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NORMAL FORMS FOR NON-UNIFORM CONTRACTIONS

BORIS KALININ AND VICTORIA SADOVSKAYA
(Communicated by Giovanni Forni)

ABSTRACT. Let f be a measure-preserving transformation of a Lebesgue space
(X, ) and let & be its extension to a bundle & = X xR by smooth fiber maps
Fx:1Ex — Epy so that the derivative of & at the zero section has negative Lya-
punov exponents. We construct a measurable system of smooth coordinate
changes #x on &y for p-a.e. x so that the maps 2 = FpxoFxo0 ;1 are sub-
resonance polynomials in a finite dimensional Lie group. Our construction
shows that such .#x and 22, are unique up to a sub-resonance polynomial. As
a consequence, we obtain the centralizer theorem that the coordinate change
S also conjugates any commuting extension to a polynomial extension of the
same type. We apply our results to a measure-preserving diffeomorphism f
with a non-uniformly contracting invariant foliation W. We construct a mea-
surable system of smooth coordinate changes # : Wy — TxW such that the
maps Ay o fofy 1 are polynomials of sub-resonance type. Moreover, we
show that for almost every leaf the coordinate changes exist at each point on
the leaf and give a coherent atlas with transition maps in a finite dimensional
Lie group.

1. INTRODUCTION

The theory of normal forms for smooth maps originated in the works of
Poincaré and Sternberg [26], and normal forms at fixed points and invariant
manifolds have been extensively studied [4]. More recently, non-stationary nor-
mal form theory was developed in the context of a diffeomorphism f contract-
ing a foliation W. The goal is to obtain a family of diffeomorphisms #, : W, —
T, W such that the maps

(1.1) fe=FHpgofodl s TLW — T W

are as simple as possible, for example, linear maps or polynomial maps in a
finite dimensional Lie group. Such a map f is called a normal form of f on Wy.

The non-stationary normal form theory started with the linearization along
one-dimensional foliations obtained by Katok and Lewis [15]. In a more general
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setting of contractions with narrow band spectrum, it was developed by Guysin-
sky and Katok [11, 10], and a differential geometric point of view was presented
by Feres [7]. For the linearization, further results were obtained by the second
author in [25], and it was shown in [19] that the coordinates %, give a con-
sistent affine atlas on each leaf of W. In [20] we extended these results to the
general narrow band case. More precisely, we gave a construction of # that de-
pend smoothly on x along the leaves and proved that they define an atlas with
transition maps in a finite dimensional Lie group. Non-stationary normal forms
were used extensively in the study of rigidity of uniformly hyperbolic dynamical
systems and group actions, see, for example, [17, 18, 19, 5, 6, 9, 8].

To obtain applications for non-uniformly hyperbolic systems and actions,
one needs a similar theory of non-stationary normal forms for non-uniform
contractions. The existence and centralizer theorems were stated without proof
in [12] along with a program of potential applications. The theory, however, was
not developed for quite a while. The linearization of a C'*% diffeomorphism
along a one-dimensional non-uniformly contracting foliation was constructed
in [13] and used in the study of measure rigidity in [13, 14]. Similar results for
higher dimensional foliations with pinched exponents were obtained by Katok
and Rodriguez Hertz in [16]. The existence of .77, for a general contracting C*°
extension was proved by Li and Lu [22] in the setting of random dynamical
systems. Some results, such as existence of Taylor polynomial or formal series
for /£, can be obtained for extensions more general than contractions, see
2,1, 22].

In this paper we develop the theory of non-stationary polynomial normal
forms for smooth extensions of measure preserving transformations by non-
uniform contractions, described in the beginning of Section 2. This is a con-
venient general setting for the construction. The foliation setting reduces to it
by locally identifying the leaf W, with its tangent space & = T, W and viewing
Fx = flw, : Ex — Efx as an extension of the base system [ : M — M by smooth
maps on the bundle & = TW. The base system can then be viewed as just a
measure preserving one. In the extension setting, the map # is a coordinate
change on &, and we denote

Py = FHpy0 FroHy' 1 Ex— Efx.

In Theorem 2.3 we construct coordinate changes %, for y almost every x so
that &, is a sub-resonance polynomial. For any regularity of & above the criti-
cal level, we obtain / in the same regularity class.

Our construction allows us to describe the exact extent of non-uniqueness
in A and Z,. Essentially, they are defined up to a sub-resonance polynomial.
As a consequence of this, we obtain the centralizer theorem that the coordi-
nate change ./ also conjugates any commuting extension to a normal form
of the same type. We just learned of similar results in differential geometric
formulations by Melnick [23]. The approach in [23] is different from ours and
it relies on ergodic theorems for higher jets of &,. Our results assume only
temperedness of the higher derivatives of %, rather than certain integrability
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required in [23]. This allows us to obtain applications to the foliation setting
without any assumptions on transverse regularity of the foliation. In particular,
we consider a diffeomorphism f which preserves an ergodic measure with some
negative Lyapunov exponents and take W to be any strong part of the stable
foliation. In this setting Theorem 2.5 gives sub-resonance normal forms for f
along the leaves of W. Moreover, we show that for almost every leaf the normal
form coordinates #, exist at each point on the leaf and give a coherent atlas
with transition maps in a finite dimensional Lie group G determined by sub-
resonance polynomials. This yields an invariant structure of a G homogeneous
space on almost every leaf.

We expect these results to be useful in the study of non-uniformly hyperbolic
systems and group actions.

2. STATEMENTS OF RESULTS

AsSUMPTIONS 2.1. In this paper,
e (X,p) is a Lebesgue probability space,
e f:X — X is an invertible ergodic measure-preserving transformation of
X, ),
e & =X xR™ is a finite dimensional vector bundle over X,
» 7 is a neighborhood of the zero section in &,
o &% .7 — & is a measurable extension of f that preserves the zero section,
» F:&— & is the derivative of & at zero section, Fx = DoFx : Ex — Ery,
o Fand F! exist and satisfy log||Fyll € L'(X, ) and log || F;!ll € L' (X, w),
 the Lyapunov exponents of F are negative: y; <---< ¢ <0.

Sub-resonance polynomials. Let y; <--- < y, <0 be the distinct Lyapunov ex-
ponents of F and let &, = &} @ --- @ & be the splitting of &, for x € A into the
Lyapunov subspaces given by the Multiplicative Ergodic Theorem 3.1.

We say that a map between vector spaces is polynomial if each component
is given by a polynomial in some, and hence every, bases. We consider a poly-
nomial map P: &y — &), with P(0,) =0, and split it into components (Py(?), ...,
P,(t)), where P; : Ex — é"; Each P; can be written uniquely as a linear combina-
tion of polynomials of specific homogeneous types: we say that Q: & — éaJ’, has
homogeneous type s = (s1,..., s¢) if for any real numbers a;,...,a, and vectors
tj Eé",ﬂ, j=1,...,¢, we have

2.1) Qlarty +-+agty) = ay' ---ay’ - Qty +---+ ty).

DEFINITION 2.2. We say that a polynomial map P: &y — &) is sub-resonance if
each component P; has only terms of homogeneous types s = (sy, ..., S¢) satisfy-
ing sub-resonance relations

(2.2) xXi < Zsj xj» where s1,...,s, are non-negative integers.

We denote by %y , the space of all sub-resonance polynomial maps from &y
to &).
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Clearly, for any sub-resonance relation we have that s; = 0 for j <i and that

28j < x1/xe¢. It follows that sub-resonance polynomial maps have degree at
most
(2.3) d=d()=1x1/xel-
Sub-resonance polynomial maps P : &x — &, with P(0) = 0 with invertible deriv-
ative at the origin form a group with respect to composition [11]. We will denote
this finite-dimensional Lie group by G%. All groups G* are isomorphic, more-
over, any map P € %y, with P(0,) = 0, and invertible derivative at 0, induces
an isomorphism between G% and G; by conjugation.

We denote by By g (x) the closed ball of radius o(x) centered at 0 € &. For
N =1 and 0 < a <1 we denote by CV*(B, 5(x)) = CNV* (B, 5(x),&x) the space of
functions from By 4 (x) to &, with continuous derivatives up to order N =1 on
By (x and with N derivative satisfying a-Holder condition at 0:

(2.4) ID™RIlq =sup{ D' R—D{MRI - 1£17*: 0# t € Byg(n)} < oo.

We call |[DWNR|, the a-Holder constant of DR at 0. We equip the space
CN%(By.4(x) with the norm

(2.5) IRl cve (B x.0(xy = max{lRllo, IDMRIl, ..., ID™RIlg, ID™N R4},

where |[D®R|lg = sup {IDPR|: € By o).
We say that a non-negative real-valued function K on X is e-tempered at x if

(2.6) sup{K(f"x)e " : ne N} < oo,

and that K is e-tempered on a set if it is e-tempered at each of its points.

We consider an extension & satisfying Assumptions 2.1 and denote by A the
set of regular points and by y; <--- < x, < 0 the Lyapunov exponents of F given
by the Multiplicative Ergodic Theorem 3.1. For N and « as above we define

2.7 k=1+3/aif N=1 and x=4 if N=2.
If N =2 we allow a =0, in which case we understand CV® as CV.

THEOREM 2.3 (Normal forms for non-uniformly contracting extensions). Let &
be an extension of f satisfying Assumptions 2.1. Suppose that
(2.8) N=z1, O0sa<l and N+a>yi/xe.
Then there exist positive constants L = L(N,a) and €+ = €.(N,a, X1,...,X¢) SO
that for any 0 < € < €, the following holds. If there exists a positive measurable
function o : A — R so that 1/0 is e-tempered on A and & is CN'“(Bx,U(x)) for all
x € A with the derivatives measurable in x and with || cve €-tempered on A
then
(1) There exists a positive measurable function p : A — R so that 1/p is xe-
tempered on A and a measurable family {7} xen of CV¥ diffeomorphisms
Hx: Bx,p(x) — Ex satisfying #y(0) = 0 and Dyo#y = Id which conjugate &
to a sub-resonance polynomial extension 22:
Hpy 0 Fy=Pyro Sy, where Pye Sy ry forall xeA.
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Moreover, | Axllcvapyx,py IS Le-tempered on A and IID(()")Jt?xll is n’e-

tempered on A for n=1,..., N, with respect to the ¢-Lyapunov metric (3.2).

(2) Suppose F = {H:} xen is another measurable family of diffeomorphisms
as in (1) conjugating & to a sub-resonance polynomial extension 2. Then
for all x € A there exists Gy € G} which is measurable and tempered in x
such that #, = Gy o #,. Moreover, ifD(()")%bx = D(()")fo foralln=2,...,d
with d = |x1/x¢l, then J6; = Ay for all x € A. In particular, {#y}xen is
unique if d = 1.

(3) Let g : X — X be an invertible map commuting with f and let A’ be a
subset of A which is both f and g invariant. Let 4(x,t) = (g(x),%.(1))
be an extension of g to & which preserves the zero section and commutes
with & . Suppose that 4G is CN'“(BX,U(X)) for all x € A" with the derivatives
measurable in x, and that |G|l cne and || (Do%4,) "M are e-tempered on N'.
Then F€gx 0G0 H; " € Sy fx forall xe N,

COROLLARY 2.4. Suppose that F is C°(Byx s () and that 1/o and | F|lcv for
each N € N are e-tempered on A for each € > 0. Then A in part (1) of Theo-
rem 2.3 is C°°(Bx,p(x))-

Normal forms on stable manifolds. Let M be a compact smooth manifold and
let f be a diffeomorphism of M preserving an ergodic Borel probability measure
. We assume that f is CV®, that is CN with N derivative a-Holder on M. We
denote by A the full measure set of Lyapunov regular points for (Df,u). Let
x¥1<--- < x¢ be the Lyapunov exponents of (D f, u) and suppose ¢ is such that
x¢ <0. Then for each x € A there exists the (strong) stable manifold W, tangent
to & =&l @---® &% [24, Theorem 6.1].

THEOREM 2.5 (Normal forms on stable manifolds). Let M be a compact smooth
manifold and let f be a CN% diffeomorphism of M preserving an ergodic Borel
probability measure p. Suppose that N=1,0<a<1and N+a > y1/xe. Then
there exist a full measure set X which consists of full stable manifolds Wy and a
measurable family {7y} yex of CNY diffeomorphisms

T Wy — Ey = T Wy

such that

() Py=Hfxo0 fodit: & — Erx is a sub-resonance polynomial map for
each x€ X,

(ii) Fx(x) =0 and Dy Fy is the identity map for each x € X,

(i) | x| cna is tempered on X,

(iv) Fyo Ay 1.6, — &y is a sub-resonance polynomial map for all x € X and
yeWy,

W) Ifg: M — M is a CN* diffeomorphism commuting with f which pre-
serves the measure class of pu then Fgyo go S l.g — Egx 1s a sub-
resonance polynomial map for all x in a full measure set X' which con-
sists of full stable manifolds.
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Another way to interpret (iv) is to view % as a coordinate chart on Wy iden-
tifying it with &. In this coordinate chart, (iv) yields that all transition maps
Sy o Ay ! for y € Wy are in the group G generated by G and the translations
of &;. Thus .#, gives the leaf a structure of homogeneous space W, ~ GX/G?,
which is consistent with other coordinate charts .7, for y € Wy and is preserved
by the normal form 22, by (i).

COROLLARY 2.6. Under the assumptions of the Theorem 2.5, if d = |x1/xel =1,
i.e., 2y¢ < x1, then 22y is the linear map Df|g, , the family {#x}xex satisfying
(ii) and (iii) is unique, the maps 7y oJ; 8 — &y are affine for all x € X and
y € Wy, and #, depends CN-smoothly on y along the stable manifolds.

3. LYAPUNOV EXPONENTS AND LYAPUNOV NORM

In this section we review some basic definitions and facts of the Oseledets
theory of linear extensions. We use [3] as a general reference. For a linear exten-
sion F of a map f we will use the notation

(3.1 FQZanfwo---ofooFx_

THEOREM 3.1 (Oseledets Multiplicative Ergodic Theorem, see [3] Theorem 3.4.3).
Let f be an invertible ergodic measure-preserving transformation of a Lebesgue
probability space (X, ), and let F be a measurable linear extension satisfying
logl|Fxll,log | F; 1l € LY(X,u). Then there exist numbers y; < -+ < x¢, an f-
invariant set A with w(A) =1, and an F-invariant Lyapunov decomposition

6’,6:8;69---696’){ forxeA
such that
(i) 11111 n~llog|Flv| = y; foranyi=1,...,¢ and any 0 # v e &, and
n—x00

(ii) nhIP n‘llogldetFQI:Zlemi)(i, where m; =diméa};.
— 00

The numbers y,,..., x, are called the Lyapunov exponents of F and the points
of the set A are called regular.

We denote the standard scalar product in R” by (:,-). For a fixed € > 0 and
a regular point x, the e-Lyapunov scalar product (or metric) :,*)x, in & = R™
is defined as follows. For u € éajc and v € éai with i # j, (4, V)x¢ := 0, and for
i=1,...,¢ and u,veé’};,

(3.2) (U, Ve =m Yy (FPu),F(v)) exp(—-2x;n—¢lnl).
nez

Note that the series converges exponentially for any regular x. The constant m
in front of the conventional formula is introduced for more convenient com-
parison with the standard scalar product. Usually, £ will be fixed and we will
denote (., ) simply by (-, -)x and call it the Lyapunov scalar product. The norm
generated by this scalar product is called the Lyapunov norm and is denoted by
I Ilx,e o I~ llx.
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Below we summarize the basic properties of the Lyapunov scalar product and
norm, for more details see [3, Sections 3.5.1-3.5.3]. A direct calculation shows
[3, Theorem 3.5.5] that for any regular x and any u € &}

(3.3) exp(ny; —eln) llullxe < 1Fy (W) frye < exp(ny; +€lnl) llullxe forall nez
and
(3.4) exp(ny¢—en) < |Fllpny—x s exp(ny,+en) forall neN,

where || - || fnx— is the operator norm with respect to the Lyapunov norms. It is
defined for any points x, y € A and any linear map F: &, — &), as follows:

||F||y<—x = Sup{”Fu”y,s: UE &y, ”u”x,s =1}

We emphasize that Lyapunov scalar product and norm are defined only for reg-
ular points and depend measurably on the point. Thus, a comparison with the
standard norm is important. The uniform lower bound follows easily from the
definition: ||ull ¢ = ll#ll. The upper bound is not uniform, but it changes slowly
along the regular orbits [3, Proposition 3.5.8]: there exists a measurable function
K. (x) defined on A such that

(3.5)  llull=llullxe < Ke(x)-llull forall xe Aand ueé&,, where K¢(x) =1,
and

(3.6) Ke(x)e " < K. (f"x) < Ke(x)ef!" forall xe A and neZ.

Using (3.5) we obtain that for any point x, y € A and any linear map F: &y — &)
3.7 K0 IF] = IFly—x = Ke()-IIFI.

When ¢ is fixed we will usually omit it and write K(x) = K¢ (x) and [|ullx = ] x,¢-
Similarly, we will consider the Lyapunov norm of a homogeneous polynomial
map R: &y — &) of degree n defined as

(3.8) IRIly—x =sup{llR(Wllye: ueéx, lulxe=1}

It follows that

3.9) IRoP|l<|RIl-IPI".

For a homogeneous polynomial map R: &y — &y of degree n we have
(3.10) Ke(X)" IRl < IRl y—x < Ke () - IRIl.

This formula allows us to switch between the standard and Lyapunov norms in
spaces of polynomials and smooth functions.
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4. PROOF OF THEOREM 2.3

We note that (2.8) implies N = d. We give the proof for the case @ > 0. The
proof for a =0, and hence N = 2, is similar but avoids difficulties of estimating
the Holder constant at 0. We will use the notation &' = F¢n-1,0...0F 0 Fy.
Now we define constants that will be used throughout the proof. We set

4.1) L= L(N,a) =max{x, N> +3N?+1}, where « is given by (2.7).

We define A < 0 as the largest value of —y; +Z§:1 sjxjoverall i e {l,...,¢} and
non-negative integers si,..., sy such that sub-resonance condition (2.2) is not
satisfied:

(4.2) /I:max{—)(i+Zijj<0}.

The maximum exists since there are only finitely many values of —y; + 3 s;¥;
greater than any given number. Next we recall that N+ a > y;/y, and set

(4.3) v=y1—(N+a)ye >0.

The proof of part (1) of Theorem 2.3 works for any L = L(N, a) and any ¢ < &,
where

(4.4) e =min{v/2L+4(N+1+a)), —xe¢/(2NL+3), ~A/(N*+N+1)}>0.

For parts (2) and (3) of Theorem 2.3 we will use smaller bounds on &, namely,
€1 =g/ (N+1) and €, = g9/3(N + 1), respectively.

We fix L= L(N,a) and 0 < € < gy and let K = K; be as in (3.5). Since || Zxllcne
is e-tempered, there is a function C: A — [1,00) such that for all xe A and n e N

(4.5) |Fxllcve <C(x) and C(f"x) < e™C(x).

Similarly, replacing o by a smaller function if necessary, we can assume that it
satisfies

(4.6) o:A—(0,1] and o(f"x)=e "0o(x).

LEMMA 4.1. Under the assumptions of Theorem 2.3, there exists a function p :
A —(0,1] so that forall xe A, n€N, and t € By p(x) < Ex, we have p(x) <o(x) <1
and

(1) p(f"x)=e *"p(x), wherex is given by (2.7),

@) IDy F 2 pryy < eXeF200,

3) ID:FLN < K(x)erer2am,

@ 1F{ D1 < K(x) eX29m g,

5) NF2@) pry < X207 g

Proof. We take f=1if N=2 and f=a >0if N =1. For each x € A we define
4.7) p(x) = o (x)[e e (C(x)K (x)?)~'1VP.

Then (1) follows from (4.5), (4.6), and (3.6); (5) follows from (2) by the mean
value theorem since %' (0) = 0. We prove (2), (3), and (4) by induction. The
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statements are clear for n = 0, suppose they hold for n. Note that (2) implies (3)
by (3.7), and (3) implies (4). We observe that

1D F N prot g < 1Dy Fpnll prr g pu - 1Dt Fprll pry, Where 1 = F ().
Then (2) follows from the inductive assumption and
(4.8) 1Dy F sl prot g pry < XH2E,
To prove (4.8) we denote A = Dy &F nx—DoF pny. By the choice of § and (4.5), the
B-Holder constant of Dy & fny at 0 is at most C( f"x), so using (3.7) we obtain

1A ps1 g o < K(E0IAN < K(F" 0 CU 0L 1P,
and using (4.5), (3.6) and the inductive assumption (4) we get that this is at most
K(x) C(x) €@ DER ()8 PXe+26n ) 11 < of C(x) K(x)2 2+ Blte+20In 1B
Since || f]l = p(x) and By¢ +2(1+ B)e < 0 we obtain
Al fro1 gy < € C(x) K(x)zp(x)ﬁ <eelteg(x)P < gelctE,
Since
Do Ffny=Fpny and ||Fpngll proiypny < 7€

by (3.4), we conclude that

Dy gf”x”f"“x«—f”x = ||A||f”+1x<—f"x + ”Ff”x||f"+1x~—f”x
< EeNtE 4 oNITE < phet2E, O

4.1. Construction of 22 and of the Taylor polynomial for #. For each x € A
and map & : &x — &y we consider the Taylor polynomial at 7 = 0:

N
(4.9) Ft) ~ Y F (1),

n=1
As a function of t, F,(C")(t) : &x — &fyx is a homogeneous polynomial map of
degree n. First we construct the Taylor polynomials at ¢ = 0 for the desired
coordinate change % (t) and the polynomial extension 22,(f). We use similar
notations for these Taylor polynomials:

N d
)~ Y HP (@) and 2.(1)=) PP (1.

n=1 n=1

For the first derivative we choose
H)(CD =Id: 6y — &, and P)(CD =F, forall xeA.

We will inductively construct the terms H'” and P for all in x € A so that P{"”
is of sub-resonance type and they are measurable in x and n2£-tempered, ie.,

—nek —n’ek )
(4.10) ?clellge e ||H}Z)x||ka(_ka<oo and ?clelll\J)e e IIP}’,ﬁxllfmx,_ka<oo.
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The base of the induction is the linear terms chosen above. Now we assume
that the terms of order less than n are constructed. Using these notations in the
conjugacy equation Ay o Fy = Py 0 A We write

N . N
(Id +) H}‘;) o (Fx +Y FY

i=2 i=2

~

d
Fe+ ) PY
i=2

o

N .
d+Y HY|.
i=2

Considering the terms of degree N = n = 2, we obtain

FY + HY o F(x) + ) HY o FP = FooHW 4+ P+ Y PV o HY,

where the summations are over all i and j such thatij=nand 1<i,j<n. We
rewrite the equation as

(4.11) FlopW=_H"  Flo H}'Q o Fy+Qy,
where
(4.12) Q=F'F"+ ¥ H)er)-PloH?|.

ij=n, 1<i,j<n

We note that Qy is composed only of terms HY and PY with 1 < i < n, which
are already constructed, and terms F) with 1 < i < n, which are given. Thus by
the inductive assumption Q, is defined for all x € A and measurable. We will
show later that they are also suitably tempered in x.

Let 2" be the space of all homogeneous polynomial maps on & of de-
gree n, and let #" and J‘/)C(") be the subspaces of sub-resonance and non sub-
resonance polynomials respectively. We seek H)(C”) so that the right side of (4.11)
isin 5@("), and hence so is P)(C”) when defined by this equation.

Projecting (4.11) to the factor bundle 2" /%™, our goal is to solve the equa-
tion

(4.13) 0=-H"+F o H o Fy +Qx,

where H" and Q are the projections of H"” and Q respectively.
We consider the bundle automorphism @ : 2"V — 2™ covering f~!: M —

M given by the maps @, : 92}”}3 -\

(4.14) ®(R) =F;'oRoF,.
Since F preserves the splitting & = &'@---@&”, it follows from the definition that

the sub-bundles .Y and A" are ®-invariant. We denote by ® the induced
automorphism of 2V /%™ and conclude that (4.13) is equivalent to

(4.15) H = &)x(H}’Q), where ®,(R) = ®,(R) + Qy.

Thus a solution of (4.13) is a ®-invariant section of 2"V /.. We will show
that ® is a nonuniform contraction and that it has a unique measurable tem-
pered invariant section. First, for polynomials of specific homogeneous type
the exponent of ® is determined by the exponents of F as follows.
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LEMMA 4.2. For a polynomial R: &, — g}x of homogeneous type s = (s1,..., S¢)
with sy +---+Ssp=n,

(4.16) 1D (R) [l xey < @ AFESIHHFDE I RY o p

Proof. Suppose that v = vy + -+ vy, where v; € éo){, and |lvlly = 1. We de-
_ . Y= . I i )

note a; = IIFIgé | fx—x and observe that Fy(v;) = a; l/} € gfx with || v} lrx<lvjlx.

Since R has homogeneous type s = (s1,...,S¢) we obtain by (2.1) that

(4.17) (RoF)() = R(ayvy + -+ agvy) = ay' - a,) - RV} +-++ ).

where v/ = v] +--- + v} has ||| rx < [lvllx = 1 by orthogonality of the splitting in
the Lyapunov metric. Thus

I(Ro F)W)llpx=ay'---ay - IRW) px < @y -+~ a) - IRl frepx

for any v € & with [[v]lx =1, so we obtain [Ro Fyllx—fx < ail o-~a7 MR fxefx
by definition (3.8). Now (3.9) yields

19 (R)llxx = | Fl © RO Fellxx
< Il g 1RO Frll v px

-1 N N
= ”Flg} “x«—fx'al1 "'(l/ : ||R||fx<—fx

<e MM IRl e f
J

Since a; = [1Fl gl fxex < etit€ and ||F|g e px < €74 by (3.3). O

REMARK 4.3. Similarly, one can show that | @} (R)|| py—fr < X251+ De.
IRl x—x. Since this holds for any € > 0, using (3.10) to compare the Lyapunov
and standard norms, one can conclude that the Lyapunov exponent of ® on R
is
lim k'log|l®*(R)Il = —y; +) Sixj-
k—to0

For all non sub-resonance homogeneous types we have —y; +3 sjx; <A by
the definition (4.2) of A. Thus Lemma 4.2 yields the following lemma.

LEMMA 4.4. The map ®: N — &' given by (4.14) is a nonuniform contrac-
tion over =, and hence so is ®: %" | — W . # gjven by (4.15). More
precisely, | ®(R)l| x—x < e VE R g

Proof. The statement about ® follows since the linear part ® of ® is given by ®
when 2 /. is naturally identified with .4 ", By the choice of ¢, we have
A+ (n+1)e<0. O

It follows from the previous remark that A is the maximal Lyapunov expo-
nent of ® over f~! on the space of non sub-resonant polynomials and that all
Lyapunov exponents of ®| »m are non-negative.
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Now we construct a ®-invariant measurable section of 2 = 2 /%™ and
study its properties. The construction is orbit-wise. We fix a point x € A, con-
sider its positive orbit {x; = f*x: k =0}, and define the Banach space

a2
PB* ={R=(R)y: Rk € By, IRl < oo}, where |R| = supe RN Riell
>
and || Rkl x, —x, is the norm induced on %,, by the Lyapunov norm |- ||, on &y.
We denote Q = (ka)zo:() and claim that it is in 8*. For this we need to estimate
the growth of the Lyapunov norm of (4.12) along the trajectory:

-1
”ka ||xk<—xk = ”ka ||xk<—xk+1 . ( ”F)(CZ) ”ka«—xk

(i) (i
(4.18) + ) WH e Mo i 1 F Mgy

ij=n, 2<i,j<sn/2

() i) J
1P Ny e 1D 1)

First, [|F;;!llx,—x.,, < e "¢ for all x and k by (3.4). The exponential growth
rate in k of IIF)(CZ) lx.,,—x, is at most 2¢. Indeed, using (3.10) and (3.6) we can

obtain from (4.5) the corresponding estimate for CN% norm with respect to the
Lyapunov metric on &y, :

4.19) 1 Fxllona g, < KPR Fy llova < Kt Clxp) < e?FVEK () C ().

Then using the inductive assumption (4.10) for the terms of order i, j < n, we
can estimate the exponential growth rate of the two terms in the sum respec-
tively as (i2 +2i)e and (j2 + i®j)e, which are at most ((n/2)? + in)e < n®e. So
the exponential growth rate of |Qy, llx,—x, can be estimated by n%e and thus
1Qll <oo.. ) ) )

Then ®* induces an operator on %* by (P*(R))x = Dy, (Ri+1) + Qr and we
have

~ ~ a2 -
1B*(R) — ®* (Rl = sup e " ¥ || &y, (Rgs1 — Rpy ) e

k=0

a2
en keA+(n+1)£ ||Rk+1

IA

sup e
k=0

/
- Rk+1 ”xk+1‘_xk+1

A+(n?+n+1)e —en?(k+1 /
<e ( )e . sup e ( ) [ (Ri+1— Rk+1)||xk+l‘_xk+l
k=0

2
< el+(n +n+l)e ”R_RI”.

Since A+ (n®+n+1)e<0 by the choice of € (4.4), ®~ is a contraction and thus has
a unique fixed point R* € 2*. We claim that H = Ry is a measurable function
which is a unique solution of (4.15) or equivalently (4.13). Measurability follows
from the fact that the fixed point can be explicitly written as a series

(&)
(4.20) AM =Y (F5) o Qy 0 FE.

k=0
Invariance is clear since (Rz H)C;CO:O is a fixed point of ®/* which coincides with
(Rix)zozo by uniqueness and thus Ry = R(J; *. More generally, A" = R)* = R,
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and since R* € %%, the exponential growth rate of || A" ||x,—, is at most n’e.
Now we can choose H\"” as a lift of H” to 2\"” which is measurable in x and
satisfies (4.10). Then we define P,(C”) by equation (4.11). It also satisfies (4.10) as
so do H and Q and as || Fyllx—fx and IIF);1 | fx—x are uniformly bounded. This
completes the inductive step and the construction of H"™ and P"?, n=1,...,N,
satisfying (4.10).

Thus we have constructed the N™ Taylor polynomial for the coordinate change

N
(4.21) 22X (1) =Y H™(t) ofdegree N=d=x1/xe]

n=1

and the polynomial map 2, (1) = ¥¢ 1P)(C") (1).

n=

4.2. Construction of the coordinate change #. We rewrite the conjugacy equa-
tion ¢y 0 Fy = Py oAy in the form

4.22) Fy =P 0 Hpyo Fy.
A solution € = {A,} of this equation is a fixed point of the operator T given by
(4.23) T(F)x = P, ' 0 Fpy 0 Fy.

We will find # in the form # = #N + R, where # is given by (4.21). We
denote

(4.24) R=#-7N and TR =TH"+R -7#"

and observe that T(#) = .7 if and only if T(R) = R. We will find R, using the
fixed point of a contraction T* induced by T on a certain space €~ of sequences
of functions along the orbit of x. Now we define the space €.

By the construction of #Y and 2, #" and T(#") have the same deriva-
tives at the zero section up to order N, so we consider functions with vanishing
derivatives at the zero section up to order N. First we describe the space of func-
tions at each regular point x. For any x € A we denote by B, , the ball centered
at 0 in &, of radius r < p(x) <1 in the Lyapunov norm || - || .. We define

6y ={ReCN*(By,,8): DPR=0, k=0,..., N}.

Throughout this section we use the CN* norms with respect to the Lyapunov
metric on &x. They are estimated through the norms for the standard metric
(2.5) in (4.19). In particular, we use the a-Hélder constant (2.4) of D™V)R at 0
with respect to the Lyapunov metric, which for any R € 6, is given by

(4.25) ID™ Ry q =sup {ID™M Rl r- I1£13%: 0# t € By, ).

For any R € 6, lower derivatives can be estimated by the mean value theorem
as

(4.26) IDY Rl < 21" - sup {IDY Rll et sl < 2},
so using the above Holder constant we obtain that forany0<n < N and t € By,

(4.27) IDY Rl yer < 11X IDN R 1 4.
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Thus the norms of all derivatives are dominated by the Holder constant and
hence

(4.28) IRl cxap, ) = ID™ Rl 0.

It follows that €, equipped with the norm |D™R||, , is a Banach space.
We will choose a small r = r(x) < p(x) satisfying (4.40) and set

(4.29) ry = re 2NLke

where L is given by (4.1). We define ¢* as the following Banach space of se-
quences of functions along the orbit x; = f*x.

(4.30) ch = {R = (Rk)zozo : Rk € ngk,rk) ||R||<gx < OO},
where
(4.31) IRll+ = sup{e T IDN Rl 0 : k= 0}

with the norm |- ||y, o defined as in (4.25) and satisfying (4.28). We consider the
operator T* induced by T on €*:

(4.32) (T*(R)i = (Py) Lo (N

N+ Riy1) o Fy, — HY.
Now we estimate the growth of CN% norms of Jdﬁv and T(Jf’N)x = @;1 OJL”A; o

f
Z, along the orbit to verify that T*(0) is in €*. We recall that
DY) (#,)=1d and D’ (@,)=PY =F,,
by the construction, and the latter satisfies
| Fxllxpy—, < %€ and 1Fg] ey, s €707

Also, for 2 < n < d, the Lyapunov norms of D{” (2,,) = P?” and D{" (#,) =
H ,(CZ) grow at most at the exponential growth rate n?e in k by (4.10).

Recall that the inverse of 22, is also a sub-resonance polynomial 2! =
Y4, (@:H™. We now show that the Lyapunov norms of (22;1)™ also grows at
most at the exponential rate n’¢ in k. First, its linear term (22;1)) = (P! =
F;kl has bounded Lyapunov norm. Inductively, we consider terms of order n > 1
in the equation 220 2~! =1d and obtain

Vo @)W s pWo@ HDy Y o)) =,
i,j<n,ij=n
The terms in the sum can be estimated as ||9’3(Cfc) o (Q;kl)(j) | < II(@J(C? -1 (e@x_kl)(j) I
and hence are (i® + j%i)e-tempered by the inductive assumption. Since i, j < 5
we obtain i+ j2i =i’ + ni < "72 + ”72 < n. Multiplying the equation by bounded
(ng)_l we conclude that (g@x_kl)(n) is n’e-tempered, completing the induction.

Now we estimate C'** norms of polynomials #" and 22~!. For #", the

derivative of order IV is constant H)(CN) on &y, and the lower derivatives on By, y(x)
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can be inductively estimated similarly to (4.26),
IDN D 7] s < 1DV Al e + 11 HEY [l e
< IHS  Pllxes + TH ks
yielding the same estimate of the exponential rate as for HN,
(4.33) |7l ova B 2 gy < C1(0)eN ¥ for all k=0,

Similarly for 9?’;: the derivative of order d < N is constant on &y,, higher deriva-
tives are zero, and the lower derivatives can be estimated as for ., so we obtain

— 2
(4.34) 1) ™ lene B peoy < C2(x)e™ ¥ forall k= 0.

To obtain estimates for (T'(#N Nx =P, 1 OJf}\; o %, we use the following lemma.

LEMMA 4.5. IfQ is a polynomial of degree at most N and F is CN'® then Qo % is
CN and |QoZF |l cnve < en Qv F 1Ny, + 1Qll o, where cy depends on N only.

CcNa
Proof. Since Q is C* it is clear that Qo & is CN. For the N derivative we have
N N k ()
DV Qo) =DswQeDNF+ Y DY, QoD 7.
kj=N, j<N

First we estimate a-Holder constant at 0 of the first term. As DQ is linear, we
get

Dz)Qo Dy F —DoQo Dy F
= (D#(nQ-DyQ) o DN F + DyQo (DN 7 - DV )
whose norm can be estimated by
ID76Q~DoQlI- 1DV +1DoQll- 1D F —~ DV F |
<lQlicz- IFOI-1Fllcrve 1QNcr - 1 F lgna - 114
<IQllcz - IF lcna - 1 F I - N EN QN v+ 1F | o - I £

.. N . .
So the a-Holder constant at 0 of D gy QODg ) is estimated by 2| Qll o~ ||£Z||26Na.
The other terms in the sum are C' and hence are Lipschitz with constant bound-
ed by supremum norms of their derivatives. These norms, along with the norms

of lower derivatives of Q o & can be estimated as a sum of termss of the type

(4.35) 1D, QoD F) < 1D, QI 1D F X < 1Qlew 171 My
We conclude that [[Qo F||cne < ey lIQllcy ||§||g,\,,a +1Qll co. O

Later we will also need a similar result for the case when Q is not a polyno-
mial.

LEMMA 4.6. IfQ and & are CN®, then Qo % is CN% and
Qo Fllcna < ey 1Qll cra ||9||g§,g +1Qlco,

where c}, depends on N only.
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Proof. The proof is the same as in Lemma 4.5 except that, since DYV Q is only
Holder, we also need to estimate the a-Holder constant at 0 of the term D;V()I)Qo
D[g in
N k ()
DM (QoF) =D, QoDiF +DgznQoDMF+ Yy DG, QoD Z.
kj=N, j,k<N
We consider
N
DY QoD F - DJ’ Qo DyF

= (D;Vgno -DMQ oD, F + DM Qo DN F - DN Qo DV F

and estimate its norm as
1Qllerva |F DN 1D F N + Lip(D Q) - | D+F — DoF |

< 1Qllcve - UF Nl e - 1F 1N + i IDN QUIF NN 1 F I cra - 121

N N-1
<1l (1Qlcra - I1F o ™ + ey IQlex - IF i er ™ - I F Nl cra)-

Here we estimated the Lipschitz constant Lip(D(()N) Q) of the homogeneous poly-
nomial N-form D(()N)Q on a ball of radius R = || & by the supremum of its
derivative on that ball, which is a homogeneous polynomial (N —1)-form whose
norm can be estimated by IIDéN )QII with some constant C;v depending on N
only.

So the a-Holder constant at 0 of Dg()t)

N+ / N / N+
IQlera IF N oi ™ + enl F Nl ra) < (eiy + DIQN era I F l ona -

We conclude as in Lemma 4.5 that ||Qo & || cne < cg(, 1Qll cnva |I9||1CV;_U‘Z‘+ IQllce. O

Qo D% is estimated by

We apply Lemma 4.5 with Q = #" and then with Q = 227!, We conclude that

T(#") is C™®. Moreover, since |||y, is 2¢-tempered by (4.19), using (4.34)

and (4.33) we can estimate the growth rate for T(#") by N?e + N(N?e + N 2¢)
and obtain

3 2
(4.36) T (AN ll eva (B xy p gy < €3(x) N TINIRE,

Recall that L = maxix, N3 +3N?2 + 1} by (4.1). Using r < p(x), Lemma 4.1(1),
and (4.29) we obtain that that for all k=0

(4.37) ry = re 2NLek o pomlek o p(x)e_“k < p(xg).

Finally, L > N3+ 3N? ensures that 7(0) € €% as | T(0) [~ is at most

(4.38) ' =supe ¥ (| T(A™) il cvaB x pae)) + 17 leva (B piy) < 00
k=0

We recall that v > 0 is given by (4.3) and define

(4.39) 0=1-¢"?%/2, 0<O<1, and y=7Y'/6.

We choose r = r(x) < p(x) <1 satisfying
(4.40) r<elRe(x)y), r<p)/Qy), r=<0/(csx)yNeMbE)
where 0, v, c2(x), ¢5(x), M are given by (4.39), (4.34), (4.46).
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We denote by B*(y) the closed ball in €* of radius y. Our goal is to show that
T* is a (1 — 0)-contraction and that T*(B*(y)) = B*(y). Since || T(0)[l¢+ <7’ it
suffices to prove that the differential of 7* at R is a (1 — 6)-contraction for each
Re B*(y).

First we check that the compositions in (T(R)), are well-defined. We take
t € By,r. and show that ¢ = Z,, () is in By, r.,,- Since by (4.37) t is in the
ball By, y(x,) in standard metric, the estimates in Lemma 4.1 hold for any k. In
particular, by (2),(5)

1 2. ! 2
@.41) IDWFylly e <% and 1y, = 1P Ol < X2 g,
Since || tllx, <71k = re 2NLke thig yields
(4.42) ” t/”xk+1 < e)(g+2£re—2NLk£ < re—2NL(k+1)£ = Fisls

since by the choice of € we have y,+2¢+2NLe <0.
Now we estimate t = (ijﬂ\kf+1 +Ry41) (1)) to show that it is in By, o(x,,,) Where
we have estimates for (g’xk)‘l. Using the mean value theorem, (4.38), and the

inequality y’ <y we obtain

N / ! N ! N
1Y () s < W N 176D et < 08 N 17655 oM By p i)

L(k+1)e, / (1—2N)L(k+1)£Y <ry e—L(k+1)£

< TIgs1€ Y <re

as 2N —1= 1. Using (4.28) we obtain similarly that for any Re B*(y),

L(k+1)e —L(k+1)e

! ! D
IRk1 () sy < 1 ey - ID™ Ricir a0 < Trs1@ lIRllgx<rye

Since p(xi) = p(x)e ¥k = p(x)e~ L% and 2yr < p(x) by (4.40), we obtain

N —L(k+1
1" x,, = II( (k+De

Xke+1

+ Ry 1) ()l gy, <2yTe

(4.43) —L(k+1)e

<px)e = p(Xg+1)-

Now we show that T* is a contraction on B*(y) by estimating its differential.
For any R, S € B*(y) we can write

(T*(R+8)-T*(B),
= (P0) " o (75

Xk+1

+ Ries1 + Ska1) 0 Ty — (Po) ' 0 (HEN, + Riesn) 0 .

Xk+1
Differentiating (e@xk)_1 and denoting

y(t) = (Jfgﬂ +Rk+1)(9’xk(t)) and  z(f) = Sg+1(Fx (1)
we obtain

(T*(R+38) = T*(R)) (1) = Dy (Pr,) " 2(1) + E(2(1)),

where E is a polynomial with terms of degree at least two. Thus || E(z(#))|l¢x =
O(lSI%,,) and so the differential of 7* is given by

(IDRT¥18)(8) = Dy (P) ™ Skt (F, (1) = Ay (1) (D),
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where Ay(s) =D 3(@xk)—1, To estimate the norm we consider the derivative of

order N. Since Ay (y(t)) is a linear operator on z, the product rule yields

@.44) DW[AL(y(1)2(0] = Ae(y()DWN (1) + Y ey D™ Ar(y(£)) DD 2(1),

where m+ 1= N and I < N for all terms in the sum. Differentiating z(t) we get
DD2(1) = DV Sps1 (F, (1) =Y. DV Spy1 0 DY 7,

where ij =1 and ' = %, (1). Only the first term in (4.44) contains D™V Sy, so

(4.45) DM (IDRT%18), = DY}y @) e DYV Sty 0 DV F, + I,

where J consists of a fixed number of terms of the type
D Ap(y() (DY S0 DY Fy,), i<N, m+ij=N,
whose Lyapunov norms can be estimated by

j N-1
AR I en g, - 1D Skl - 1P I o -

We use (4.19) to estimate the last term: [| Fy, | cna , < K(x)C(x)e@* D€ For the
middle term by (4.27) we have as i < N

i 1 N 1+ G L(k+1
1D Sp1lley < NE NS UD™ Sp it < NEILT - 1Sl eHFFDE

since 11, < X+ tllx, < 2l by (4.41).
Since (Qﬂxk)_1 is polynomial of degree at most N, using (4.34) we obtain
-1
”Ak”CN(Bxk,p(xk)) = ”D('@xk) ”CN(BxkyP(xk))
-1
< 1) ey B px

2
< cy(x)eV ke,

Finally, since y(f) = (Jf)ﬁ\klﬂ +Ri+ 1)) (Fy (1) =1" € Byy,1,p(xien) DY (4.43), the first

term in (4.44) can be estimated using Lemma 4.5 and equation (4.35)

ARl ens, < 1) evBrpeo - 17O en .
2 N N
< (0 VR (1N |+ Reatllow sy, 1P (D15 )

< Cz(x) eNZkE . (ZYeL(k+1)£)N X (K(x)c(x)e(2k+l)£)N2

2
< ¢4(%) YN' e(NL+3N )(k+1)£’

since we have || R|«x <y and in\kfﬂ term is estimated similarly from (4.38). Thus
we obtain the following for the norm of Ji in (4.45):

NL+3N?)(k+1 1+ L(k+1)e _NQRk+1)e
,e( )( )E'”t”xka (k+1) e ( )

1Tkl < cs(x)y™N NSl -e

(4.46) _
< c5(%) YNrk e(M+L)(k+1)£. l t”;‘ék “1ISllx,

where M = NL+3N?+2N. For the first term in (4.45) we claim that for ¢’ = y(t)
(4.47) IDS) (@) My, < €122
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Indeed, we recall that
1 -1 -1 -
IDSY (Pe)  aemsins = | Fi iy < €01

If d = 1, then DY (22,,) is constant and (4.47) follows. If d > 2 then N =2 and

the Lipschitz constant of D (22, )~ is at most c;(x)e™ ¥ by (4.34). So using
(4.43) we obtain

1 -1 1 -1 N?
IDY) (24 )™ = DY (Pe) Mlxpmrinr < 20N N1 g,

N2ke 2yr o Lk+De (N*-L)(k+D)e

< c2(x)e < cp(x)2yre < c(x)2yr <g,

where the last two inequalities hold since N? < L and r < £/(2¢2(x)y) by (4.40).
Then (4.47) follows from e X1+€ + ¢ < e N1HE(] + ) < e N112€
Now we estimate the main term in (4.45) using (4.47) and (4.41):

1 - 1
”DE»H) (yxk) 10D§{V)Sk+l ODEf )gxk ”xk«—xk

1 -1 N 1 N
< IV (@) Mxpmxer 1DV Skl a 119, - IDP e 1Y

(4.48) _
< e—)(1+28 . ”S”(gx eL(k+1)E . e(X(X[+28) ” t_”gk . eN(X[+2£)

—v+L G Lk
=e e, ISl e,

where v=—(N+a)y,+x1>0and L' =2+ L+2(N +a). Since € < gy <v/(2L') by
the choice of j, we obtain that e Vtle<ev2 =1 _29 by (4.39).

Finally we estimate (4.45) combining (4.46) and (4.48). For any Re B*(y) we
have

Since ry = re 2NLke gnd 2NL > M, as L= N3 +3N? + 1, we see that for all k>0

((M+L)(k+1)-Lk)e ((M-2NL)k+M+L)e

c5(x)erk e < c5(x)yN re

<cs(x)yNreMtbe < g

as r < 0/(c5(x)yNe™M*+1)€) by (4.40). Then for all R € B*(y) we obtain
IDM(IDRT18)  lxeer, < NEIS, - ISllge - ¥ (1-0),
hence
ID™(IDTYS), Nlxpa S (1=0)- 1Sl - €"*¢,

and so

IDzT*18 = = sup e X% | DM (TX(8)) i llxpa < (1= 0) - [ Sllgr.
k

Thus |DzT*|| < 1-0 for all R € B*(y). Since || T*(0)ll¢~ <y’ = 0y, the opera-
tor T* is a contraction from B*(y) to B*(y). Thus T* has a unique fixed point
R* € B*(y) which depends measurably on x. As in the construction of Taylor
coefficients, the uniqueness implies that R, := (RY) is Le-tempered and solves
the equation T(R) = R where T is given by (4.24). We conclude that the measur-
able family of CM® maps 7, = #Y + Ry, is Le-tempered and satisfies (4.23), i.e.,
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conjugates &, and Z,. Then the maps ./, defined on By ,(x) can be uniquely
extended to CNV¢ diffeomorphisms on By, p(x) by the invariance

2, () = (PF) o Hpi 0 FE (D)

since for each t € By p(x) we have gf(t) € By, for some k. Indeed, gf(t) is
contracted by Lemma 4.1(5) at a faster rate than r; by the choice (4.4) of €y:
Ye+2e <—-2NLe.

This completes the proof of the first part of the theorem.

4.3. Prove of part (2): “uniqueness” of /. This essentially follows from the
“uniqueness” of the construction. Starting with .#, = # we inductively con-
struct coordinate changes ./ = {#% x} for k =1,..., N and show that they sat-
isfy the same temperedness condition as .#°. We denote their Taylor series by

o0

Hrx() =) H(@).
n=1
The base of the induction is ., = 72, which is tempered by the assumption and
whose linear term satisfies Hfljc = H)(CD =1d. Suppose #%_1, k = 2, is constructed
so that

H,(C'i)l . are n*e-tempered for n=1,..., N, H)(C") = H,(C'i)l  forn=1,...,k-1,

and the corresponding normal form 2%;._, , is of sub-resonance type. It follows
that 22 and &%_; have the same terms up to order k—1. Hence H l(cli)l,x and H)(Ck)
satisfy the same equation (4.13) when projected to the factor-bundle %2 /.
Indeed, the Q term defined by (4.12) is composed only of F) and terms H"”
and P with 1 < i < k— 1, which are the same for .#_, and .#. By uniqueness
we obtain that

(k) — ry(k) (k)
H, _Hk—l,x+Ax ,

where Agck) € 9x(k).

Then the coordinate change # , = (Id + A;’C)) o Sk-1,x has the same Taylor
terms as / up to order k, and, since the polynomial Id + A;’C) is in Gy,
J€} conjugates & to a sub-resonance normal form 2 , = (Id + A}k;) 0P 1,50
(1d + Agck))_l. To complete the inductive step we need to show that IIHI(CT?CII is
n’e-tempered. It suffices to show this for ||[R"| where R = 7 , — T-1,x =

A;’C) o Hk-1,x. Since A;’C) is homogeneous of degree k, R has only homogeneous
terms of degrees n = jk. We estimate them as

v ) k 02 k

which is (k? + j2k)e-tempered by the inductive assumption and the definition of
AP Since j < n/2 as k=2 we get j2k = jn< n?/2. Also, if j =2 then k* < n?/4,
and we obtain nzs-temperedness. If j =1, then n =k and R =AM g also
k?e-tempered.

Thus in N steps we obtain the coordinate change

FEN x = GyoHy, where Gy = (Id+AM)o...0(ld+AP) e GE,

JOURNAL OF MODERN DYNAMICS VOLUME 11, 2017, 341-368



NORMAL FORMS FOR NON-UNIFORM CONTRACTIONS 361

which has the same Taylor terms at 0 as # up to order N. In fact, for n > d
we have .#"™ =0 and hence A™ =0, so that #y = #,;. Now we show that
J€ = AN, which also proves the last statement in part (2) of the theorem. The
equality follows from the uniqueness in the final step of the construction. In-
deed, for #" given by (4.21), both differences R = #—.#" and R’ = #n— 7N
are fixed points of operator T given by (4.24). Hence R = R’ by uniqueness of
the fixed point in the appropriate space %, on which T induces a contraction.
To ensure that the sequence (R;k) is in 6, we need to estimate temperedness
of a-Hoélder constant at 0 for Jf}VN ). As above one can see that all terms in the
polynomial G, are N?e-tempered. Then using Lemma 4.5 and the assumption
on # we obtain that || #y cllcne is Le-tempered for L= (N? + NL) < (N +1)L
and hence (R}, ) is in 6, with L in place of L. Since the proof of part (1) is for
any L= L(N, a), we conclude that T induces a contraction in such %, provided
that € < £; = g9/ (N + 1), which is less than gy with L in pace of L in (4.4). Thus
R =R’ and hence /2 = #y.

4.4. Proof of Corollary 2.4. By part (2) of Theorem 2.3, if we fix a choice of
Taylor polynomials of degree d for #, then the family ./, is unique. Then
for each N > d we can do the construction in part (1) with this fixed choice
of Taylor polynomials and obtain the family of CV diffeomorphisms #,. By
uniqueness, all these families coincide and hence #, are C* diffeomorphisms.

4.5. Proof of part (3): Centralizer of /4. First we prove that the derivative of ¢
at zero section, I'y = Dy%,, is sub-resonance. Since I’ is linear, this is equivalent
to the fact that I'y preserves the fast flag associated with the Lyapunov splitting

(4.49) el=vlcyvic...cvl=6, where 7V/=6lo &

Suppose to the contrary that for some x € A and some i < j we have a vector ¢
in é"}c such that ¢’ = I'(¢) has nonzero component t} in géx. Then

||(Fg"x o' ) (Dl fngx = ”anx(t})”f"gx > iman | t}'”gx
and on the other hand

I (FgXOFx)(t) ||f”gx = ”Ff”x(F;C1 r) ”gf”x
<ITpnyllg e prx- €XF 2] < CeXiT3am,

which is impossible for large n since € is small. Here we used the fact that
the CNV% norm 9xllcnve O Ey is 2e-tempered with respect to the Lyapunov
metric (3.2) for F. This follows as in (4.19) since [|%x|lcne in standard norm is
e-tempered by assumption.

We conclude that I is sub-resonance for each x € A. Now we consider a new
family of coordinate changes

Sy = F;l o HHgx oYy
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which also satisfies #;(0) = 0 and Dy, = Id. A direct calculation shows that
]?fxogxoﬁx_l = F}iojffgxogfxog,m@;l ojfg_xl oly
Lo Ao Fguo Hl o = ko Fygoly = P,

X

where 2, is a sub-resonance polynomial as a composition of sub-resonance
polynomials. Now we would like to to apply the uniqueness part of the theorem,
which would give A, = Gy H, for some tempered function Gy € Gy. Then it
follows from the definition of #; that

ﬁgxogx = rxojgx = (['xGy) oAy

so that Ay 09y o S, 1= T,G,, whichis again a sub-resonance polynomial, as
claimed.

To complete the proof it remains to show that /2, is suitably tempered to
obtain uniqueness. The n™ Taylor term at 0, J&E"), is the sum of the terms
of the form T';! oJfgfg o‘g,(cj ) with n = k j, whose Lyapunov norms as we can
estimate as before

-1 k (@] -1 k Gk
IT3 0 2640 0 G i < T Mg 10 g g 16 s

Thus we obtain that /2" is me-tempered with m < 2 + k? + 2k < 3n? for n = 2.
Since || #|cne is Le-tempered, using Lemma 4.6 with Q = # and & = ¢ we
obtain that || A 09| cne is (L+2(N + a))e-tempered. Then Lemma 4.5 implies
that || A4 lcve is (24 L+ 2(N + a))e-tempered and hence 3Le-tempered since
L= N+2. So the uniqueness result in part (2) of the theorem applies for € <
€. =€1/3=¢€y/3(N+1).

This completes the proof of Theorem 2.3. U

5. PROOF OF THEOREM 2.5

5.1. Proof of (i), (ii), (iii), (v). We will apply Theorem 2.3. First we note that
the integrability condition for the derivative in Theorem 2.3 was used in the
proof only to obtain the Lyapunov splitting and the Lyapunov metric. So while
the restriction D f|s may not satisfy this integrability condition, the Lyapunov
splitting and the Lyapunov metric are obtained in this case from the results for
the full differential D f.

The centralizer part (v) will follow directly from part (3) of Theorem 2.3 since
X' =MNpez 8" (X) is the desired invariant set of full measure as g preserves the
measure class of u. Moreover, g(Wy) = Wg, since g is a diffeomorphism com-
muting with f, so that X' is also saturated by the stable manifolds.

Parts (i), (ii), (iii) essentially follow from Theorem 2.3, which is formulated so
as to apply to this setting. First we consider the regular set A for (D f, it). We fix
a family of local (strong) stable manifolds Wy ;(x) for x € A of sufficiently small
size r(x). Identifying W, ,(x) by an exponential map with a neighborhood of 0
in &, we obtain the extension & = {%,} of f. Then the properties of local stable
manifolds ensure that & satisfies the assumptions of Theorem 2.3. Indeed, they
are given by CV% embeddings so that the C™% norm and 1/r(x) are e-tempered
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for any € > 0 (see [3] for a general reference and [16, Theorem 5] for a convenient
statement of the stable manifold theorem). Hence Theorem 2.3 yields existence
of the desired family of local diffeomorphisms .#%, x € A, which can be uniquely
extended by invariance

Fx(1) = () o Hpio fH(1)

to the global stable leaf W,, which consists of those ¢ € M for which f k¢ is in
the local stable leaf of f kx for some k. Now we define X = Uyep Wy and explain
the construction of #, for any y € X. By iterating it forward we may assume
that y € Wy (. While the individual Lyapunov spaces &’ may not be defined
for all points y € Wy ,(y), the flag 7 of fast subspaces (4.49) is defined for each
&y = TyWy ;(x); moreover, the subspaces 7/3} depend Hoélder continuously, and
in fact CN=1%, on y along W, [24, Theorem 6.3].

The key observation is that the notion of sub-resonance polynomial depends
only on the fast flag 7 [20, Proposition 3.2], not on the individual Lyapunov
spaces &%, and thus is well-defined for &y. Then the sub-bundle S of sub-
resonance polynomials of degree n is well-defined, invariant under Df, and
Holder continuous in y along W, and hence so is the factor bundle 2 /..
Then for each y € Wy ;(x) we can define /£, using the construction in Theo-
rem 2.3. Indeed, first we constructed the Taylor term of degree n using the
contraction ® on the bundle 2" /%™ from Lemma 4.4 with linear part esti-
mated as @ (R)|l¢,x < e} Ve |R||, r. Then @, the corresponding map at
¥, is Holder close to ®,. We note that since Wy ) are CN® embedded, the
derivatives FJ(,") = D(()")gy of all orders n < N depend a-Hélder continuously on
¥ in Wy ;(y). In fact, the linear operator ®, depends only on the first derivative.
Using the Lyapunov norm at x as the reference norm, we obtain that @ is also
a contraction with similar estimate for all y € Wy () provided that r(x) is suf-
ficiently small. Since f*y e Wiy r(srx) by the contraction property of Wy r(x),
the closeness persists along the forward trajectory. This argument is similar to
the proof of Lemma 4.1. Then we obtain that the operator &Dy on the sequence
space is also a contraction. Thus we can define JZ”J(,") as before using the unique
fixed point in the space of sequences. The last step of the construction can be
carried out similarly as it involves only the estimates of the derivatives on the
full space & and does not depend on the splitting. This completes the proof
of (i), (i), (iii).

REMARK 5.1. Any measurable choice of transversals &’ to 7/~! inside 7, with
i=2,..,¢, yields a transversal A" to .#" inside 2""V. The latter gives a
preferred choice of the lift. The fixed point of the contraction JZ”J(,”) depends
Holder continuously, and even smoothly by appropriate C" section theorem
as in [20], on y along Wy (y if the same holds for the data Q obtained in the
previous step of the construction. To complete the inductive step we need a
Holder lift Jf}”) to 2™, If there is a consistent choice which is Hélder on the
full leaves of W, then we can obtain a family {#,} which is Hélder along the
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leaves of W. In contrast to the uniform setting of [20], it is not clear that such a
choice exists. However, this can be done locally on Wy (). Therefore, one can
fix a Ledrappier-Young partition subordinate to the leaves of W [21, Def. 1.4.1
and Lemma 3.1.1] and obtain Holder continuity of /4, on each element.

5.2. Consistency of the fast foliations. The leaf W, is subfoliated by unique
foliations U* tangent to 7/y]C . We denote by W¥ the corresponding foliations of
& obtained by the identification /. : W, — &,. Thus we obtain the foliations
WF of & which are invariant under the polynomial extension 2. Since the maps
6, are diffeomorphisms, W are also the unique fast foliations with the same
contraction rates. They are characterized by

- 1
for y,ze &y, ze€ Wk(y) if and only if r}im —logdist(2](y), 2; (2) < Xk+1-
oo 11

It follows from Definition 2.2 that sub-resonance polynomials R € # ,, are block
triangular in the sense that & component does not depend on &/ components
for j < i or, equivalently, it maps the subspaces 7, of the fast flag in &, to those
in &).

It is easy to see that all derivatives of a sub-resonance polynomial are sub-
resonance polynomials. In particular, the derivative D, 2, at any point y € &y
is sub-resonance and hence is block triangular. Thus it maps subspaces parallel
to 7} to subspaces parallel to 7/ka . Hence the foliation of & by subspaces parallel

to 7/xk in &, is invariant under the extension &2 and hence coincides with W by
uniqueness of the fast foliation.

REMARK 5.2. This implies that the fast subfoliations U* are as smooth along
the leaf W, as the diffeomorphism ./, which maps them to linear subfoliations
of &.

It follows that for any x € X and any y € W, the diffeomorphism
(5.1) Gy =TEy0 76, : Ex— &)

mabps the fast flag of linear foliations of &y to that of &. In particular, the same
holds for its derivative Do%y,, = Dx.#) : &x — &y and we conclude that D% ,,
is block triangular and thus is a sub-resonance linear map.

5.3. Proof of (iv): Consistency of normal form coordinates. We need to show
that the map %, , in (5.1) is a sub-resonance polynomial map for all x € X and
y € Wy. It suffices to consider x € A and, using invariance, we may assume that
y € Wy is sufficiently close to x. First we note that

Gry0)=Ay(x)=:Xx€&E, and DoYyy= DyH).

Since Jﬁj:nlx oPlofy=f"= Jff_,,ly o Q?’y” 0.7y we obtain that

Hpnyo Fpl 0 PL = Hpnyo [l oA = P o 0 76,
and hence

(5.2) (gf”x,f"y 0:@;1 = 9}7 O(gxyy.
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Now we consider the Taylor polynomial for 9y, : & — &y at t =0€ &y:

N
Gry () ~ Gry(D) =X+ Y, GI (1)
m=1

Our first goal is to show that all its terms are sub-resonance polynomials. We
proved in Section 5.2 that the first derivative G;l)y = Dy/£) is a sub-resonance
linear map.
Inductively, we assume that G(’”) has only sub-resonance terms for m =1,.

k —1 and show that the same holds for G;]fy. Suppose for the contrary that chk;,
is not a sub-resonance polynomial and consider order k terms in the Taylor
polynomial at 0 € &y for (5.2). The Taylor polynomial for 22 at 0 coincides with
itself, 22} (1) = anzl P (1). We also consider the Taylor polynomial for 2, at
Gy y(0) = X € &y

d
@y”(z) =X, + mz_l Q;,m) (z—X), where k= Q’J’f()'c).

All terms QU™ are sub-resonance as the derivatives of a sub-resonance polyno-
mial. Consider the Taylor polynomial for

(m)
G pry(®) ~ G pry(£) = Ko+ Z Gpr oy

Now we obtain from (5.2) the coincidence of the terms up to degree N in

N .
Z pim (t)) ~ Xn+ Z QM| Y G,

= j=1

Xn+ Z G}]jx fry
j_

Since any composition of sub-resonance polynomials is again sub-resonance,
the inductive assumption gives that all terms of order k in the above equation
must be sub-resonance polynomials except for

GE. 1, (PP®) and QP (GHm).

Multiplying these terms on the left by sub-resonance linear map (D% n, y)_l
= (Dfnxjffny)_l and using the fact that P{" = F = Df"|g_and
Q\) =DzP) = DynyFpny 0 FYl o (Dy.76)) "

we obtain that the following maps from & to &7, agree modulo sub-resonance
terms:

((D frepny) oG ) Fl'=Flo ((ijfy)‘l ° G;’f;) mod &, fuy.
Since x, f"x € A and thus the spaces &, and &, have Lyapunov splittings,
we can decompose these polynomial maps into sub-resonance and non sub-
resonance terms. Taking non sub-resonance terms on both sides we obtain the
equality

(5.3) Nynyo F? = Fl'o Ny
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where Ngn, and N, denote the non sub-resonance terms in (Dfnxjffny)_l )
G}’f?xy Fry and (Dxify)‘1 o G;k;, respectively. If the latter had only sub-resonance
terms then so would G%, contradicting the assumption. Hence N, # 0. We de-
compose N, into components Ny = (N},..., N%) and let i be the largest index so
that N}; #0, i.e., there exists t’' € & so that z/ = N(¢') has non-zero component
in é"Ji,, which we denote by z;. Then by (3.3) we obtain

(5.4) IER o Ne(E) ry = IER (D ry = "X 79| 2] .

Now we estimate the norm of the i component of the left-hand side of (5.3)
at t'. For each componet t} of ' we have IIFQ(t})IIfnx < "t t}. I« by (3.3).
Let N;,,x be a term of homogeneity type s = (sy,...,S¢) in the component Ni”x.
Then we obtain as in Lemma 4.2 that

(5.5) 1N (FRE) I png < UNpagll prg - 1115 50049,

For non sub-resonance N°® we have y; > ¥ s;x; and hence (5.5) decays faster
than (5.4). Since there are no sub-resonance terms in N ]i”"x’ this contradicts (5.3)
for large n if ¢ is sufficiently small since || N¢ny| gny is tempered. The latter fol-

}kn)x' ry and the fact that D gn #pn, is Holder close
to the identity and so the norm of its inverse is bounded in Lyapunov metric.
We conclude that for all x € X and y € W, the Taylor polynomial G, of %y,,
contains only sub-resonance terms. Now we will show that ¢, , coincides with
its Taylor polynomial. Again it suffices to consider x € A and y € W, which is
sufficiently close to x. In addition to (5.2) we have the same relation for their

Taylor polynomials

(56) any’fnxoy;l:@;lonyx.

lows from temperedness of G

Indeed, the two sides must have the same terms up to order N, but these
are sub-resonance polynomials and thus have no terms of degree higher than
d=N.

Denoting Ay, =G fny, pny — Gy, rny we obtain from (5.2) and (5.6) that

(5.7) Anoy;l:@f 04 x— P oGy

We denote A =9y, — Gy : &, — &, and suppose that A # 0. Let i be the largest
index for which the i component of A is nonzero. Then there exist arbitrarily
small t' € &, such that the i component z;. of z/ = A(?) is nonzero. Since 22! is a
sub-resonance polynomial, the nonlinear terms in its i component can depend
only on j components of the input with j > i, which are the same for ¥4, .
and G, by the choice of i. Thus the i component of the right side of (5.7) is
F}f(z;.) since the linear part of 22 is F}! and it preserves the Lyapunov splitting.
So by (3.3) we can estimate the right side of (5.7)

| (ggo(gy,x_@goGy,x) (t,)”f”x = ”Fg(zi)nf"x

(5.8) ;
2 "1 zjll 2 "M 2] .
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Now we estimate the left side of (5.7). Since Gy, pny is CN there exists Cy,(x)
determined by [[9fny, fny [l cnve such that

(5.9) 1AL (O] < Cp(x) - 1EI N

for all sufficiently small ¢ € &¢ny. To estimate &' we note that D%} = Fy} =
Df"|g, and its norm for y close to x can be estimated using Lemma 4.1(3). Then
&, itself can be estimated as in that lemma:

122, ()] < Ke" e3¢
for all sufficiently small 7 € &,. Combining this with (5.9) we obtain
1(An 0 2] ) () < Cp(x) - 122 (VIN* < Cp () - (K| /YN H N er3e),

This contradicts (5.7) and (5.8) for large n if € is sufficiently small. Indeed
(N + a)ys < x1 while C,(x) is tempered and the Lyapunov norm satisfies | u| =
Kx)e ™| ull pny. Thus, A =0, i.e., the map ¥, coincides with its Taylor polyno-
mial.

This completes the proof of Theorem 2.5. O

5.4. Proof of Corollary 2.6. If d =1 then all sub-resonance polynomials are lin-
ear, the maps /) o A L.& — &y are affine, and the family {#}xex is unique
by part (2) of Theorem 2.3. If we identify W, with &y by #, then /), for y € Wy
becomes an affine map &, — T),&y with identity differential and #,(y) = 0.
Thus it depends CV on y as the coordinate system .7, is CV. U
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