19, 5, 6, 9, 8].

To obtain applications for non-uniformly hyperbolic systems and actions,
one needs a similar theory of non-stationary normal forms for non-uniform
contractions. The existence and centralizer theorems were stated without proof
in [12] along with a program of potential applications. The theory, however, was
not developed for quite a while. The linearization of a C 1+α diffeomorphism
along a one-dimensional non-uniformly contracting foliation was constructed
in [13] and used in the study of measure rigidity in [13, 14]. Similar results for
higher dimensional foliations with pinched exponents were obtained by Katok
and Rodriguez Hertz in [16]. The existence of Hx for a general contracting C∞
extension was proved by Li and Lu [22] in the setting of random dynamical
systems. Some results, such as existence of Taylor polynomial or formal series
for Hx , can be obtained for extensions more general than contractions, see
[2, 1, 22].

In this paper we develop the theory of non-stationary polynomial normal
forms for smooth extensions of measure preserving transformations by non-
uniform contractions, described in the beginning of Section 2. This is a con-
venient general setting for the construction. The foliation setting reduces to it
by locally identifying the leaf Wx with its tangent space Ex = TxW and viewing
Fx = f |Wx : Ex → E f x as an extension of the base system f :M→M by smooth
maps on the bundle E = T W . The base system can then be viewed as just a
measure preserving one. In the extension setting, the map Hx is a coordinate
change on Ex , and we denote

Px =H f x ◦Fx ◦H −1
x : Ex → E f x .

In Theorem 2.3 we construct coordinate changes Hx for µ almost every x so
that Px is a sub-resonance polynomial. For any regularity of F above the criti-
cal level, we obtain H in the same regularity class.

Our construction allows us to describe the exact extent of non-uniqueness
in Hx and Px . Essentially, they are defined up to a sub-resonance polynomial.
As a consequence of this, we obtain the centralizer theorem that the coordi-
nate change H also conjugates any commuting extension to a normal form
of the same type. We just learned of similar results in differential geometric
formulations by Melnick [23]. The approach in [23] is different from ours and
it relies on ergodic theorems for higher jets of Fx . Our results assume only
temperedness of the higher derivatives of Fx rather than certain integrability
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required in [23]. This allows us to obtain applications to the foliation setting
without any assumptions on transverse regularity of the foliation. In particular,
we consider a diffeomorphism f which preserves an ergodic measure with some
negative Lyapunov exponents and take W to be any strong part of the stable
foliation. In this setting Theorem 2.5 gives sub-resonance normal forms for f
along the leaves of W . Moreover, we show that for almost every leaf the normal
form coordinates Hx exist at each point on the leaf and give a coherent atlas
with transition maps in a finite dimensional Lie group G determined by sub-
resonance polynomials. This yields an invariant structure of a G homogeneous
space on almost every leaf.

We expect these results to be useful in the study of non-uniformly hyperbolic
systems and group actions.

2. STATEMENTS OF RESULTS

ASSUMPTIONS 2.1. In this paper,

• (X ,µ) is a Lebesgue probability space,
• f : X → X is an invertible ergodic measure-preserving transformation of

(X ,µ),
• E = X ×Rm is a finite dimensional vector bundle over X ,
• V is a neighborhood of the zero section in E ,
• F : V → E is a measurable extension of f that preserves the zero section,
• F : E → E is the derivative of F at zero section, Fx = D0Fx : Ex → E f x ,
• F and F−1 exist and satisfy log‖Fx‖ ∈ L1(X ,µ) and log‖F−1

x ‖ ∈ L1(X ,µ),
• the Lyapunov exponents of F are negative: χ1 < ·· · <χ` < 0.

Sub-resonance polynomials. Let χ1 < ·· · < χ` < 0 be the distinct Lyapunov ex-
ponents of F and let Ex = E 1

x ⊕·· ·⊕E `
x be the splitting of Ex for x ∈Λ into the

Lyapunov subspaces given by the Multiplicative Ergodic Theorem 3.1.
We say that a map between vector spaces is polynomial if each component

is given by a polynomial in some, and hence every, bases. We consider a poly-
nomial map P : Ex → Ey with P (0x ) = 0y and split it into components (P1(t ), . . . ,
P`(t )), where Pi : Ex → E i

y . Each Pi can be written uniquely as a linear combina-

tion of polynomials of specific homogeneous types: we say that Q : Ex → E i
y has

homogeneous type s = (s1, . . . , s`) if for any real numbers a1, . . . , a` and vectors

t j ∈ E
j

x , j = 1, . . . ,`, we have

Q(a1t1 +·· ·+a`t`) = as1
1 · · ·as`

`
·Q(t1 +·· ·+ t`).(2.1)

DEFINITION 2.2. We say that a polynomial map P : Ex → Ey is sub-resonance if
each component Pi has only terms of homogeneous types s = (s1, . . . , s`) satisfy-
ing sub-resonance relations

χi ≤
∑

s jχ j , where s1, . . . , s` are non-negative integers.(2.2)

We denote by Sx,y the space of all sub-resonance polynomial maps from Ex

to Ey .
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Clearly, for any sub-resonance relation we have that s j = 0 for j < i and that∑
s j ≤ χ1/χ`. It follows that sub-resonance polynomial maps have degree at

most

d = d(χ) = bχ1/χ`c.(2.3)

Sub-resonance polynomial maps P : Ex → Ex with P (0) = 0 with invertible deriv-
ative at the origin form a group with respect to composition [11]. We will denote
this finite-dimensional Lie group by Gχ

x . All groups Gχ
x are isomorphic, more-

over, any map P ∈ Sx,y with P (0x ) = 0y and invertible derivative at 0x induces
an isomorphism between Gχ

x and Gχ
y by conjugation.

We denote by Bx,σ(x) the closed ball of radius σ(x) centered at 0 ∈ Ex . For
N ≥ 1 and 0 < α≤ 1 we denote by C N,α(Bx,σ(x)) = C N,α(Bx,σ(x),Ex ) the space of
functions from Bx,σ(x) to Ex with continuous derivatives up to order N ≥ 1 on
Bx,σ(x) and with N th derivative satisfying α-Hölder condition at 0:

‖D (N )R‖α = sup{‖D (N )
t R −D (N )

0 R‖ ·‖t‖−α : 0 6= t ∈ Bx,σ(x) } <∞.(2.4)

We call ‖D (N )R‖α the α-Hölder constant of D (N )R at 0. We equip the space
C N,α(Bx,σ(x)) with the norm

‖R‖C N,α(B x,σ(x)) = max{‖R‖0, ‖D (1)R‖0, . . . , ‖D (N )R‖0, ‖D (N )R‖α },(2.5)

where ‖D (k)R‖0 = sup{‖D (k)
t R‖ : t ∈ Bx,σ(x) }.

We say that a non-negative real-valued function K on X is ε-tempered at x if

sup{K ( f n x)e−εn : n ∈N } <∞,(2.6)

and that K is ε-tempered on a set if it is ε-tempered at each of its points.
We consider an extension F satisfying Assumptions 2.1 and denote by Λ the

set of regular points and by χ1 < ·· · <χ` < 0 the Lyapunov exponents of F given
by the Multiplicative Ergodic Theorem 3.1. For N and α as above we define

κ= 1+3/α if N = 1 and κ= 4 if N ≥ 2.(2.7)

If N ≥ 2 we allow α= 0, in which case we understand C N,α as C N .

THEOREM 2.3 (Normal forms for non-uniformly contracting extensions). Let F

be an extension of f satisfying Assumptions 2.1. Suppose that

N ≥ 1, 0 ≤α≤ 1 and N +α>χ1/χ`.(2.8)

Then there exist positive constants L = L(N ,α) and ε∗ = ε∗(N ,α,χ1, . . . ,χ`) so
that for any 0 < ε≤ ε∗ the following holds. If there exists a positive measurable
function σ :Λ→R so that 1/σ is ε-tempered on Λ and Fx is C N,α(Bx,σ(x)) for all
x ∈Λ with the derivatives measurable in x and with ‖Fx‖C N,α ε-tempered on Λ
then

(1) There exists a positive measurable function ρ : Λ→ R so that 1/ρ is κε-
tempered on Λ and a measurable family {Hx }x∈Λ of C N,α diffeomorphisms
Hx : Bx,ρ(x) → Ex satisfying Hx (0) = 0 and D0Hx = Id which conjugate F

to a sub-resonance polynomial extension P :

H f x ◦Fx =Px ◦Hx , where Px ∈Sx, f x for all x ∈Λ.
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Moreover, ‖Hx‖C N,α(B x,ρ(x)) is Lε-tempered on Λ and ‖D (n)
0 Hx‖ is n2ε-

tempered on Λ for n = 1, . . . , N , with respect to the ε-Lyapunov metric (3.2).
(2) Suppose H̃ = {H̃x }x∈Λ is another measurable family of diffeomorphisms

as in (1) conjugating F to a sub-resonance polynomial extension P̃ . Then
for all x ∈Λ there exists Gx ∈ Gχ

x which is measurable and tempered in x
such that Hx =Gx ◦H̃x . Moreover, if D (n)

0 H̃x = D (n)
0 Hx for all n = 2, . . . ,d

with d = bχ1/χ`c, then Hx = H̃x for all x ∈ Λ. In particular, {Hx }x∈Λ is
unique if d = 1.

(3) Let g : X → X be an invertible map commuting with f and let Λ′ be a
subset of Λ which is both f and g invariant. Let G (x, t ) = (g (x),Gx (t ))
be an extension of g to E which preserves the zero section and commutes
with F . Suppose that Gx is C N,α(Bx,σ(x)) for all x ∈Λ′ with the derivatives
measurable in x, and that ‖Gx‖C N,α and ‖(D0Gx )−1‖ are ε-tempered on Λ′.
Then Hg x ◦Gx ◦H −1

x ∈ Sx, f x for all x ∈Λ′.

COROLLARY 2.4. Suppose that Fx is C∞(Bx,σ(x)) and that 1/σ and ‖Fx‖C N for
each N ∈ N are ε-tempered on Λ for each ε > 0. Then Hx in part (1) of Theo-
rem 2.3 is C∞(Bx,ρ(x)).

Normal forms on stable manifolds. Let M be a compact smooth manifold and
let f be a diffeomorphism of M preserving an ergodic Borel probability measure
µ. We assume that f is C N,α, that is C N with N th derivative α-Hölder on M. We
denote by Λ the full measure set of Lyapunov regular points for (D f ,µ). Let
χ1 < ·· · < χ`′ be the Lyapunov exponents of (D f ,µ) and suppose ` is such that
χ` < 0. Then for each x ∈Λ there exists the (strong) stable manifold Wx tangent
to Ex = E 1

x ⊕·· ·⊕E `
x [24, Theorem 6.1].

THEOREM 2.5 (Normal forms on stable manifolds). Let M be a compact smooth
manifold and let f be a C N,α diffeomorphism of M preserving an ergodic Borel
probability measure µ. Suppose that N ≥ 1, 0 ≤α≤ 1 and N +α> χ1/χ`. Then
there exist a full measure set X which consists of full stable manifolds Wx and a
measurable family {Hx }x∈X of C N,α diffeomorphisms

Hx : Wx → Ex = TxWx

such that

(i) Px =H f x ◦ f ◦H −1
x : Ex → E f x is a sub-resonance polynomial map for

each x ∈ X ,
(ii) Hx (x) = 0 and DxHx is the identity map for each x ∈ X ,

(iii) ‖Hx‖C N,α is tempered on X ,
(iv) H y ◦H −1

x : Ex → Ey is a sub-resonance polynomial map for all x ∈ X and
y ∈Wx ,

(v) If g : M → M is a C N,α diffeomorphism commuting with f which pre-
serves the measure class of µ then Hg x ◦ g ◦H −1

x : Ex → Eg x is a sub-
resonance polynomial map for all x in a full measure set X ′ which con-
sists of full stable manifolds.
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Another way to interpret (iv) is to view Hx as a coordinate chart on Wx iden-
tifying it with Ex . In this coordinate chart, (iv) yields that all transition maps
H y ◦H −1

x for y ∈Wx are in the group Ḡχ
x generated by Gχ

x and the translations
of Ex . Thus Hx gives the leaf a structure of homogeneous space Wx ∼ Ḡχ

x /Gχ
x ,

which is consistent with other coordinate charts H y for y ∈Wx and is preserved
by the normal form Px by (i).

COROLLARY 2.6. Under the assumptions of the Theorem 2.5, if d = bχ1/χ`c = 1,
i.e., 2χ` < χ1, then Px is the linear map D f |Ex , the family {Hx }x∈X satisfying
(ii) and (iii) is unique, the maps H y ◦H −1

x : Ex → Ey are affine for all x ∈ X and
y ∈Wx , and H y depends C N-smoothly on y along the stable manifolds.

3. LYAPUNOV EXPONENTS AND LYAPUNOV NORM

In this section we review some basic definitions and facts of the Oseledets
theory of linear extensions. We use [3] as a general reference. For a linear exten-
sion F of a map f we will use the notation

F n
x = F f n−1x ◦ · · · ◦F f x ◦Fx .(3.1)

THEOREM 3.1 (Oseledets Multiplicative Ergodic Theorem, see [3] Theorem 3.4.3).
Let f be an invertible ergodic measure-preserving transformation of a Lebesgue
probability space (X ,µ), and let F be a measurable linear extension satisfying
log‖Fx‖, log‖F−1

x ‖ ∈ L1(X ,µ). Then there exist numbers χ1 < ·· · < χ`, an f -
invariant set Λ with µ(Λ) = 1, and an F -invariant Lyapunov decomposition

Ex = E 1
x ⊕·· ·⊕E `

x for x ∈Λ
such that

(i) lim
n→±∞n−1 log‖F n

x v‖ =χi for any i = 1, . . . ,` and any 0 6= v ∈ E i
x , and

(ii) lim
n→±∞n−1 log |detF n

x | =
∑`

i=1 miχi , where mi = dimE i
x .

The numbers χ1, . . . ,χ` are called the Lyapunov exponents of F and the points
of the set Λ are called regular.

We denote the standard scalar product in Rm by 〈·, ·〉. For a fixed ε > 0 and
a regular point x, the ε-Lyapunov scalar product (or metric) 〈·, ·〉x,ε in Ex = Rm

is defined as follows. For u ∈ E i
x and v ∈ E

j
x with i 6= j , 〈u, v〉x,ε := 0, and for

i = 1, . . . ,` and u, v ∈ E i
x ,

〈u, v〉x,ε = m
∑

n∈Z
〈F n

x (u),F n
x (v)〉 exp(−2χi n −ε|n|).(3.2)

Note that the series converges exponentially for any regular x. The constant m
in front of the conventional formula is introduced for more convenient com-
parison with the standard scalar product. Usually, ε will be fixed and we will
denote 〈·, ·〉x,ε simply by 〈·, ·〉x and call it the Lyapunov scalar product. The norm
generated by this scalar product is called the Lyapunov norm and is denoted by
‖ ·‖x,ε or ‖ ·‖x .
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Below we summarize the basic properties of the Lyapunov scalar product and
norm, for more details see [3, Sections 3.5.1-3.5.3]. A direct calculation shows
[3, Theorem 3.5.5] that for any regular x and any u ∈ E i

x

exp(nχi −ε|n|)‖u‖x,ε ≤ ‖F n
x (u)‖ f n x,ε ≤ exp(nχi +ε|n|)‖u‖x,ε for all n ∈Z(3.3)

and

exp(nχ`−εn) ≤ ‖F n
x ‖ f n x←x ≤ exp(nχ`+εn) for all n ∈N,(3.4)

where ‖ ·‖ f n x←x is the operator norm with respect to the Lyapunov norms. It is
defined for any points x, y ∈Λ and any linear map F : Ex → Ey as follows:

‖F‖y←x = sup{‖Fu‖y,ε : u ∈ Ex , ‖u‖x,ε = 1}.

We emphasize that Lyapunov scalar product and norm are defined only for reg-
ular points and depend measurably on the point. Thus, a comparison with the
standard norm is important. The uniform lower bound follows easily from the
definition: ‖u‖x,ε ≥ ‖u‖. The upper bound is not uniform, but it changes slowly
along the regular orbits [3, Proposition 3.5.8]: there exists a measurable function
Kε(x) defined on Λ such that

‖u‖ ≤ ‖u‖x,ε ≤ Kε(x) · ‖u‖ for all x ∈Λ and u ∈ Ex , where Kε(x) ≥ 1,(3.5)

and

Kε(x)e−ε|n| ≤ Kε( f n x) ≤ Kε(x)eε|n| for all x ∈Λ and n ∈Z.(3.6)

Using (3.5) we obtain that for any point x, y ∈Λ and any linear map F : Ex → Ey

Kε(x)−1 · ‖F‖ ≤ ‖F‖y←x ≤ Kε(y) · ‖F‖ .(3.7)

When ε is fixed we will usually omit it and write K (x) = Kε(x) and ‖u‖x = ‖u‖x,ε.
Similarly, we will consider the Lyapunov norm of a homogeneous polynomial

map R : Ex → Ey of degree n defined as

‖R‖y←x = sup{‖R(u)‖y,ε : u ∈ Ex , ‖u‖x,ε = 1}.(3.8)

It follows that

‖R ◦P ‖ ≤ ‖R‖ ·‖P‖n .(3.9)

For a homogeneous polynomial map R : Ex → Ey of degree n we have

Kε(x)n · ‖R‖ ≤ ‖R‖y←x ≤ Kε(y) · ‖R‖.(3.10)

This formula allows us to switch between the standard and Lyapunov norms in
spaces of polynomials and smooth functions.
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4. PROOF OF THEOREM 2.3

We note that (2.8) implies N ≥ d . We give the proof for the case α > 0. The
proof for α= 0, and hence N ≥ 2, is similar but avoids difficulties of estimating
the Hölder constant at 0. We will use the notation F n

x =F f n−1x ◦ . . .◦F f x ◦Fx .
Now we define constants that will be used throughout the proof. We set

L ≥ L(N ,α) = max{κ, N 3 +3N 2 +1}, where κ is given by (2.7).(4.1)

We define λ< 0 as the largest value of −χi +∑`
j=1 s jχ j over all i ∈ {1, . . . ,`} and

non-negative integers s1, . . . , s` such that sub-resonance condition (2.2) is not
satisfied:

λ= max
{
−χi +

∑
s jχ j < 0

}
.(4.2)

The maximum exists since there are only finitely many values of −χi +∑
s jχ j

greater than any given number. Next we recall that N +α>χ1/χ` and set

ν=χ1 − (N +α)χ` > 0.(4.3)

The proof of part (1) of Theorem 2.3 works for any L ≥ L(N ,α) and any ε < ε0,
where

ε0 = min{ν/(2L+4(N +1+α)), −χ`/(2N L+3), −λ/(N 2 +N +1)} > 0.(4.4)

For parts (2) and (3) of Theorem 2.3 we will use smaller bounds on ε, namely,
ε1 = ε0/(N +1) and ε∗ = ε0/3(N +1), respectively.

We fix L ≥ L(N ,α) and 0 < ε< ε0 and let K = Kε be as in (3.5). Since ‖Fx‖C N,α

is ε-tempered, there is a function C :Λ→ [1,∞) such that for all x ∈Λ and n ∈N
‖Fx‖C N,α ≤C (x) and C ( f n x) ≤ enεC (x).(4.5)

Similarly, replacing σ by a smaller function if necessary, we can assume that it
satisfies

σ :Λ→ (0,1] and σ( f n x) ≥ e−nεσ(x).(4.6)

LEMMA 4.1. Under the assumptions of Theorem 2.3, there exists a function ρ :
Λ→ (0,1] so that for all x ∈Λ, n ∈N, and t ∈ Bx,ρ(x) ⊂ Ex , we have ρ(x) <σ(x) ≤ 1
and

(1) ρ( f n x) ≥ e−κεnρ(x), where κ is given by (2.7),
(2) ‖D t F n

x ‖ f n x←x ≤ e(χ`+2ε)n ,
(3) ‖D t F n

x ‖ ≤ K (x)e(χ`+2ε)n ,
(4) ‖F n

x (t )‖ ≤ K (x)e(χ`+2ε)n‖t‖,
(5) ‖F n

x (t )‖ f n x ≤ e(χ`+2ε)n‖t‖x .

Proof. We take β= 1 if N ≥ 2 and β=α> 0 if N = 1. For each x ∈Λ we define

ρ(x) =σ(x)[εeχ`(C (x)K (x)2)−1]1/β.(4.7)

Then (1) follows from (4.5), (4.6), and (3.6); (5) follows from (2) by the mean
value theorem since F n

x (0) = 0. We prove (2), (3), and (4) by induction. The
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statements are clear for n = 0, suppose they hold for n. Note that (2) implies (3)
by (3.7), and (3) implies (4). We observe that

‖D t F n+1
x ‖ f n+1x←x ≤ ‖D t ′ F f n x‖ f n+1x← f n x · ‖D t F f n x‖ f n x←x , where t ′ =F n

x (t ).

Then (2) follows from the inductive assumption and

‖D t F f n x‖ f n+1x← f n x ≤ eχ`+2ε.(4.8)

To prove (4.8) we denote ∆= D t ′ F f n x−D0 F f n x . By the choice of β and (4.5), the
β-Hölder constant of Ds F f n x at 0 is at most C ( f n x), so using (3.7) we obtain

‖∆‖ f n+1x← f n x ≤ K ( f n+1x)‖∆‖ ≤ K ( f n+1x)C ( f n x)‖t ′‖β,

and using (4.5), (3.6) and the inductive assumption (4) we get that this is at most

K (x)C (x)e(2n+1)εK (x)β eβ(χ`+2ε)n ‖t‖β ≤ eεC (x)K (x)2 e[2ε+β(χ`+2ε)]n ‖t‖β.

Since ‖t‖ ≤ ρ(x) and βχ`+2(1+β)ε≤ 0 we obtain

‖∆‖ f n+1x← f n x ≤ eεC (x)K (x)2ρ(x)β ≤ εeχ`+εσ(x)β ≤ εeχ`+ε.

Since

D0 F f n x = F f n x and ‖F f n x‖ f n+1x← f n x ≤ eχ`+ε

by (3.4), we conclude that

‖D t ′ F f n x‖ f n+1x← f n x ≤ ‖∆‖ f n+1x← f n x +‖F f n x‖ f n+1x← f n x

≤ εeχ`+ε+eχ`+ε ≤ eχ`+2ε.

4.1. Construction of P and of the Taylor polynomial for H . For each x ∈ Λ
and map Fx : Ex → E f x we consider the Taylor polynomial at t = 0:

Fx (t ) ∼
N∑

n=1
F (n)

x (t ).(4.9)

As a function of t , F (n)
x (t ) : Ex → E f x is a homogeneous polynomial map of

degree n. First we construct the Taylor polynomials at t = 0 for the desired
coordinate change Hx (t ) and the polynomial extension Px (t ). We use similar
notations for these Taylor polynomials:

Hx (t ) ∼
N∑

n=1
H (n)

x (t ) and Px (t ) =
d∑

n=1
P (n)

x (t ).

For the first derivative we choose

H (1)
x = Id : Ex → Ex and P (1)

x = Fx for all x ∈Λ.

We will inductively construct the terms H (n)
x and P (n)

x for all in x ∈Λ so that P (n)
x

is of sub-resonance type and they are measurable in x and n2ε-tempered, i.e.,

sup
k∈N

e−n2εk ‖H (n)
f k x

‖ f k x← f k x <∞ and sup
k∈N

e−n2εk ‖P (n)
f k x

‖ f k+1x← f k x <∞.(4.10)
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The base of the induction is the linear terms chosen above. Now we assume
that the terms of order less than n are constructed. Using these notations in the
conjugacy equation H f x ◦Fx =Px ◦Hx we write(

Id+
N∑

i=2
H (i )

f x

)
◦
(

Fx +
N∑

i=2
F (i )

x

)
∼

(
Fx +

d∑
i=2

P (i )
x

)
◦
(

Id+
N∑

i=2
H (i )

x

)
.

Considering the terms of degree N ≥ n ≥ 2, we obtain

F (n)
x + H (n)

f x ◦F (x) + ∑
H (i )

f x ◦F ( j )
x = Fx ◦H (n)

x +P (n)
x + ∑

P ( j )
x ◦H (i )

x ,

where the summations are over all i and j such that i j = n and 1 < i , j < n. We
rewrite the equation as

F−1
x ◦P (n)

x =−H (n)
x +F−1

x ◦H (n)
f x ◦Fx +Qx ,(4.11)

where

Qx = F−1
x

(
F (n)

x + ∑
i j=n, 1<i , j<n

H (i )
f x ◦F ( j )

x −P ( j )
x ◦H (i )

x

)
.(4.12)

We note that Qx is composed only of terms H (i ) and P (i ) with 1 < i < n, which
are already constructed, and terms F (i ) with 1 < i ≤ n, which are given. Thus by
the inductive assumption Qx is defined for all x ∈ Λ and measurable. We will
show later that they are also suitably tempered in x.

Let R(n)
x be the space of all homogeneous polynomial maps on Ex of de-

gree n, and let S (n)
x and N (n)

x be the subspaces of sub-resonance and non sub-
resonance polynomials respectively. We seek H (n)

x so that the right side of (4.11)
is in S (n)

x , and hence so is P (n)
x when defined by this equation.

Projecting (4.11) to the factor bundle R(n)/S (n), our goal is to solve the equa-
tion

0 =−H̄ (n)
x +F−1

x ◦ H̄ (n)
f x ◦Fx +Q̄x ,(4.13)

where H̄ (n) and Q̄ are the projections of H (n) and Q respectively.
We consider the bundle automorphism Φ : R(n) → R(n) covering f −1 : M→

M given by the maps Φx : R(n)
f x →R(n)

x

Φx (R) = F−1
x ◦R ◦Fx .(4.14)

Since F preserves the splitting E = E 1⊕·· ·⊕E `, it follows from the definition that
the sub-bundles S (n) and N (n) are Φ-invariant. We denote by Φ̄ the induced
automorphism of R(n)/S (n) and conclude that (4.13) is equivalent to

H̄ (n)
x = Φ̃x (H̄ (n)

f x ), where Φ̃x (R) = Φ̄x (R)+Q̄x .(4.15)

Thus a solution of (4.13) is a Φ̃-invariant section of R(n)/S (n). We will show
that Φ̃ is a nonuniform contraction and that it has a unique measurable tem-
pered invariant section. First, for polynomials of specific homogeneous type
the exponent of Φ is determined by the exponents of F as follows.
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LEMMA 4.2. For a polynomial R : E f x → E i
f x of homogeneous type s = (s1, . . . , s`)

with s1 +·· ·+ s` = n,

‖Φx (R)‖x←x ≤ e−χi+∑
s jχ j+(n+1)ε · ‖R‖ f x← f x .(4.16)

Proof. Suppose that v = v1 + ·· · + v`, where v j ∈ E
j

x , and ‖v‖x = 1. We de-

note a j = ‖F |
E

j
x
‖ f x←x and observe that Fx (v j ) = a j v ′

j ∈ E
j
f x with ‖v ′

j‖ f x ≤ ‖v j‖x .

Since R has homogeneous type s = (s1, . . . , s`) we obtain by (2.1) that

(R ◦Fx )(v) = R(a1v ′
1 +·· ·+a`v ′

`) = as1
1 · · ·as`

`
·R(v ′

1 +·· ·+ v ′
`).(4.17)

where v ′ = v ′
1 +·· ·+ v ′

`
has ‖v ′‖ f x ≤ ‖v‖x = 1 by orthogonality of the splitting in

the Lyapunov metric. Thus

‖(R ◦Fx )(v)‖ f x = as1
1 · · ·as`

`
· ‖R(v ′)‖ f x ≤ as1

1 · · ·as`
`

· ‖R‖ f x← f x

for any v ∈ Ex with ‖v‖x = 1, so we obtain ‖R ◦Fx‖x← f x ≤ as1
1 · · ·as`

`
· ‖R‖ f x← f x

by definition (3.8). Now (3.9) yields

‖Φx (R)‖x←x = ‖F |−1
E i

x
◦R ◦Fx‖x←x

≤ ‖F |−1
E i

x
‖x← f x · ‖R ◦Fx‖x← f x

≤ ‖F |−1
E i

x
‖x← f x ·as1

1 · · ·as`
`
· ‖R‖ f x← f x

≤ e−χi+ε ·∏
j

(eχ j+ε)s j · ‖R‖ f x← f x .

Since a j = ‖F |
E

j
x
‖ f x←x ≤ eχ j+ε and ‖F |−1

E i
x
‖x← f x ≤ e−χi+ε by (3.3).

REMARK 4.3. . Similarly, one can show that ‖Φ−1
x (R)‖ f x← f x ≤ eχi−∑

s jχ j+(n+1)ε·
‖R‖x←x . Since this holds for any ε > 0, using (3.10) to compare the Lyapunov
and standard norms, one can conclude that the Lyapunov exponent of Φ on R
is

lim
k→±∞

k−1 log‖Φk (R)‖ =−χi +
∑

s jχ j .

For all non sub-resonance homogeneous types we have −χi +∑
s jχ j ≤ λ by

the definition (4.2) of λ. Thus Lemma 4.2 yields the following lemma.

LEMMA 4.4. The map Φ : N (n) →N (n) given by (4.14) is a nonuniform contrac-
tion over f −1, and hence so is Φ̃ : R(n)/S (n) →R(n)/S (n) given by (4.15). More
precisely, ‖Φx (R)‖x←x ≤ eλ+(n+1)ε · ‖R‖ f x← f x .

Proof. The statement about Φ̃ follows since the linear part Φ̄ of Φ̃ is given by Φ
when R(n)/S (n) is naturally identified with N (n). By the choice of ε, we have
λ+ (n +1)ε< 0.

It follows from the previous remark that λ is the maximal Lyapunov expo-
nent of Φ over f −1 on the space of non sub-resonant polynomials and that all
Lyapunov exponents of Φ|S (n) are non-negative.
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Now we construct a Φ̃-invariant measurable section of B = R(n)/S (n) and
study its properties. The construction is orbit-wise. We fix a point x ∈Λ, con-
sider its positive orbit {xk = f k x : k ≥ 0}, and define the Banach space

Bx = {R = (Rk )∞k=0 : Rk ∈Bxk , ‖R‖ <∞}, where ‖R‖ = sup
k≥0

e−εn2k‖Rk‖xk←xk

and ‖Rk‖xk←xk is the norm induced on Bxk by the Lyapunov norm ‖ ·‖xk on Ex .
We denote Q̃ = (Q̄xk )∞k=0 and claim that it is in Bx . For this we need to estimate
the growth of the Lyapunov norm of (4.12) along the trajectory:

‖Qxk‖xk←xk ≤ ‖F−1
xk

‖xk←xk+1 · (‖F (n)
xk

‖xk+1←xk

+ ∑
i j=n, 2≤i , j≤n/2

‖H (i )
xk+1

‖xk+1←xk+1‖F ( j )
xk

‖i
xk+1←xk

+‖P ( j )
xk

‖xk+1←xk‖H (i )
xk
‖ j

xk←xk
).

(4.18)

First, ‖F−1
xk

‖xk←xk+1 ≤ e−χ`+ε for all x and k by (3.4). The exponential growth

rate in k of ‖F (n)
xk

‖xk+1←xk is at most 2ε. Indeed, using (3.10) and (3.6) we can
obtain from (4.5) the corresponding estimate for C N,α norm with respect to the
Lyapunov metric on Exk :

‖Fxk‖C N,α,xk
≤ K ( f xk )‖Fxk‖C N,α ≤ K (xk+1)C (xk ) ≤ e(2k+1)εK (x)C (x).(4.19)

Then using the inductive assumption (4.10) for the terms of order i , j < n, we
can estimate the exponential growth rate of the two terms in the sum respec-
tively as (i 2 + 2i )ε and ( j 2 + i 2 j )ε, which are at most ((n/2)2 + i n)ε < n2ε. So
the exponential growth rate of ‖Qxk‖xk←xk can be estimated by n2ε and thus
‖Q̃‖ <∞.

Then Φ̃x induces an operator on Bx by (Φ̃x (R))k = Φ̄xk (Rk+1)+ Q̃k and we
have

‖Φ̃x (R)− Φ̃x (R ′)‖ = sup
k≥0

e−εn2k ‖Φ̄xk (Rk+1 −R ′
k+1)‖xk←xk

≤ sup
k≥0

e−εn2k eλ+(n+1)ε ‖Rk+1 −R ′
k+1‖xk+1←xk+1

≤ eλ+(n2+n+1)ε ·
(
sup
k≥0

e−εn2(k+1) ‖(Rk+1 −R ′
k+1)‖xk+1←xk+1

)
≤ eλ+(n2+n+1)ε ‖R −R ′‖.

Since λ+(n2+n+1)ε< 0 by the choice of ε (4.4), Φ̃x is a contraction and thus has
a unique fixed point Rx ∈Bx . We claim that H̄ (n)

x = Rx
0 is a measurable function

which is a unique solution of (4.15) or equivalently (4.13). Measurability follows
from the fact that the fixed point can be explicitly written as a series

H̄ (n)
x =

∞∑
k=0

(
F k

x

)−1 ◦Q̄xk ◦F k
x .(4.20)

Invariance is clear since
(
Rx

k+1

)∞
k=0 is a fixed point of Φ̃ f x which coincides with(

R f x
k

)∞
k=0 by uniqueness and thus Rx

1 = R f x
0 . More generally, H̄ (n)

xk
= Rxk

0 = Rx
k ,
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and since Rx ∈ Bx , the exponential growth rate of ‖H̄ (n)
xk

‖xk←xk is at most n2ε.

Now we can choose H (n)
x as a lift of H̄ (n)

x to R(n)
x which is measurable in x and

satisfies (4.10). Then we define P (n)
x by equation (4.11). It also satisfies (4.10) as

so do H and Q and as ‖Fx‖x← f x and ‖F−1
x ‖ f x←x are uniformly bounded. This

completes the inductive step and the construction of H (n) and P (n), n = 1, . . . , N ,
satisfying (4.10).

Thus we have constructed the N th Taylor polynomial for the coordinate change

H N
x (t ) =

N∑
n=1

H (n)
x (t ) of degree N ≥ d = bχ1/χ`c(4.21)

and the polynomial map Px (t ) =∑d
n=1 P (n)

x (t ).

4.2. Construction of the coordinate change H . We rewrite the conjugacy equa-
tion H f x ◦Fx =Px ◦Hx in the form

Hx =P −1
x ◦H f x ◦Fx .(4.22)

A solution H = {Hx } of this equation is a fixed point of the operator T given by

T (H )x =P −1
x ◦H f x ◦Fx .(4.23)

We will find H in the form H = H N +R, where H N is given by (4.21). We
denote

R =H −H N and T̃ (R) = T (H N +R)−H N(4.24)

and observe that T (H ) =H if and only if T̃ (R) = R. We will find Rx using the
fixed point of a contraction T̃ x induced by T̃ on a certain space C x of sequences
of functions along the orbit of x. Now we define the space C x .

By the construction of H N and P , H N and T (H N ) have the same deriva-
tives at the zero section up to order N , so we consider functions with vanishing
derivatives at the zero section up to order N . First we describe the space of func-
tions at each regular point x. For any x ∈Λ we denote by Bx,r the ball centered
at 0 in Ex of radius r < ρ(x) < 1 in the Lyapunov norm ‖ ·‖x . We define

Cx,r = {R ∈C N,α(Bx,r ,Ex ) : D (k)
0 R = 0, k = 0, . . . , N }.

Throughout this section we use the C N,α norms with respect to the Lyapunov
metric on Ex . They are estimated through the norms for the standard metric
(2.5) in (4.19). In particular, we use the α-Hölder constant (2.4) of D (N )R at 0
with respect to the Lyapunov metric, which for any R ∈Cx,r is given by

‖D (N )R‖x,α = sup{‖D (N )
t R‖x←x · ‖t‖−αx : 0 6= t ∈ Bx,r }.(4.25)

For any R ∈Cx,r lower derivatives can be estimated by the mean value theorem
as

‖D (n)
t R‖x←x ≤ ‖t‖N−n

x · sup{‖D (N )
s R‖x←x : ‖s‖x ≤ ‖t‖x },(4.26)

so using the above Hölder constant we obtain that for any 0 ≤ n < N and t ∈ Bx,r ,

‖D (n)
t R‖x←x ≤ ‖t‖1+α

x · ‖D (N )R‖x,α.(4.27)
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Thus the norms of all derivatives are dominated by the Hölder constant and
hence

‖R‖C N,α(Bx,r ) = ‖D (N )R‖x,α.(4.28)

It follows that Cx,r equipped with the norm ‖D (N )R‖x,α is a Banach space.
We will choose a small r = r (x) < ρ(x) satisfying (4.40) and set

rk = r e−2N Lkε,(4.29)

where L is given by (4.1). We define C x as the following Banach space of se-
quences of functions along the orbit xk = f k x.

C x = { R̄ = (Rk )∞k=0 : Rk ∈Cxk ,rk , ‖R̄‖C x <∞ },(4.30)

where

‖R̄‖C x = sup{e−Lkε‖D (N )Rk‖xk ,α : k ≥ 0}(4.31)

with the norm ‖·‖xk ,α defined as in (4.25) and satisfying (4.28). We consider the
operator T̃ x induced by T̃ on C x :

(T̃ x (R̄))k = (Pxk )−1 ◦ (H N
xk+1

+Rk+1)◦Fxk −H N
xk

.(4.32)

Now we estimate the growth of C N,α norms of H N
x and T (H N )x =P −1

x ◦H N
f x ◦

Fx along the orbit to verify that T̃ x (0̄) is in C x . We recall that

D (1)
0 (Hxk ) = Id and D (1)

0 (Pxk ) = P (1)
xk

= Fxk

by the construction, and the latter satisfies

‖Fxk‖xk+1←xk ≤ eχ`+ε and ‖F−1
xk

‖xk←xk+1 ≤ e−χ1+ε.

Also, for 2 ≤ n ≤ d , the Lyapunov norms of D (n)
0 (Pxk ) = P (n)

xk
and D (n)

0 (Hxk ) =
H (n)

xk
grow at most at the exponential growth rate n2ε in k by (4.10).

Recall that the inverse of Pxk is also a sub-resonance polynomial P −1
xk

=∑d
n=1(P −1

xk
)(n). We now show that the Lyapunov norms of (P −1

xk
)(n) also grows at

most at the exponential rate n2ε in k. First, its linear term (P −1
xk

)(1) = (P (1)
xk

)−1 =
F−1

xk
has bounded Lyapunov norm. Inductively, we consider terms of order n > 1

in the equation P ◦P −1 = Id and obtain

P (1)
xk

◦ (P −1
xk

)(n) +P (n)
xk

◦ (P −1
xk

)(1) + ∑
i , j<n, i j=n

P (i )
xk

◦ (P −1
xk

)( j ) = 0.

The terms in the sum can be estimated as ‖P (i )
xk

◦(P −1
xk

)( j )‖ ≤ ‖P (i )
xk

‖·‖(P −1
xk

)( j )‖i

and hence are (i 2 + j 2i )ε-tempered by the inductive assumption. Since i , j ≤ n
2

we obtain i 2 + j 2i = i 2 +ni ≤ n2

4 + n2

2 < n. Multiplying the equation by bounded(
P (1)

xk

)−1 we conclude that
(
P −1

xk

)(n) is n2ε-tempered, completing the induction.
Now we estimate C N,α norms of polynomials H N and P −1. For H N , the

derivative of order N is constant H (N )
x on Ex , and the lower derivatives on Bx,ρ(x)

JOURNAL OF MODERN DYNAMICS VOLUME 11, 2017, 341–368



NORMAL FORMS FOR NON-UNIFORM CONTRACTIONS 355

can be inductively estimated similarly to (4.26),

‖D (N−1)
t Hx‖x←x ≤ ‖D (N−1)

0 Hx‖x←x +‖t‖x‖H (N )
x ‖x←x

≤ ‖H (N−1)
x ‖x←x +‖H (N )

x ‖x←x

yielding the same estimate of the exponential rate as for H (N )
x ,

‖Hxk‖C N,α(B xk ,ρ(xk )) ≤ c1(x)eN 2kε for all k ≥ 0.(4.33)

Similarly for P −1
xk

the derivative of order d ≤ N is constant on Exk , higher deriva-
tives are zero, and the lower derivatives can be estimated as for H , so we obtain

‖(Pxk )−1‖C N,α(B xk ,ρ(xk )) ≤ c2(x)eN 2kε for all k ≥ 0.(4.34)

To obtain estimates for (T (H N ))x =P −1
x ◦H N

f x ◦Fx we use the following lemma.

LEMMA 4.5. If Q is a polynomial of degree at most N and F is C N,α then Q◦F is
C N,α and ‖Q ◦F‖C N,α ≤ cN ‖Q‖C N ‖F‖N

C N,α +‖Q‖C 0 , where cN depends on N only.

Proof. Since Q is C∞ it is clear that Q ◦F is C N . For the N th derivative we have

D (N )
t (Q ◦F ) = DF (t )Q ◦D (N )

t F + ∑
k j=N , j<N

D (k)
F (t )Q ◦D ( j )

t F .

First we estimate α-Hölder constant at 0 of the first term. As DQ is linear, we
get

DF (t )Q ◦D (N )
t F −D0Q ◦D (N )

0 F

= (DF (t )Q −D0Q)◦D (N )
t F +D0Q ◦ (D (N )

t F −D (N )
0 F )

whose norm can be estimated by

‖DF (t )Q −D0Q‖ ·‖D (N )
t F‖+‖D0Q‖ ·‖D (N )

t F −D (N )
0 F‖

≤ ‖Q‖C 2 · ‖F (t )‖ ·‖F‖C N,α ‖Q‖C 1 · ‖F‖C N,α · ‖t‖α
≤ ‖Q‖C 2 · ‖F‖C N,α · ‖F‖C 1 · ‖t‖‖Q‖C 1 · ‖F‖C N,α · ‖t‖α.

So the α-Hölder constant at 0 of DF (t )Q◦D (N )
t F is estimated by 2‖Q‖C N ‖F‖2

C N,α .

The other terms in the sum are C 1 and hence are Lipschitz with constant bound-
ed by supremum norms of their derivatives. These norms, along with the norms
of lower derivatives of Q ◦F can be estimated as a sum of termss of the type

‖D (k)
F (t )Q ◦D ( j )

t F )‖ ≤ ‖D (k)
F (t )Q‖ ·‖D ( j )

t F‖k ≤ ‖Q‖C N ‖F‖N
C N,α .(4.35)

We conclude that ‖Q ◦F‖C N,α ≤ cN ‖Q‖C N ‖F‖N
C N,α +‖Q‖C 0 .

Later we will also need a similar result for the case when Q is not a polyno-
mial.

LEMMA 4.6. If Q and F are C N,α, then Q ◦F is C N,α and

‖Q ◦F‖C N,α ≤ c ′′N ‖Q‖C N,α ‖F‖N+α
C N,α +‖Q‖C 0 ,

where c ′′N depends on N only.
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Proof. The proof is the same as in Lemma 4.5 except that, since D (N )Q is only
Hölder, we also need to estimate the α-Hölder constant at 0 of the term D (N )

F (t )Q◦
D t F in

D (N )
t (Q ◦F ) = D (N )

F (t )Q ◦D t F +DF (t )Q ◦D (N )
t F + ∑

k j=N , j ,k<N
D (k)

F (t )Q ◦D ( j )
t F .

We consider

D (N )
F (t )Q ◦D t F −D (N )

0 Q ◦D0F

= (D (N )
F (t )Q −D (N )

0 Q)◦D t F +D (N )
0 Q ◦D (N )

t F −D (N )
0 Q ◦D (N )

0 F

and estimate its norm as

‖Q‖C N,α‖F (t )‖α · ‖D t F‖N +Lip
(
D (N )

0 Q
) · ‖D t F −D0F‖

≤ ‖Q‖C N,α · (‖F‖C 1‖t‖)α · ‖F‖N
C 1 + c ′N ‖D (N )

0 Q‖‖F‖N−1
C 1 · ‖F‖C 1,α · ‖t‖α

≤ ‖t‖α (‖Q‖C N,α · ‖F‖N+α
C 1 + c ′N ‖Q‖C N · ‖F‖N−1

C 1 · ‖F‖C 1,α

)
.

Here we estimated the Lipschitz constant Lip
(
D (N )

0 Q
)

of the homogeneous poly-

nomial N -form D (N )
0 Q on a ball of radius R = ‖F‖C 1 by the supremum of its

derivative on that ball, which is a homogeneous polynomial (N −1)-form whose
norm can be estimated by ‖D (N )

0 Q‖ with some constant c ′N depending on N
only.

So the α-Hölder constant at 0 of D (N )
F (t )Q ◦D t F is estimated by

‖Q‖C N,α(‖F‖N+α
C 1 + c ′N‖F‖N

C 1,α) ≤ (c ′N +1)‖Q‖C N,α‖F‖N+α
C N,α .

We conclude as in Lemma 4.5 that ‖Q◦F‖C N,α ≤ c ′′N ‖Q‖C N,α ‖F‖N+α
C N,α +‖Q‖C 0 .

We apply Lemma 4.5 with Q =H N and then with Q =P −1. We conclude that
T (H N ) is C N,α. Moreover, since ‖F‖N

C N,α is 2ε-tempered by (4.19), using (4.34)

and (4.33) we can estimate the growth rate for T (H N ) by N 2ε+N (N 2ε+N 2ε)
and obtain

‖T (H N )k‖C N,α(B xk ,ρ(xk )) ≤ c3(x)e(N 3+3N 2)kε.(4.36)

Recall that L ≥ max{κ, N 3 + 3N 2 + 1} by (4.1). Using r < ρ(x), Lemma 4.1(1),
and (4.29) we obtain that that for all k ≥ 0

rk = r e−2N Lεk < r e−Lεk < ρ(x)e−κεk ≤ ρ(xk ).(4.37)

Finally, L > N 3 +3N 2 ensures that T̃ (0̄) ∈C x as ‖T̃ (0̄)‖C x is at most

γ′ = sup
k≥0

e−Lkε (‖T (H N )k‖C N,α(B xk ,ρ(xk )) +‖H N‖C N,α(B xk ,ρ(xk ))

)<∞.(4.38)

We recall that ν> 0 is given by (4.3) and define

θ = (1−e−ν/2)/2, 0 < θ < 1, and γ= γ′/θ.(4.39)

We choose r = r (x) < ρ(x) < 1 satisfying

r ≤ ε/(2c2(x)γ), r < ρ(x)/(2γ), r ≤ θ/(c5(x)γN e(M+L)ε),(4.40)

where θ, γ, c2(x), c5(x), M are given by (4.39), (4.34), (4.46).
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We denote by B x (γ) the closed ball in C x of radius γ. Our goal is to show that
T̃ x is a (1−θ)-contraction and that T̃ x (B x (γ)) ⊂ B x (γ). Since ‖T̃ (0̄)‖C x ≤ γ′ it
suffices to prove that the differential of T̃ x at R̄ is a (1−θ)-contraction for each
R̄ ∈ B x (γ).

First we check that the compositions in
(
T̃ (R̄)

)
k are well-defined. We take

t ∈ Bxk ,rk and show that t ′ = Fxk (t ) is in Bxk+1,rk+1 . Since by (4.37) t is in the
ball Bxk ,ρ(xk ) in standard metric, the estimates in Lemma 4.1 hold for any k. In
particular, by (2),(5)

‖D (1)
t Fxk‖xk+1←xk ≤ eχ`+2ε and ‖t ′‖xk+1 = ‖Fxk (t )‖xk+1 ≤ eχ`+2ε‖t‖xk .(4.41)

Since ‖t‖xk ≤ rk = r e−2N Lkε, this yields

‖t ′‖xk+1 ≤ eχ`+2εr e−2N Lkε < r e−2N L(k+1)ε = rk+1,(4.42)

since by the choice of ε we have χ`+2ε+2N Lε< 0.
Now we estimate t ′′ = (H N

xk+1
+Rk+1)(t ′) to show that it is in Bxk+1,ρ(xk+1) where

we have estimates for (Pxk )−1. Using the mean value theorem, (4.38), and the
inequality γ′ < γ we obtain

‖H N
xk+1

(t ′)‖xk+1 ≤ ‖t ′‖xk+1‖H N
xk+1

‖C 1 ≤ ‖t ′‖xk+1‖H N
xk+1

‖C N,α(B xk+1,ρ(xk+1))

≤ rk+1eL(k+1)εγ′ ≤ r e(1−2N )L(k+1)εγ≤ rγe−L(k+1)ε

as 2N −1 ≥ 1. Using (4.28) we obtain similarly that for any R̄ ∈ B x (γ),

‖Rk+1(t ′)‖xk+1 ≤ ‖t ′‖xk+1 · ‖D (N )Rk+1‖xk+1,α ≤ rk+1eL(k+1)ε · ‖R̄‖C x ≤ rγe−L(k+1)ε.

Since ρ(xk ) ≥ ρ(x)e−κεk ≥ ρ(x)e−Lεk and 2γr < ρ(x) by (4.40), we obtain

‖t ′′‖xk+1 = ‖(H N
xk+1

+Rk+1
)
(t ′)‖xk+1 ≤ 2γr e−L(k+1)ε

< ρ(x)e−L(k+1)ε ≤ ρ(xk+1).
(4.43)

Now we show that T̃ x is a contraction on B x (γ) by estimating its differential.
For any R̄, S̄ ∈ B x (γ) we can write(

T̃ x (R̄ + S̄)− T̃ x (R̄)
)

k

= (
Pxk

)−1 ◦ (
H N

xk+1
+Rk+1 +Sk+1

)◦Fxk −
(
Pxk

)−1 ◦ (
H N

xk+1
+Rk+1

)◦Fxk .

Differentiating (Pxk )−1 and denoting

y(t ) = (
H N

xk+1
+Rk+1

)
(Fxk (t )) and z(t ) = Sk+1(Fxk (t ))

we obtain (
T̃ x (R̄ + S̄)− T̃ x (R̄)

)
k (t ) = D y(t )(Pxk )−1 z(t )+E(z(t )),

where E is a polynomial with terms of degree at least two. Thus ‖E(z(t ))‖C x =
O(‖S̄‖2

C x ) and so the differential of T̃ x is given by(
[DR̄ T̃ x ]S̄

)
k (t ) = D y(t )(Pxk )−1 Sk+1(Fxk (t )) = Ak (y(t ))z(t ),
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where Ak (s) = Ds(Pxk )−1. To estimate the norm we consider the derivative of
order N . Since Ak (y(t )) is a linear operator on z, the product rule yields

D (N )[Ak (y(t ))z(t )] = Ak (y(t ))D (N )z(t )+∑
cm,l D (m) Ak (y(t ))D (l )z(t ),(4.44)

where m + l = N and l < N for all terms in the sum. Differentiating z(t ) we get

D (l )z(t ) = D (l )Sk+1(Fxk (t )) =∑
D (i )

t ′ Sk+1 ◦D ( j )
t Fxk ,

where i j = l and t ′ =Fxk (t ). Only the first term in (4.44) contains D (N )Sk+1 so

D (N )
t

(
[DR̄ T̃ x ]S̄

)
k = D (1)

y(t ) (Pxk )−1 ◦D (N )
t ′ Sk+1 ◦D (1)

t Fxk + Jk ,(4.45)

where Jk consists of a fixed number of terms of the type

D (m)
t Ak (y(t ))

(
D (i )

t ′ Sk+1 ◦D ( j )
t Fxk

)
, i < N , m + i j = N ,

whose Lyapunov norms can be estimated by

‖Ak (y(t ))‖C N,xk
· ‖D (i )

t ′ Sk+1‖xk+1 · ‖Fxk‖N−1
C N,xk

.

We use (4.19) to estimate the last term: ‖Fxk‖C N,α,xk
≤ K (x)C (x)e(2k+1)ε. For the

middle term by (4.27) we have as i < N

‖D (i )
t ′ Sk+1‖xk+1 ≤ ‖t ′‖1+α

xk+1
· ‖D (N )Sk+1‖xk+1,α < ‖t‖1+α

xk
· ‖S̄‖C x eL(k+1)ε

since ‖t ′‖xk+1 ≤ eχ`+2ε‖t‖xk < ‖t‖xk by (4.41).
Since (Pxk )−1 is polynomial of degree at most N , using (4.34) we obtain

‖Ak‖C N (B xk ,ρ(xk )) = ‖D(Pxk )−1‖C N (B xk ,ρ(xk ))

≤ ‖(Pxk )−1‖C N (B xk ,ρ(xk ))

≤ c2(x)eN 2kε.

Finally, since y(t ) = (H N
xk+1

+Rk+1)(Fxk (t )) = t ′′ ∈ Bxk+1,ρ(xk+1) by (4.43), the first
term in (4.44) can be estimated using Lemma 4.5 and equation (4.35)

‖Ak (y(t ))‖C N,xk
≤ ‖(Pxk )−1‖C N (B xk ,ρ(xk )) · ‖y(t )‖N

C N,xk

≤ c2(x)eN 2kε ·
(
‖H N

xk+1
+Rk+1‖C N ,xk+1

· ‖Fxk (t )‖N
C N,xk

)N

≤ c2(x)eN 2kε · (2γeL(k+1)ε)N · (K (x)C (x)e(2k+1)ε)N 2

≤ c4(x)γN ·e(N L+3N 2)(k+1)ε,

since we have ‖R̄‖C x ≤ γ and H N
xk+1

term is estimated similarly from (4.38). Thus
we obtain the following for the norm of Jk in (4.45):

‖Jk‖ < c5(x)γN ·e(N L+3N 2)(k+1)ε · ‖t‖1+α
xk

· ‖S̄‖C x ·eL(k+1)ε ·eN (2k+1)ε

< c5(x)γN rk e(M+L)(k+1)ε · ‖t‖αxk
· ‖S̄‖C x ,

(4.46)

where M = N L+3N 2+2N . For the first term in (4.45) we claim that for t ′′ = y(t )

‖D (1)
t ′′ (Pxk )−1‖xk←xk+1 ≤ e−χ1+2ε.(4.47)
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Indeed, we recall that

‖D (1)
0 (Pxk )−1‖xk←xk+1 = ‖F−1

xk
‖xk←xk+1 ≤ e−χ1+ε.

If d = 1, then D (1) (Pxk ) is constant and (4.47) follows. If d ≥ 2 then N ≥ 2 and

the Lipschitz constant of D (1) (Pxk )−1 is at most c2(x)eN 2kε by (4.34). So using
(4.43) we obtain

‖D (1)
t ′′ (Pxk )−1 −D (1)

0 (Pxk )−1‖xk←xk+1 ≤ c2(x)eN 2kε · ‖t ′′‖xk+1

≤ c2(x)eN 2kε ·2γr e−L(k+1)ε ≤ c2(x)2γr e(N 2−L)(k+1)ε < c2(x)2γr ≤ ε,

where the last two inequalities hold since N 2 < L and r ≤ ε/(2c2(x)γ) by (4.40).
Then (4.47) follows from e−χ1+ε+ε< e−χ1+ε(1+ε) < e−χ1+2ε.

Now we estimate the main term in (4.45) using (4.47) and (4.41):

‖D (1)
t ′′ (Pxk )−1 ◦D (N )

t ′ Sk+1 ◦D (1)
t Fxk‖xk←xk

≤ ‖D (1)
t ′′ (Pxk )−1‖xk←xk+1 · ‖D (N )Sk+1‖xk+1,α ‖t ′‖αxk+1

· ‖D (1)
t Fxk‖N

xk+1←xk

≤ e−χ1+2ε · ‖S̄‖C x eL(k+1)ε ·eα(χ`+2ε)‖t‖αxk
·eN (χ`+2ε)

= e−ν+L′ε‖t‖αxk
‖S̄‖C x eLkε,

(4.48)

where ν=−(N +α)χ`+χ1 > 0 and L′ = 2+L+2(N +α). Since ε≤ ε0 ≤ ν/(2L′) by
the choice of ε0, we obtain that e−ν+L′ε ≤ e−ν/2 = 1−2θ by (4.39).

Finally we estimate (4.45) combining (4.46) and (4.48). For any R̄ ∈ B x (γ) we
have

‖D (N )
t

(
[DR̄ T̃ x ]S̄

)
k‖xk←xk ≤ ‖t‖αxk

·‖S̄‖C x ·eLkε(1−2θ+c5(x)γN rk e((M+L)(k+1)−Lk)ε).

Since rk = r e−2N Lkε and 2N L ≥ M , as L ≥ N 3 +3N 2 +1, we see that for all k ≥ 0

c5(x)γN rk e((M+L)(k+1)−Lk)ε ≤ c5(x)γN r e((M−2N L)k+M+L)ε

≤ c5(x)γN r e(M+L)ε ≤ θ
as r ≤ θ/(c5(x)γN e(M+L)ε) by (4.40). Then for all R̄ ∈ B x (γ) we obtain

‖D (N )
t

(
[DR̄ T̃ x ]S̄

)
k ‖xk←xk ≤ ‖t‖αxk

· ‖S̄‖C x ·eLkε (1−θ) ,

hence

‖D (N )([DR̄ T̃ x ]S̄
)

k ‖xk ,α ≤ (1−θ) · ‖S̄‖C x ·eLkε,

and so

‖ [DR̄ T̃ x ]S̄ ‖C x = sup
k

e−Lkε ‖D (N )(T̃ x (S̄))k ‖xk ,α ≤ (1−θ) · ‖S̄‖C x .

Thus ‖DR̄ T̃ x‖ ≤ 1− θ for all R̄ ∈ B x (γ). Since ‖T̃ x (0)‖C x ≤ γ′ = θγ, the opera-
tor T̃ x is a contraction from B x (γ) to B x (γ). Thus T̃ x has a unique fixed point
R̄x ∈ B x (γ) which depends measurably on x. As in the construction of Taylor
coefficients, the uniqueness implies that Rx := (R̄x )0 is Lε-tempered and solves
the equation T̃ (R) = R where T̃ is given by (4.24). We conclude that the measur-
able family of C N,α maps Hx =H N

x +Rx , is Lε-tempered and satisfies (4.23), i.e.,
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conjugates Px and Fx . Then the maps Hx defined on Bx,r (x) can be uniquely
extended to C N,α diffeomorphisms on Bx,ρ(x) by the invariance

Hx (t ) = (
P k

x

)−1 ◦H f k x ◦F k
x (t )

since for each t ∈ Bx,ρ(x) we have F k
x (t ) ∈ Bxk ,rk for some k. Indeed, F k

x (t ) is
contracted by Lemma 4.1(5) at a faster rate than rk by the choice (4.4) of ε0:
χ`+2ε<−2N Lε.

This completes the proof of the first part of the theorem.

4.3. Prove of part (2): “uniqueness” of H . This essentially follows from the
“uniqueness” of the construction. Starting with H1 = H̃ we inductively con-
struct coordinate changes Hk = {Hk,x } for k = 1, . . . , N and show that they sat-
isfy the same temperedness condition as H . We denote their Taylor series by

Hk,x (t ) =
∞∑

n=1
H (n)

k,x (t ).

The base of the induction is H1 = H̃ , which is tempered by the assumption and
whose linear term satisfies H (1)

1,x = H (1)
x = Id. Suppose Hk−1, k ≥ 2, is constructed

so that

H (n)
k−1,x are n2ε-tempered for n = 1, . . . , N , H (n)

x = H (n)
k−1,x for n = 1, . . . ,k −1,

and the corresponding normal form Pk−1,x is of sub-resonance type. It follows

that P and Pk−1 have the same terms up to order k−1. Hence H (k)
k−1,x and H (k)

x

satisfy the same equation (4.13) when projected to the factor-bundle R(k)/S (k).
Indeed, the Q term defined by (4.12) is composed only of F (i ) and terms H (i )

and P (i ) with 1 < i ≤ k −1, which are the same for Hk−1 and H . By uniqueness
we obtain that

H (k)
x = H (k)

k−1,x +∆(k)
x , where ∆(k)

x ∈S (k)
x .

Then the coordinate change Hk,x = (
Id +∆(k)

x
) ◦Hk−1,x has the same Taylor

terms as H up to order k, and, since the polynomial Id + ∆(k)
x is in Gχ,

Hk conjugates F to a sub-resonance normal form Pk,x = (
Id+∆(k)

f x

)◦Pk−1,x ◦(
Id+∆(k)

x
)−1. To complete the inductive step we need to show that ‖H (n)

k,x‖ is

n2ε-tempered. It suffices to show this for ‖R(n)‖ where R = Hk,x −Hk−1,x =
∆(k)

x ◦Hk−1,x . Since ∆(k)
x is homogeneous of degree k, R has only homogeneous

terms of degrees n = j k. We estimate them as

‖R(n)‖ = ‖∆(k)
x ◦H

( j )
k−1,x‖ ≤ ‖∆(k)

x ‖ ·‖H ( j )
k−1,x‖k ,

which is (k2+ j 2k)ε-tempered by the inductive assumption and the definition of
∆(k)

x . Since j ≤ n/2 as k ≥ 2 we get j 2k = j n ≤ n2/2. Also, if j ≥ 2 then k2 ≤ n2/4,
and we obtain n2ε-temperedness. If j = 1, then n = k and R(k) = ∆(k) is also
k2ε-tempered.

Thus in N steps we obtain the coordinate change

HN ,x =Gx ◦H̃x , where Gx = (
Id+∆(N )

x

)◦ . . .◦ (
Id+∆(2)

x

) ∈Gχ
x ,
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which has the same Taylor terms at 0 as H up to order N . In fact, for n > d
we have S (n) = 0 and hence ∆(n) = 0, so that HN = Hd . Now we show that
H =HN , which also proves the last statement in part (2) of the theorem. The
equality follows from the uniqueness in the final step of the construction. In-
deed, for H N given by (4.21), both differences R =H −H N and R ′ =HN −H N

are fixed points of operator T̃ given by (4.24). Hence R = R ′ by uniqueness of
the fixed point in the appropriate space Cr,x on which T̃ induces a contraction.
To ensure that the sequence (R ′

xk
) is in Cr,x we need to estimate temperedness

of α-Hölder constant at 0 for H (N )
N . As above one can see that all terms in the

polynomial Gx are N 2ε-tempered. Then using Lemma 4.5 and the assumption
on H̃ we obtain that ‖HN ,x‖C N,α is L̃ε-tempered for L̃ = (N 2 +N L) < (N +1)L
and hence (R ′

xk
) is in Cr,x with L̃ in place of L. Since the proof of part (1) is for

any L ≥ L(N ,α), we conclude that T̃ induces a contraction in such Cr,x provided
that ε< ε1 = ε0/(N +1), which is less than ε0 with L̃ in pace of L in (4.4). Thus
R = R ′ and hence H =HN .

4.4. Proof of Corollary 2.4. By part (2) of Theorem 2.3, if we fix a choice of
Taylor polynomials of degree d for Hx , then the family Hx is unique. Then
for each N > d we can do the construction in part (1) with this fixed choice
of Taylor polynomials and obtain the family of C N diffeomorphisms Hx . By
uniqueness, all these families coincide and hence Hx are C∞ diffeomorphisms.

4.5. Proof of part (3): Centralizer of H . First we prove that the derivative of G

at zero section, Γx = D0Gx , is sub-resonance. Since Γx is linear, this is equivalent
to the fact that Γx preserves the fast flag associated with the Lyapunov splitting

E 1
x = V 1

x ⊂ V 2
x ⊂ ·· · ⊂ V l

x = Ex , where V i
x = E 1

x ⊕·· ·⊕E i
x .(4.49)

Suppose to the contrary that for some x ∈Λ and some i < j we have a vector t

in E i
x such that t ′ = Γx (t ) has nonzero component t ′j in E

j
g x . Then

‖(F n
g x ◦Γx )(t )‖ f n g x ≥ ‖F n

g x (t ′j )‖ f n g x ≥ e(χ j−ε)n ‖t ′j‖g x

and on the other hand

‖(F n
g x ◦Γx )(t )‖ f n g x = ‖Γ f n x (F n

x t )‖g f n x

≤ ‖Γ f n x‖g f n x← f n x ·e(χi+ε)n‖t‖x ≤Ce(χi+3ε)n ,

which is impossible for large n since ε is small. Here we used the fact that
the C N,α norm ‖Gx‖C N,α,x on Ex is 2ε-tempered with respect to the Lyapunov
metric (3.2) for F . This follows as in (4.19) since ‖Gx‖C N,α in standard norm is
ε-tempered by assumption.

We conclude that Γx is sub-resonance for each x ∈Λ. Now we consider a new
family of coordinate changes

H̃x = Γ−1
x ◦Hg x ◦Gx
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which also satisfies H̃x (0) = 0 and D0H̃x = Id. A direct calculation shows that

H̃ f x ◦Fx ◦H̃ −1
x = Γ−1

f x ◦H f g x ◦G f x ◦Fx ◦G−1
x ◦H −1

g x ◦Γx

= Γ−1
f x ◦H f g x ◦Fg x ◦H −1

g x ◦Γx = Γ−1
f x ◦Pg x ◦Γx = P̃x ,

where P̃x is a sub-resonance polynomial as a composition of sub-resonance
polynomials. Now we would like to to apply the uniqueness part of the theorem,
which would give H̃x = GxHx for some tempered function Gx ∈ Gχ. Then it
follows from the definition of H̃x that

Hg x ◦Gx = Γx ◦H̃x = (ΓxGx )◦Hx

so that Hg x ◦Gx ◦H −1
x = ΓxGx , which is again a sub-resonance polynomial, as

claimed.
To complete the proof it remains to show that H̃x is suitably tempered to

obtain uniqueness. The nth Taylor term at 0, H̃ (n)
x , is the sum of the terms

of the form Γ−1
x ◦H (k)

g x ◦G
( j )
x with n = k j , whose Lyapunov norms as we can

estimate as before

‖Γ−1
x ◦H (k)

g x ◦G
( j )
x ‖x←x ≤ ‖Γ−1

x ‖x←g x · ‖H (k)
g x ‖g x←g x · ‖G ( j )

x ‖k
g x←x .

Thus we obtain that H̃ (n)
x is mε-tempered with m ≤ 2+k2 +2k < 3n2 for n ≥ 2.

Since ‖H ‖C N,α is Lε-tempered, using Lemma 4.6 with Q = H and F = G we
obtain that ‖H ◦G‖C N,α is (L +2(N +α))ε-tempered. Then Lemma 4.5 implies
that ‖H̃ ‖C N,α is (2 + L + 2(N +α))ε-tempered and hence 3Lε-tempered since
L ≥ N +2. So the uniqueness result in part (2) of the theorem applies for ε <
ε∗ = ε1/3 = ε0/3(N +1).

This completes the proof of Theorem 2.3. �

5. PROOF OF THEOREM 2.5

5.1. Proof of (i), (ii), (iii), (v). We will apply Theorem 2.3. First we note that
the integrability condition for the derivative in Theorem 2.3 was used in the
proof only to obtain the Lyapunov splitting and the Lyapunov metric. So while
the restriction D f |E may not satisfy this integrability condition, the Lyapunov
splitting and the Lyapunov metric are obtained in this case from the results for
the full differential D f .

The centralizer part (v) will follow directly from part (3) of Theorem 2.3 since
X ′ = ⋂

n∈Z g n(X ) is the desired invariant set of full measure as g preserves the
measure class of µ. Moreover, g (Wx ) = Wg x since g is a diffeomorphism com-
muting with f , so that X ′ is also saturated by the stable manifolds.

Parts (i), (ii), (iii) essentially follow from Theorem 2.3, which is formulated so
as to apply to this setting. First we consider the regular set Λ for (D f ,µ). We fix
a family of local (strong) stable manifolds Wx,r (x) for x ∈Λ of sufficiently small
size r (x). Identifying Wx,r (x) by an exponential map with a neighborhood of 0
in Ex we obtain the extension F = {Fx } of f . Then the properties of local stable
manifolds ensure that F satisfies the assumptions of Theorem 2.3. Indeed, they
are given by C N,α embeddings so that the C N,α norm and 1/r (x) are ε-tempered
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for any ε> 0 (see [3] for a general reference and [16, Theorem 5] for a convenient
statement of the stable manifold theorem). Hence Theorem 2.3 yields existence
of the desired family of local diffeomorphisms Hx , x ∈Λ, which can be uniquely
extended by invariance

Hx (t ) = (
P k

x

)−1 ◦H f k x ◦ f k (t )

to the global stable leaf Wx , which consists of those t ∈M for which f k t is in
the local stable leaf of f k x for some k. Now we define X =⋃

x∈ΛWx and explain
the construction of H y for any y ∈ X . By iterating it forward we may assume
that y ∈ Wx,r (x). While the individual Lyapunov spaces E i may not be defined
for all points y ∈ Wx,r (x), the flag V of fast subspaces (4.49) is defined for each
Ey = TyWx,r (x); moreover, the subspaces V i

y depend Hölder continuously, and

in fact C N−1,α, on y along Wx [24, Theorem 6.3].
The key observation is that the notion of sub-resonance polynomial depends

only on the fast flag V [20, Proposition 3.2], not on the individual Lyapunov
spaces E i , and thus is well-defined for Ey . Then the sub-bundle S (n) of sub-
resonance polynomials of degree n is well-defined, invariant under D f , and
Hölder continuous in y along W , and hence so is the factor bundle R(n)/S (n).
Then for each y ∈ Wx,r (x) we can define H y using the construction in Theo-
rem 2.3. Indeed, first we constructed the Taylor term of degree n using the
contraction Φ̃ on the bundle R(n)/S (n) from Lemma 4.4 with linear part esti-
mated as ‖Φx (R)‖ε,x ≤ eλ+(n+1)ε · ‖R‖ε, f x . Then Φy , the corresponding map at
y , is Hölder close to Φx . We note that since Wx,r (x) are C N,α embedded, the
derivatives F (n)

y = D (n)
0 Fy of all orders n ≤ N depend α-Hölder continuously on

y in Wx,r (x). In fact, the linear operator Φy depends only on the first derivative.
Using the Lyapunov norm at x as the reference norm, we obtain that Φy is also
a contraction with similar estimate for all y ∈ Wx,r (x) provided that r (x) is suf-
ficiently small. Since f k y ∈ W f k x,r ( f k x) by the contraction property of Wx,r (x),
the closeness persists along the forward trajectory. This argument is similar to
the proof of Lemma 4.1. Then we obtain that the operator Φ̃y on the sequence

space is also a contraction. Thus we can define H̄ (n)
y as before using the unique

fixed point in the space of sequences. The last step of the construction can be
carried out similarly as it involves only the estimates of the derivatives on the
full space E and does not depend on the splitting. This completes the proof
of (i), (ii), (iii).

REMARK 5.1. Any measurable choice of transversals Ẽ i to V i−1 inside V i , with
i = 2, . . . ,`, yields a transversal Ñ (n) to S (n) inside R(n). The latter gives a
preferred choice of the lift. The fixed point of the contraction H̄ (n)

y depends
Hölder continuously, and even smoothly by appropriate C r section theorem
as in [20], on y along Wx,r (x) if the same holds for the data Q̃ obtained in the
previous step of the construction. To complete the inductive step we need a
Hölder lift H (n)

y to R(n). If there is a consistent choice which is Hölder on the
full leaves of W , then we can obtain a family {Hx } which is Hölder along the
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leaves of W . In contrast to the uniform setting of [20], it is not clear that such a
choice exists. However, this can be done locally on Wx,r (x). Therefore, one can
fix a Ledrappier-Young partition subordinate to the leaves of W [21, Def. 1.4.1
and Lemma 3.1.1] and obtain Hölder continuity of Hx on each element.

5.2. Consistency of the fast foliations. The leaf Wx is subfoliated by unique
foliations U k tangent to V k

y . We denote by W̄ k the corresponding foliations of
Ex obtained by the identification Hx : Wx → Ex . Thus we obtain the foliations
W̄ k of E which are invariant under the polynomial extension P . Since the maps
Hx are diffeomorphisms, W̄ k are also the unique fast foliations with the same
contraction rates. They are characterized by

for y, z ∈ Ex , z ∈ W̄ k (y) if and only if lim
n→∞

1

n
logdist(P n

x (y),P n
x (z)) <χk+1.

It follows from Definition 2.2 that sub-resonance polynomials R ∈Sx,y are block
triangular in the sense that E i component does not depend on E j components
for j < i or, equivalently, it maps the subspaces V i

x of the fast flag in Ex to those
in Ey .

It is easy to see that all derivatives of a sub-resonance polynomial are sub-
resonance polynomials. In particular, the derivative D yPx at any point y ∈ Ex

is sub-resonance and hence is block triangular. Thus it maps subspaces parallel
to V k

x to subspaces parallel to V k
f x . Hence the foliation of E by subspaces parallel

to V k
x in Ex is invariant under the extension P and hence coincides with W̄ k by

uniqueness of the fast foliation.

REMARK 5.2. This implies that the fast subfoliations U k are as smooth along
the leaf Wx as the diffeomorphism Hx which maps them to linear subfoliations
of Ex .

It follows that for any x ∈ X and any y ∈Wx the diffeomorphism

Gx,y =H y ◦H −1
x : Ex → Ey(5.1)

maps the fast flag of linear foliations of Ex to that of Ey . In particular, the same
holds for its derivative D0Gx,y = DxH y : Ex → Ey and we conclude that D0Gx,y

is block triangular and thus is a sub-resonance linear map.

5.3. Proof of (iv): Consistency of normal form coordinates. We need to show
that the map Gx,y in (5.1) is a sub-resonance polynomial map for all x ∈ X and
y ∈Wx . It suffices to consider x ∈Λ and, using invariance, we may assume that
y ∈Wx is sufficiently close to x. First we note that

Gx,y (0) =H y (x) =: x̄ ∈ Ey and D0 Gx,y = DxH y .

Since H −1
f n x ◦P n

x ◦Hx = f n =H −1
f n y ◦P n

y ◦H y we obtain that

H f n y ◦H −1
f n x ◦P n

x =H f n y ◦ f n ◦H −1
x =P n

y ◦H y ◦H −1
x

and hence

G f n x, f n y ◦P n
x =P n

y ◦Gx,y .(5.2)
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Now we consider the Taylor polynomial for Gx,y : Ex → Ey at t = 0 ∈ Ex :

Gx,y (t ) ∼Gx,y (t ) = x̄ +
N∑

m=1
G (m)

x,y (t ).

Our first goal is to show that all its terms are sub-resonance polynomials. We
proved in Section 5.2 that the first derivative G (1)

x,y = DxH y is a sub-resonance
linear map.

Inductively, we assume that G (m)
x,y has only sub-resonance terms for m = 1, . . .,

k −1 and show that the same holds for G (k)
x,y . Suppose for the contrary that G (k)

x,y
is not a sub-resonance polynomial and consider order k terms in the Taylor
polynomial at 0 ∈ Ex for (5.2). The Taylor polynomial for P n

x at 0 coincides with
itself, P n

x (t ) =∑d
m=1 P (m)

x (t ). We also consider the Taylor polynomial for P n
y at

Gx,y (0) = x̄ ∈ Ey :

P n
y (z) = x̄n +

d∑
m=1

Q(m)
y (z − x̄), where x̄n =P n

y (x̄).

All terms Q(m) are sub-resonance as the derivatives of a sub-resonance polyno-
mial. Consider the Taylor polynomial for

G f n x, f n y (t ) ∼G f n x, f n y (t ) = x̄n +
N∑

m=1
G (m)

f n x, f n y (t ).

Now we obtain from (5.2) the coincidence of the terms up to degree N in

x̄n +
N∑

j=1
G ( j )

f n x, f n y

(
d∑

m=1
P (m)

x (t )

)
∼ x̄n +

d∑
m=1

Q(m)
y

(
N∑

j=1
G ( j )

x,y (t )

)
.

Since any composition of sub-resonance polynomials is again sub-resonance,
the inductive assumption gives that all terms of order k in the above equation
must be sub-resonance polynomials except for

G (k)
f n x, f n y

(
P (1)

x (t )
)

and Q(1)
y

(
G (k)

x,y (t )
)

.

Multiplying these terms on the left by sub-resonance linear map
(
D0G f n x, f n y

)−1

= (
D f n xH f n y

)−1 and using the fact that P (1)
x = F n

x = D f n |Ex and

Q(1)
y = D x̄P n

y = D f n xH f n y ◦F n
x ◦ (DxH y )−1

we obtain that the following maps from Ex to E f n x agree modulo sub-resonance
terms:((

D f n xH f n y
)−1 ◦G (k)

f n x, f n y

)
◦F n

x
∼= F n

x ◦
(
(DxH y )−1 ◦G (k)

x,y

)
mod Sx, f n x .

Since x, f n x ∈ Λ and thus the spaces Ex and E f n x have Lyapunov splittings,
we can decompose these polynomial maps into sub-resonance and non sub-
resonance terms. Taking non sub-resonance terms on both sides we obtain the
equality

N f n x ◦F n
x = F n

x ◦Nx(5.3)
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where N f n x and Nx denote the non sub-resonance terms in
(
D f n xH f n y

)−1 ◦
G (k)

f n x, f n y and (DxH y )−1 ◦G (k)
x,y respectively. If the latter had only sub-resonance

terms then so would G (k)
x,y , contradicting the assumption. Hence Nx 6= 0. We de-

compose Nx into components Nx = (N 1
x , . . . , N`

x ) and let i be the largest index so
that N i

x 6= 0, i.e., there exists t ′ ∈ Ex so that z ′ = N (t ′) has non-zero component
in E i

y , which we denote by z ′
i . Then by (3.3) we obtain

‖F n
x ◦Nx (t ′)‖ f n x = ‖F n

x (z ′)‖ f n x ≥ en(χi−ε)‖z ′
i‖x .(5.4)

Now we estimate the norm of the i component of the left-hand side of (5.3)
at t ′. For each componet t ′j of t ′ we have ‖F n

x (t ′j )‖ f n x ≤ en(χ j+ε)‖t ′j‖x by (3.3).

Let N s
f n x be a term of homogeneity type s = (s1, . . . , s`) in the component N i

f n x .

Then we obtain as in Lemma 4.2 that

‖N s
f n x

(
F n

x (t ′)
)‖ f n x ≤ ‖N f n x‖ f n x · ‖t ′‖k

x ·en
∑

s j (χ j+ε).(5.5)

For non sub-resonance N s we have χi > ∑
s jχ j and hence (5.5) decays faster

than (5.4). Since there are no sub-resonance terms in N i
f n x , this contradicts (5.3)

for large n if ε is sufficiently small since ‖N f n x‖ f n x is tempered. The latter fol-

lows from temperedness of G (k)
f n x, f n y and the fact that D f n xH f n y is Hölder close

to the identity and so the norm of its inverse is bounded in Lyapunov metric.
We conclude that for all x ∈ X and y ∈Wx the Taylor polynomial Gx,y of Gx,y

contains only sub-resonance terms. Now we will show that Gy,x coincides with
its Taylor polynomial. Again it suffices to consider x ∈ Λ and y ∈ Wx which is
sufficiently close to x. In addition to (5.2) we have the same relation for their
Taylor polynomials

G f n y, f n x ◦P n
y =P n

x ◦Gy,x .(5.6)

Indeed, the two sides must have the same terms up to order N , but these
are sub-resonance polynomials and thus have no terms of degree higher than
d ≤ N .

Denoting ∆n =G f n y, f n x −G f n y, f n x we obtain from (5.2) and (5.6) that

∆n ◦P n
y =P n

x ◦Gy,x −P n
x ◦Gy,x .(5.7)

We denote ∆=Gy,x −Gy,x : Ey → Ex and suppose that ∆ 6= 0. Let i be the largest
index for which the i component of ∆ is nonzero. Then there exist arbitrarily
small t ′ ∈ Ey such that the i component z ′

i of z ′ =∆(t ′) is nonzero. Since P n
x is a

sub-resonance polynomial, the nonlinear terms in its i component can depend
only on j components of the input with j > i , which are the same for Gy,x

and Gy,x by the choice of i . Thus the i component of the right side of (5.7) is
F n

x (z ′
i ) since the linear part of P n

x is F n
x and it preserves the Lyapunov splitting.

So by (3.3) we can estimate the right side of (5.7)

‖(
P n

x ◦Gy,x −P n
x ◦Gy,x

)
(t ′)‖ f n x ≥ ‖F n

x (z ′
i )‖ f n x

≥ en(χi−ε)‖z ′
i‖x ≥ en(χ1−ε)‖z ′

i‖x .
(5.8)
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Now we estimate the left side of (5.7). Since G f n y, f n x is C N,α there exists Cn(x)
determined by ‖G f n x, f n y‖C N,α such that

‖∆n(t )‖ ≤Cn(x) · ‖t‖N+α(5.9)

for all sufficiently small t ∈ E f n x . To estimate P n
y we note that D0P

n
y = F n

y =
D f n |Ey and its norm for y close to x can be estimated using Lemma 4.1(3). Then
P n

y itself can be estimated as in that lemma:

‖P n
y (t )‖ ≤ K en(χ`+3ε)‖t‖

for all sufficiently small t ∈ Ey . Combining this with (5.9) we obtain

‖(∆n ◦P n
y

)
(t ′)‖ ≤ Cn(x) · ‖P n

y (t ′)‖N+α ≤Cn(x) · (K ‖t ′‖)N+αen(N+α)(χ`+3ε).

This contradicts (5.7) and (5.8) for large n if ε is sufficiently small. Indeed
(N +α)χ` <χ1 while Cn(x) is tempered and the Lyapunov norm satisfies ‖u‖ ≥
K (x)e−nε‖u‖ f n x . Thus, ∆= 0, i.e., the map Gy,x coincides with its Taylor polyno-
mial.

This completes the proof of Theorem 2.5. �

5.4. Proof of Corollary 2.6. If d = 1 then all sub-resonance polynomials are lin-
ear, the maps H y ◦H −1

x : Ex → Ey are affine, and the family {Hx }x∈X is unique
by part (2) of Theorem 2.3. If we identify Wx with Ex by Hx , then H y for y ∈Wx

becomes an affine map Ex → TyEx with identity differential and H y (y) = 0.
Thus it depends C N on y as the coordinate system Hx is C N . �
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