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MEASURE RIGIDITY BEYOND UNIFORM HYPERBOLICITY: INVARIANT
MEASURES FOR CARTAN ACTIONS ON TORI

BORIS KALININ AND ANATOLE KATOK
(Communicated by Ralf Spatzier)

ABSTRACT. We prove that every smooth action a of Zk, k =2, on the (k+1)-
dimensional torus whose elements are homotopic to corresponding elements
of an action aq by hyperbolic linear maps preserves an absolutely continuous
measure. This is the first known result concerning abelian groups of diffeo-
morphisms where existence of an invariant geometric structure is obtained
from homotopy data.

We also show that both ergodic and geometric properties of such a measure
are very close to the corresponding properties of the Lebesgue measure with
respect to the linear action ag.

1. INTRODUCTION

1.1. Measure rigidity and hyperbolicity. It is well-known that in classical dy-
namical systems, i.e. smooth actions of Z or R, nontrivial recurrence combined
with some kind of hyperbolic behavior produces a rich variety of invariant mea-
sures (see for example, [KH] and [KM] for the uniformly and nonuniformly hy-
perbolic situations correspondingly). On the other hand, invariant measures for
actions of higher rank abelian groups tend to be scarce. This was first noticed
by Furstenberg [F] who posed the still open problem of describing all ergodic
measures on the circle invariant with respect to multiplications by 2 and by 3.
Great progress has been made in characterizing invariant measures with posi-
tive entropy for algebraic actions of higher rank abelian groups; for the measure
rigidity results for actions by automorphisms or endomorphisms of a torus see
[R, KS1, KS2, KaK1, KaK2, KaSp, EL].

For background on algebraic, arithmetic, and ergodic properties of Z* actions
by automorphisms of the torus we refer to [KKS]. Recall that an action of Z* on
TK+1, k = 2, by automorphisms which are ergodic with respect to the Lebesgue
measure is called a (linear) Cartan action. Every element of a Cartan action other
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124 BORIS KALININ AND ANATOLE KATOK

than the identity is hyperbolic and has distinct real eigenvalues, and the central-
izer of a Cartan action in the groups of automorphisms of the torus is a finite
extension of the action itself ([KKS, Section 4.1]).

A geometric approach to measure rigidity was introduced in [KS1]. It is based
on the study of conditional measures on various invariant foliations for the ac-
tion. Broadly speaking, there are three essential tools or methods within this
approach which we list in order of their chronological appearance:

1. The geometry of Lyapunov exponents and derivative objects, in particular
Weyl chambers [KS1, KS2, KaK1, KaSp].1

2. The noncommutativity and specific commutation relations between vari-
ous invariant foliations [EK1, EK2, EKL]. 2

3. Diophantine properties of global recurrence [EL].

In this paper we make the first step in extending measure rigidity from al-
gebraic actions to the general nonuniformly hyperbolic case, i.e. to positive
entropy ergodic invariant measures for actions of higher rank abelian groups
all of whose Lyapunov characteristic exponents do not vanish. Such measures
are usually called hyperbolic measures. The theory of hyperbolic measures for
smooth actions of higher rank abelian groups is described in Part II of [KaK1]. In
Sections 2.1 and 2.2 we briefly mention key elements of that theory relevant for
the specific situation considered in this paper.

In this paper we use a counterpart of the method (1) above. We will discuss
the scope of this method, difficulties which appear for its extensions, and appli-
cations of properly modified versions of other methods to various nonuniformly
hyperbolic situations in a subsequent paper.

Acknowledgement. We would like to thank Omri Sarig who carefully read the
paper and made a number of valuable comments which helped to clarify several
points in the proofs and improve presentation.

1.2. Formulation of results.

THEOREM 1.1. Anyaction a ofZ¥, k=2, by C'*¢, € > 0, diffeomorphisms of T**1,
whose elements are homotopic to those of a linear Cartan action g, has an er-
godic absolutely continuous invariant measure.

The connection between invariant measures of a and those of «a is estab-
lished using the following well-known result whose proof we include for the sake
of completeness.

LEMMA 1.2. There is a unique surjective continuous map h: T¥*! — T**1 homo-
topic to the identity such that hoa = agyo h.

1See in particular [KaK1, Section 2.2] for a down-to-earth proof of rigidity of positive-entropy
invariant measures for linear Cartan actions. A reader unfamiliar with measure rigidity may look
at that section first to get an idea of the basic arguments we generalize in the present paper.

2This method was first outlined at the end of [KS1]; note that it is not relevant for the actions
on the torus since in this case all foliations commute.

JOURNAL OF MODERN DYNAMICS VOLUME 1, No. 1 (2007), 123-146



RIGIDITY BEYOND UNIFORM HYPERBOLICITY 125

Proof. Consider an element m € Z*\ {0}. By a theorem of Franks ([KH, Theorem
2.6.1]), there exists a unique continuous map h: T¥*1 — T**1 that is homotopic
to the identity and satisfies

(1.1) hoa(m) = ag(m)o h.
For any other element m’ € Z¥ consider the map
(1.2) h' =ayg(-m’)o hoa(m’)

Using commutativity of both actions @ and a as well as (1.1) we obtain

hoa@m)=ay(-m’)ohoa(m)oam) = ag(—m')ohoa(m)oam’)

=ay(-m’)oagm)ohoa(m) = agm)oag(-m)ohoam’) =aym)oh/,

i.e. I satisfies (1.1). Since it is also homotopic to identity, the uniqueness of
h forces h = h'. Then (1.2) implies ho a(m’) = ag(m’) o h, so h intertwines the
actions a and ay. O

Another way of stating Lemma 1.2 is that the algebraic action ay is a topolog-
ical factor of the action « or, equivalently, a is an extension of «ay.

REMARK 1. If the action «a is Anosov, i.e. if a(m) is an Anosov diffeomorphism
for some m, then the map # is invertible, and both h and k™! are Hoélder [KH,
Theorems 18.6.1 and 19.1.2]. This implies various rigidity results for Z¥ Anosov
actions on the torus.

e For example, if a; is a linear Z* action on a torus which contains a Z>
subaction all of whose elements other than identity are ergodic, then any
Anosov action @ homotopic to @ preserves a smooth measure. This fol-
lows from rigidity of Hélder cocycles over @y and hence over « applied to
the logarithm of the Jacobian for a.

 For those cases when the positive-entropy ergodic invariant measure for
ap is unique [EL] the same is true for a.

Consider the set of all Borel probability measures v on T¥*! such that (h).v =
A, where A is Lebesgue measure on T**!, This set is convex, weak* compact, and
a-invariant. Hence by Tychonoff theorem it contains a nonempty subset .# of
measures invariant under a. Since a is ergodic with respect to A, almost every
ergodic component of an a-invariant measure v € .4 also belongs to .4 . Let u
be such an ergodic measure.

Theorem 1.1 follows immediately from Lemma 1.2 and the following theorem,
which is the first principal technical result of the present paper.

THEOREM 1.3. Any ergodic a-invariant measure y such that (h).p = A, where h
is the semiconjugacy from Lemma 1.2, is absolutely continuous.

Since any a-invariant measure whose ergodic components are absolutely con-
tinuous is itself absolutely continuous we obtain the following
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COROLLARY 1.4. Every measurev € 4 is absolutely continuous and has no more
than countably many ergodic components. Hence .# contains at most countably
many ergodic measures.

In fact a much stronger statement is true. It is proved in [K-RH] using results
from the present paper.

THEOREM.

1. Theset # consists of a single measure.
2. The semiconjugacy h is a measurable isomorphism between the actions «
and ay.

It is even possible that uniqueness follows from absolute continuity for a sin-
gle diffeomorphism.

CONJECTURE 1.5. Let f be a C? diffeomorphism homotopic to a linear hyperbolic
automorphism fy of a torus and let h be the semiconjugacy. Then there is at most
one absolutely continuous f -invariant measure y such that h..(u) = A.

Here we prove a slightly weaker version of part (2) of the above theorem for
ergodic measures.

THEOREM 1.6. For any ergodic measure |1 € 4 the semiconjugacy h is finite-to-
one in the following sense. There is an a-invariant set A of full measure u such
that for A-almost every x € T**1, Anh™1({x}) consists of equal number s of points
and the conditional measure induced by . assigns every point in Anh™'({x}) equal
measurel/s.

Recall that the Lyapunov characteristic exponents of the linear action a are
independent of an invariant measure and are equal to the logarithms of the ab-
solute values of the eigenvalues. They all have multiplicity one and no two of
them are proportional.

THEOREM 1.7. The Lyapunov characteristic exponents of the action a with respect
to any ergodic measure |1 € M are equal to the Lyapunov characteristic exponents
of the action .

Either of the last two theorems immediately implies the following.

COROLLARY 1.8. The entropy function of @ with respect to any measurev € 4 is
the same as the entropy function of ay with respect to Lebesgue measure, i.e. for
any measurev € 4 and anym € Z* we haveh, (a(m)) = hy (e (m)).

Since every element of a( other than the identity is Bernoulli with respect
to the Lebesgue measure, Theorem 1.6 also implies that every element of « is
Bernoulli up to a finite permutation.

COROLLARY 1.9. There exist a partition of a set A of full measure p into finitely
many sets Ay, ..., Am of equal measure such that every element of a« permutes these
sets. Furthermore, there is a subgroup of finite indexT c Z* such that for anyy €T
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RIGIDITY BEYOND UNIFORM HYPERBOLICITY 127

other than the identity a(y)A; = A;, i =1,..., m, and therestriction of a(y) to each
set A; is Bernoulli.
In particular, if all non-identity elements of a are ergodic then they are Bernoulli.

REMARK 2. Since by Lemma 2.3 the measure p is hyperbolic, Corollary 1.9 fol-
lows directly from Theorem 1.3 and the classical result of Pesin [P] that an er-
godic hyperbolic absolutely continuous invariant measure for a diffeomorphism
is Bernoulli up to a finite permutation.

REMARK 3. Theorem 1.1 for k = 2 was announced in [KaK1] as Theorem 8.2.
The proof in the present paper follows a path different from the one outlined in
[KaK1]. There it is derived from Theorem 8.1 about hyperbolic invariant mea-
sures for Z? actions on three-dimensional manifolds. A proof of the latter the-
orem (and its n-dimensional version) following the outline presented in [KaK1,
Section 8.3] and some essential new ingredients will appear in [KKRH].

2. LYAPUNOV EXPONENTS, WEYL CHAMBERS,
AND INVARIANT “FOLIATIONS” FOR «

2.1. Preliminaries.

2.1.1. Entropy. Since h. u = A the measure-theoretic entropy h,, satisfies

hy(a(m)) = h, (ag(m)) = 1<r§1<z}cx+1Iloglpi(m)l l,

where p;(m), i =1,...,k+1 are the eigenvalues of the matrix a((m).

Since every element of @ other than identity is hyperbolic this implies in par-
ticular that

(&) The entropies hy(a(m)) for allm € Z*\ {0} are uniformly bounded away
from zero.

2.1.2. Lyapunov exponents. The linear functionals y; =loglp;l,i=1,...,k+1on
7 are the Lyapunov characteristic exponents of the linear action a, which are
independent of an invariant measure. See [KaK1, Section 1.2] for definitions and
discussion of Lyapunov characteristic exponents, related notions (Lyapunov hy-
perplanes, Weyl chambers, etc.) and suspensions in this setting. We will use this
material without further references.

The following property of linear Cartan actions will play an important role in
our considerations, in particular in Section 3.3.

(€) Foreveryi € {l,...,k+1} thereexists an elementm € Z* such that y;(m) < 0
and y j(m) >0 for all j # i. (The same inequalities hold for any other element m'’
in the Weyl chamber of m.)

Corresponding notions in a general setting, which includes that of Z* actions
by measure preserving diffeomorphisms of smooth manifolds, are defined and
discussed in Sections 5.1 and 5.2 of the same paper [KaK1]. We will also use those
notions without special references.

Let ¥;, i =1,...,k+ 1, be the Lyapunov characteristic exponents of the action
a, listed with their multiplicities if necessary. We will eventually show that in our
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128 BORIS KALININ AND ANATOLE KATOK

setting the exponents can be properly numbered so that §; = y;, i =1,...,k+1
(see Section 4.3).

As the first step in this direction we will show in Section 2.3 that exponents
for a can be numbered in such a way that they become proportional to y; with
positive scalar coefficients.

2.1.3. Suspensions. Although the Lyapunov characteristic exponents for a Z* ac-
tion are defined as linear functionals on Z¥, it seems natural to extend them to
R¥. For example, Lyapunov hyperplanes (the kernels of the functionals) may be
irrational and hence “invisible” within Z¥. It is natural to try to construct an R¥
action for which the extensions of the exponents from Z* will provide the non-
trivial exponents.

This is given by the suspension construction which associates to a given Z*
action on a space N an R* action on a bundle over T* with fiber N. The topo-
logical type of the suspension space depends only on the homotopy type of the
7 action. In particular, the suspension spaces for ay and a are homeomorphic.
There is a natural correspondence between the invariant measures, Lyapunov
exponents, Lyapunov distributions, stable and unstable manifolds, etc. for the
original Z¥ action and its suspension. Naturally, the suspension has k additional
Lyapunov exponents corresponding to the orbit directions which are identically
equal to zero. In our setting, the semiconjugacy between a and a( naturally ex-
tends to the suspension. The extended semiconjugacy is smooth along the sus-
pension orbits and reduces to the original semiconjugacy in the fiber over the
origin in T¥,

At various stages of the subsequent arguments it will be more convenient to
deal either with the original actions a and @ on T**! or with their suspensions.
So we will take a certain liberty with the notations and will use the same notations
for the corresponding objects, i.e. @ and ay for the suspension actions, ¥; and y;
for the Lyapunov exponents etc, modifying the notations when necessary, as in
a(m) for m € Z* and a(t) for t € R¥,

2.2. Pesin sets and invariant manifolds. We will use the standard material on
invariant manifolds corresponding to the negative and positive Lyapunov expo-
nents (stable and unstable manifolds) for C'*¢ measure preserving diffeomor-
phisms of compact manifolds. See for example [BP, Chapter 4]. It is customary
to use the words “distributions” and “foliations” in this setting although in fact
we are dealing with measurable families of tangent spaces defined almost ev-
erywhere with respect to an invariant measure, and with measurable families
of smooth manifolds, which coincide if they intersect and which fill a set of full
measure.

We will denote by WI; ) (¥) and Wa‘(m) (x) correspondingly the local and global
stable manifolds for the diffeomorphism a(m) at a point x that is regular with
respect to this diffeomorphism. The global manifold is an immersed Euclidean
space and is defined uniquely. Any local manifold is a C'*¢ embedded open disc
in a Euclidean space. Its germ at x is uniquely defined and for any two choices
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RIGIDITY BEYOND UNIFORM HYPERBOLICITY 129

their intersection is an open neighborhood of the point x in each of them. On a
compact set of arbitrarily large measure, called a Pesin set, the local stable man-
ifolds can be chosen of a uniform size and depending continuously in the C!*¢
topology.

The local and global unstable manifolds W+ ) (%) and # )(x) are defined as
the stable manifolds for the inverse map a(—m)

Recall that the stable and unstable manifolds 7/7‘ m and W7 are tangent

to the (almost everywhere defined) stable and unstable dlstrlbgt(lo)ns E,m) and
E, + ) accordingly. These distributions are the sums of the distributions corre-
spondlng to the negative and positive Lyapunov exponents for a (m) respectively.

At the moment, we do not know the dimensions of those distributions. How-

ever, the following lemma shows that #_ , and 7//a (m) are transverse for any reg-

ular element m € Z¥. An element of Z* or R¥ is called singular if a nonzero Lya-
punov exponent vanishes on it, i.e. the element belongs to a Lyapunov hyper-
plane. All other elements are called regular.

LEMMA 2.1. All Lyapunov exponents of |1 are nonzero, i.e. | is a hyperbolic mea-
sure for a. In particular, a(m) is nonunifomly hyperbolic on T**! for any regular
elementm e 7.

Proof. Suppose there is an identically zero Lyapunov exponent for @. Then a has
at most k nonzero Lyapunov exponents. Intersecting the Lyapunov hyperplanes
inductively one can easily see that there exists a line in R* on which at least k
Lyapunov exponents vanish and thus at most one is nonzero. By the Ruelle in-
equality [KM] this implies that the entropy of the elements of the suspension
along that line vanishes. Since there are elements of Z¥ either on the line (if the
line is rational) or arbitrary close to it (if it is irrational), there are nonzero ele-
ments m € ZF such that the entropy hy,(a(m)) is arbitrarily small. This however
contradicts (&). O

The corresponding stable and unstable manifolds for the linear action ag will
be denoted by the same symbols without the tilde. Of course those manifolds are
affine, and they are defined everywhere, not just on large sets as for the nonlinear
action a.

2.3. Preservation of Weyl chambers under the semiconjugacy.
LEMMA 2.2. For any elementm € Z¥\ {0} the following inclusions hold
AW gy (X)) € Wy 2o (R(X)  and h(WJr ) (X)) < W(;;(m) (h(x)),
h(Wy, am) X)) € Wy i) (h(x)) and h(W (m) () < W,;ro(m) (h(x)).

on the set of full measure yt where W\ (x) and ¥ (m) (x) exist.

a(m)

Proof. The global stable manifold Wa‘(m) (x) is the set of all points y € T**! for
which dist(a(nm)x, a(nm)y) — 0 as n — co. Since h is continuous, this implies
in turn that dist(ag(nm)h(x), ap(nm)h(y)) — 0 as n — oo, and hence h(y) be-
longs to the stable manifold #,_ ., (h(x)).
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130 BORIS KALININ AND ANATOLE KATOK

Thus, if y is in the local stable manifold W(;(m) (x) then dist(a(nm)x, a(nm)y)
remains small for all n > 0. Since h is continuous, dist(ag(nm)h(x), ag(rm)h(y))
also remains small for all z > 0. Since a((m) is uniformly hyperbolic, this implies
that 22(y) belongs to the local stable manifold W - (h(x)).

The corresponding statements for unstable manifolds follow by taking inverses.
d

LEMMA 2.3. The Lyapunov half-spaces and Weyl chambers for a with respect to
the measure u are the same as the Lyapunov half-spaces and Weyl chambers for
ag. Hence the Lyapunov exponents for a can be numbered ¥;, i =1,...,k+1 in
such a way that ¥; = c;xi, where c; is a positive scalar.

Proof. Suppose that a Lyapunov hyperplane L of aq is not a Lyapunov hyper-
plane of a. Then there exist m,n € 7* which lie on the opposite sides of L so that
Watm = Wam DUt W iy 7 W

Let A be the intersection of a Pesin set for a(m) with a Pesin set for a(n). Con-
sider a point x € A such that any open neighborhood of x intersects A by a set of

positive measure p. By the previous lemma we have
h(W, am) (X)) = h(Wy, am) () © Wy @y (R(X)) N W, ) (R(x)))

and
h(W,

Let R be the intersection of A with a neighborhood of x sufficiently small com-
pared to the size of the local manifolds at points of A. Then since p is a hyper-
bolic measure by Lemma 2.1, for any point y € R the intersection a(m) x)n
Wa(m) () consists of a smgle point z,. Similarly, W (x)n W, a(m) (y) = {z2} and
hence W, 2 (B N W, a(m) (z2) = {y}. By the previous lemma the latter implies
that W (h(zl)) N W+ (m)(h(zz)) = {h(y)}. Using the inclusions above we see
that the 1mage h(R) is in the direct product V = (W (h(x)) N W (h(x))) x
W(;O a (R(X)). Since W # W_ ., we conclude that V is contained in a sub-
space of dimension at most k. Hence A(V) = 0 which contradicts the fact that
A(h(R)) = u(R) > 0. We conclude that any Lyapunov hyperplane of «ay is also a
Lyapunov hyperplane of a. Recall that @ is Cartan and thus has the maximal
possible number, k + 1, of Lyapunov hyperplanes. Hence a also has exactly k+1
distinct Lyapunov hyperplanes, which coincide with the Lyapunov hyperplanes
of ap. In particular, all Lyapunov exponents of ¢ do not vanish.

It follows that for either action there is exactly one Lyapunov exponent that
corresponds to a given Lyapunov hyperplane. It remains to check that for every
Lyapunov hyperplane L the corresponding Lyapunov exponents of ¢ and a are
positively proportional. Suppose that for some L the corresponding Lyapunov
exponents are negatively proportional. Let W be the corresponding Lyapunov
foliation for ay. We can take m close to L in the negative half-space of the cor-
responding Lyapunov exponent for @ and n sufficiently close to m across L in
the negative half-space for ay, so that m and n are not separated from L by any

(X)) € W o (R().

cx(m
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RIGIDITY BEYOND UNIFORM HYPERBOLICITY 131

other Lyapunov hyperplane. Then we observe that W‘:(m) c W;(n) and that W is
. . . _ . +
contained neither in W, @ DO in Ww.0 y _
We choose A, x, and R as above. Using Lemma 2.2 we obtain

RW gy () € W (o (R(x)) and (W, (1)) € h(Wg ) (X)) € W, ) (R(x).

As above, these inclusions imply that the image h(R) is contained in the product
V=W, m (h(x)) x W;O @ ((x)). We observe that V' lies in a subspace that does
not contain W (h(x)) and thus has dimension at most k. This again contradicts

that A(h(R)) = u(R) > 0. O
Let us summarize the conclusions for the case of Cartan actions.

COROLLARY 2.4. Ifay is Cartan all Lyapunov characteristic exponents for the ac-
tion a with respect to measure L are simple, no two of them are proportional and
the counterpart of property (€) holds.

For every Lyapunov exponent ¥; its Lyapunov distribution integrates to an in-
variant family of one-dimensional manifolds defined u-almost everywhere. This
family will be referred to as the Lyapunov foliation corresponding to ;. The semi-
conjugacy h maps these local (corr. global) manifolds to the local (corr. global)
affine integral manifolds for the exponents ;.

3. PROOF OF THEOREM 1.3

Throughout this section we fix one of the Lyapunov exponents of a. We de-
note by L the corresponding Lyapunov hyperplane in R¥, by E the correspond-
ing one-dimensional Lyapunov distribution, and by # the corresponding Lya-
punov foliation. Then # is the one-dimensional stable foliation for some ele-
ment a(m), m € Z¥. The notions of regularity and Pesin sets will refer to the
corresponding notions for such an element.

In this section we study properties of the action a related to #. We will show
that the conditional measure y” on the leaf # (x) is absolutely continuous for
p-almost every x. We then conclude the proof of Theorem 1.3 by showing that
the absolute continuity of u follows from the absolute continuity of conditional
measures for every Lyapunov foliation.

3.1. Invariant affine structures on leaves of Lyapunov foliations. The follow-
ing proposition gives a family of a-invariant affine parameters on the leaves of
the Lyapunov foliation #. By an affine parameter we mean an atlas with affine
transition maps.

PROPOSITION 3.1. There exists a unique measurable family of C'*¢ smooth a-
invariant affine parameters on the leaves # (x). Moreover, within a given Pesin
set they depend uniformly continuously on x in the C'*¢ topology.

REMARK 4. Note that those transition maps may not always preserve orienta-
tion. In fact in some situations a measurable choice of orientation is not possi-
ble. This however is completely irrelevant for our uses of affine structures.
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132 BORIS KALININ AND ANATOLE KATOK

REMARK 5. In the proof below we use the counterpart of the property (€¢) for
a and do not use existence of a semiconjugacy with ay. In fact, the assertion
is true under a more general condition. Namely, let y be a simple (multiplicity
one) Lyapunov exponent for an ergodic hyperbolic measure u for a C'*¢ diffeo-
morphism with the extra condition that there are no other exponents propor-
tional to y with the coefficient of proportionality greater than one. Then the
Lyapunov distribution for y is integrable p-almost everywhere to an invariant
family of one-dimensional manifolds and invariant affine parameters still exist.

In the C? case one-dimensionality of the Lyapunov foliation may be replaced
by the following bunching condition: Lyapunov exponents may be positively
proportional with coefficients of proportionality between 1/2 and 2. The coarse
Lyapunov distribution is always integrable and in this case the integral manifolds
admit a unique invariant family of smooth affine structures.

The proofs of these statements can be obtained using nonuniform versions of
the methods from [G].

Proof. The proposition is established using the three lemmas below. We take
an element m € Z* such that # is the stable foliation of a(m). Then we apply
Lemma 3.2 with f = a(m) to obtain the family H of nonstationary linearizations.
Lemma 3.3 then shows that these nonstationary linearizations give an affine at-
las. Since the linearization H is unique by Lemma 3.4, the family H linearizes
any diffeomorphism which commutes with f. Indeed, if go f = fo g, then it is
easy to see that dg~'o H, ¢()© & also gives a nonstationary linearization for f, and
hence Ho g = dgo H. Therefore, H provides a nonstationary linearization for
every element of the action a, i.e. the action is affine with respect to the param-
eter. d

LEMMA 3.2. Let # be the one-dimensional stable foliation of a C'*¢ nonuni-
formly hyperbolic diffeomorphism f. Then for u-almost every point x € M there
exists a C'*¢ diffeomorphism Hy: W (x) — E(x) = Ty ¥ such that
(1) Hf(x) of = Dfon:
(i) Hy(x) =0 and D, H, is the identity map,
(iii) Hy depends continuously on x in the C'*€ topology on a Pesin set.

Proof. We denote by E the one-dimensional stable distribution for f. We fix
some background Riemannian metric g on M and denote

JF@) = IDf@) - lvly!

where v € E(x) and ||| is the norm given by g at x.

We first construct the diffeomorphism H, on the local manifold W (x) as fol-
lows. Since E(x) is one-dimensional, H,(y) for y € W(x) can be specified by its
distance to 0 with respect to the Euclidean metric on E(x) induced by g. We
define this distance by integrating a Hélder continuous density

y
3.1 ()] = f 0x(2)dz
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RIGIDITY BEYOND UNIFORM HYPERBOLICITY 133

where

@) = If(ff)
+(2) = lim = Py
P = S T ) ,Eoff(f’“(x))

If z is in the local manifold W (x) then dist(f*(2), f¥(x)) < C(x)e *Adist(z, x)
for all k > 0. In particular, f¥(z) remains in the local manifold W (f*(x)) even
though the size of W (f*(x)) may decrease with k at a slow exponential rate. The
tangent space E(s) = T; W (f*(x)) depends Hélder continuously on s € W (f*(x)),
with Hoélder exponent € and a constant which may increase with k at a slow ex-
ponential rate. Since f is C'*¢, the same holds for J f(z). We conclude that

‘]f(f"(Z)) B

< C(x)dist(z, x)e kA+9)
Jf(f*@)

1

This implies that the infinite product which defines p.(z) converges, and that p,
is Holder continuous on W (x). Moreover, the convergence is uniform when x is
in a given Pesin set. Hence p, depends continuously in C® topology on x within
a given Pesin set. Since p,(x) = 1, we conclude that (3.1) defines a C'*¢ diffeo-
morphism satisfying conditions (ii) and (iii). To verify condition (i) we differen-
tiate Hp(x) (f (1)) = Dy f (Hx(y)) with respect to y and obtain p ¢ (f (y)) - Jf () =
Jf(x)-px(y). Since the latter is satisfied by the definition of p, the condition (i)
follows by integration.

Since f contracts #, we can extend H to the global stable manifolds # (x) as
follows. For y € # (x) there exists n such that f”(y) € W (f"x) and we can set

Hx(y) = Df_non(x) of"(y.

This defines H, on an increasing sequence of balls exhausting # (x) with con-
ditions (i) and (ii) satisfied by construction. Condition (iii) is satisfied in the fol-
lowing sense. H, is a C'*¢ diffeomorphism with locally Holder derivative. Its
restriction to a ball of fixed radius in # (x) centered at x depends continuously
in C!*¢ topology on x within a given Pesin set. O

REMARK 6. In general, the regularity of the density p, on # (x) is the same as the
regularity of the differential D f, and hence the function H, is as regular as f.

LEMMA 3.3. Under the assumptions of Lemma 3.2, the map
HyoH;': E(x)—E(y)

is affine for any x and y on the same leaf of # . Hence the nonstationary lineariza-
tion H defines affine parameters on the leaves of # .

Proof. By invariance under f, it suffices to consider x and y close, and show that
the map is affine in a neighborhood of zero. We will show that the differential
D(Hyo Hy') is constant on E(x). Consider z € # (x) close to x and y and let z =
H,(z). From the definition of H we have D, (Hy) = px(z) and D,(Hy)(z) = py(2).
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Hence, using the definition of p, we obtain
D; (Hyo Hy') = D;(Hy) - Dz(H; ) = Do(Hy) - (D(H) ™' =
G P/AC) (10‘0[ Jf(fk(z)))‘1 _ Ry U
px(@) o JF(fEY) \ico JF(FE ) k=0 Jf (f¥(x)

We conclude that the differential D; (H, o H;') is independent of Z and thus the
map H, o H; ! is affine. 0

LEMMA 3.4. The family of diffeomorphisms {H,} satisfying conditions (i)-(iii) of
Lemma 3.2 is unique.

Proof. We note that it is sufficient for the proof to have Hy defined only locally,
in a neighborhood of x in W (x).

Suppose that H; and H> are two families of maps satisfying (i)- (iii). Then the
family of maps G = Hy o H, ': E — E satisfies G¢(x) o Dy f = Dy f o Gy, and hence

Gx = (Dxf)_l o Gf(x) ODxf == (Dxfn)_l o an(x) ODxfn,
or, since E is one-dimensional,
Gy (1) = (]f"(X))_len(x) Jf"x- 1.

Since Jf"(x) — 0 and since G, depends continuously in the C!-topology on x
in a Pesin set, we obtain using returns to such a set that

Gx(]fn(X) - 1)

—GL0)=1
Jfn(x)-t <0
and hence
G f(x)-0)
G.(1) = lim ¢~ ! =t
n—00 Jf(x)-t
Thus Gy is the identity, and H; = H» O

3.2. Uniform growth estimates along the walls of Weyl chambers. In the rest
of this section we consider suspensions of the actions @y and a. According to
our convention we will use the same notations for the suspension actions and
associated objects.

We fix a Pesin set A and a small r > 0. For x € A we denote by B, (x) the ball (in-
terval) in the inner metric of # (x) of radius r centered at x. An important corol-
lary of the existence of affine parameters is the following estimate of derivatives
along#'.

LEMMA 3.5. For a given Pesin set A and r > 0 there exists a constant C = C(A, )
such that for any x € A and t € R¥ satisfyinga(t)x € A

CHID@®) g | < ID@®)lgp) Il < CIID(@®) gyl
for any y € B, (x) satisfyinga(t)y € B, (a(t)x).
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Proof. We use the affine parameter on # (x) given by Proposition 3.1 with respect
to which a(t) has constant derivative. More precisely, using the linearization H
along the leaves of #” we can write

a7 = (Hax) ™" o Da®)| g © Hy,

and hence

Da(®)|gqy) = (DawyHawx) ' 0 Da(®)| g o Dy Hy.
Since Hzlz, (,) depends continuously in the C'*¢ topology on z in the Pesin set
A, both | D;H || and || (D, H,)"!|| are uniformly bounded above and away from 0
for all z € A and t € B, (z). Hence the norms of the first and last term in the right
hand side are uniformly bounded and the lemma follows. O

We consider x € A and the ball B, (x) € W (x). The image h(B, (x)) is contained
in W(x). We denote by m, (x) the radius of the largest ball (interval) in W (h(x))
that is centered at h(x) and contained in h(B,(x)). Then m, is a measurable
function on A.

LEMMA 3.6. For any Pesin set A and r > 0 the function m, is positive almost ev-
erywhere on A. Hence for any € > 0 there exists m > 0 and a set A, € A with
WANAL ) <€ suchthat my(x) = m forall x € Ay .

Proof. Let x € A besuch apoint that the intersection of A with any neighborhood
of x has positive measure. Furthermore, assume that x is not an endpoint of a
complementary interval to the intersection W (x) N A. Let m € Z¥ be an element
such that # = #_. Let R be the intersection of A with a sufficiently small
neighborhood of x. If m,(x) = 0 then h(W(;(m) (x)) = {h(x)}. This implies, as in
Lemma 2.3, that the image h(R) is contained in W(;O @ ((x)). But this implies
that A(h(R)) = 0, which is impossible since A(h(R)) = u(R) > 0. O

Using the derivative estimate in Lemma 3.5 and the topological semiconju-
gacy h we obtain in the next lemma the crucial estimate for the derivatives of the
elements in the Lyapunov hyperplanes.

We fix a Pesin set A, r >0, and a set A, as in Lemma 3.6.

LEMMA 3.7. For a given set Ay, there exists a constant K such that for any t in
the Lyapunov hyperplane L

K™ < ID(@)|gwll <K
ifbothx e ANy anda(t)x € Ay .
Proof. First we note that it suffices to establish the lower estimate, then the up-
per estimate follows by applying it to a(-t).

By uniform continuity of the semiconjugacy h there exists 6 > 0 such that for
any x the image h(Bs(x)) is contained in the ball B,,»(h(x)) in W(x). By the
choice of A, we also have By, (h(x)) c h(B,(x)). Since t € L, ay(t) is an isometry
on #, and hence a(t) (B, (h(x))) = B, (ao(t) (h(x))). Then since h is a semicon-
jugacy we obtain

3.2) B (o () (h(X))) < (ao(t) o h) (B (x)) = (ho a(t) (B, (x)).
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Together with the uniform continuity of k this implies that a(t)(B,(x)) cannot
be contained in Bs(a(t)x). Indeed, otherwise we would have B,, (ay(t)(h(x))) c
h(Bs(@(t)x)) « a()(B;(x)) < Bja(ao () (h(x))).

Hence there exists z € B, (x) with dist(a(t)x, a(t)z) = 6. We may assume that
6 < r and z is chosen so that dist(a(t)x, a(t) y) < § for all y € B, (x) between x and
z. Using Lemma 3.5 we obtain

6 =dist(a(t)x, a(t)2) < dist(x, 2) -sup | D(a(®) |z | < - ClID(a®) | g ll-

This implies that | D(a(t) g | > - 0

3.3. Ergodicity along the walls of Weyl chambers. We will call an element t € R¥
a generic singular element if it belongs to exactly one Lyapunov hyperplane. The
following lemma presents a variation of an argument from [KS1] for the present
setting.

LEMMA 3.8. Let L be one of the Lyapunov hyperplanes inR¥. Let E and W be the
corresponding Lyapunov distribution and foliation of «. Then for any generic sin-
gular elementt € R* the corresponding partition& oy into the ergodic components
of 1 with respect to a(t) is coarser than the measurable hull E(W) of the foliation
V.

Proof. Consider a generic singular element tin L. Then the only nontrivial Lya-
punov exponent that vanishes on t is the one with kernel L and the correspond-
ing Lyapunov distribution is E. Take a regular element s close to t for which
this Lyapunov exponent is positive and all other nontrivial exponents have the
same signs as for t. Thus E; = E; , ® E and E_ ) = E_ . The Birkhoff aver-
ages with respect to «(t) of any continuous function are constant on the leaves
of Wa‘(t). Since such averages generate the algebra of a(t)-invariant functions, we
conclude that the partition () into the ergodic components of a(t) is coarser
than & (7/7a‘(t)), the measurable hull of the foliation Wa‘m. On the other hand, the

measurable hulls é (7/7a‘(s)) and E#* ) of both # - and 7/7a+(s) coincide with the

"a(s) a(s) -
Pinsker algebra n(a(s)). Since ¢ (Wats)) is coarser than &(#), we conclude that

Cat) SEWyy) =EWyg) =m(a(9) = EW gl < EW).
O

3.4. Invariance and absolute continuity of conditional measures. Let # be
one of the Lyapunov foliations of a (recall that it is one-dimensional), and let
L c R¥ be the corresponding Lyapunov hyperplane. We fix a Pesin set A, r > 0,
and a set A, as in Lemma 3.6.

LEMMA 3.9. For ui- a.e. x € A, and for ,ux”/- ae yeA ;N B, (x) there exists
an affine map g: W (x) — W (x) with g(x) = y which preserves the conditional
measure i up to a positive scalar multiple. Furthermore, the absolute value of
the derivative of this affine map is bounded away from zero and infinity uniformly
inx and y. The bounds depend on r and m.
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Proof. We fix a generic singular element t € L c R¥. By Lemma 3.8 the partition
&q into the ergodic components of y for a(t) is coarser than the measurable
hull £(#) of the foliation # . Then there is a set X; of full p-measure such that for
any x € X, the ergodic component E, of a(t) passing through x is well-defined
and contains # (x) up to a set of u” -measure 0. Let ., be the measure induced
by p on Ey.

For n > 0 we denote by B”(x) the image under H;! of the ballin T, # of radius
n centered at 0, where H, comes from Lemma 3.2. We note that the sets B" (x)
exhaust # (x), i.e. # (x) = U,>0 B"(x). For almost every x we can normalize ,uxW
so that u” (B"(x)) = 1 and denote its restriction to B"(x) by u”.

We use a fixed Riemannian metric to identify T, # with R and then use H, to
identify B" (x) with the interval [—n, n]. Thus we can consider the system of nor-
malized conditional measures u’ as a measurable function from the suspension
manifold M to the weak* compact set of Borel probability measures on the in-
terval [-n, n]. By Luzin’s theorem, we can take an increasing sequence of closed
sets K; contained in the support of u such that

[e 0]
1. u(K)=1,where K= U K;
i=1
2. p!? depends continuously on x € K; with respect to the weak™ topology.

Set X, = X1 n K. Since by definition the transformation a(t) restricted to the
ergodic component E, is ergodic, the transformation induced by a(t) on X; N
E.NK;nA;nis also ergodic for any i. Hence the set X3, which consists of points
x € X, whose orbit {a(mt) x},,cz is dense in a subset of full y, measure of X; N
E,.NK;N Ay, forall i, has full measure p.

Let x€ X3N Ay, and y € X3N Ay N Br(x). Then x,y € X1 NEx N K; N Ay
for some i. Hence there exists a sequence mj — oo such that the points y; =
a(mit) x € X1 NnExNK; N A, converge to y. Let us consider the map

P = amt)ly o W (x) = 7 (yg).

Since x and yj = a(myt) x are both in A, ;,;, Lemma 3.7 yields K '<||Dyprll <K
for all k. The map ¢ is affine with respect to the affine parameters on # (x)
and # (yi). By Proposition 3.1, the affine parameters depend continuously in
the C1*¢ topology on a point in the Pesin set A. Thus the affine parameters
at y converge to the affine parameter at y uniformly on compact sets in the
leaves. Hence, by taking a subsequence if necessary, we may assume that the
¢ converge uniformly on compact sets to an affine map g,,: # (x) — # (x) with
gn(x)=y.

Since both (¢¢)« py and py, are conditional measures on the same leaf W (yi),
there exists a constant c(k) > 0 such that

1y, (Pr(A) = c)ui(A) forany AcB"(x)n¢;'(B)).
Similarly, there exists a constant ¢ > 0 such that

py(A) =cug(A) forany AcB"(x)n(By).

JOURNAL OF MODERN DYNAMICS VOLUME 1, No. 1 (2007), 123-146



138 BORIS KALININ AND ANATOLE KATOK

Since p!! depends continuously on x € K; with respect to the weak* topology, the
measures (y weak* converge to the measure uj. Assuming that the boundary
of Arelative to the leaf has zero conditional measure, we obtain that

(k) (A) = pyy, (i (A) — py(gnA) = ci (gnA)

and hence

lim c(k) _
uh(gnA) = _ pp(A) forany AcB"(x)ng,'(B)).
We obtain that g, preserves the conditional measure ,uxW~ up to a scalar on the set
C"(x) = B"(x) n g, (B})). We note that C"(x) contains B"/X(x) and also B, (x),

provided 7 is large enough. Since u” (B, (x)) > 0, taking A = C"(x) we see that
lim c(k) must be positive.

We conclude that for any z > 0 there exists a set X, of full y-measure such that
foranyxe XynA,pand ye Xy n B, (x)n Ay, there exists an affine map g, of
# (x) such that g,,(x) = y and g, preserves u” up to a positive scalar on C"(x).

Repeating this construction for every n > 0 we can choose a set X of full mea-
sure psuch thatforanyxe XNnA,,, ye Xn B, ()N A m, and any n there exists
an affine map g,,: # (x) — # (x) satisfying g,(x) = y and preserving ¢ up to a
positive scalar on C"(x). We note that # (x) = Up=0 C™(x). Hence taking a con-
vergent subsequence we obtain thatforany x € XnA, ,, and ye Xn B,(x)N Arm
there exists an affine map g of # (x) with g(x) = y which preserves u” up to a
positive scalar. This completes the proof of the lemma since we may assume that
the set X of full measure is chosen so that for x € Xn A, the set X n B, (x) has
full u” -measure. 0

LEMMA 3.10. The conditional measures i/ are absolutely continuous for u - a.e.
X.

Proof. Let A, be the group of affine transformations of # (x), and let G, be the
subgroup of A, consisting of elements which preserve pr up to a positive scalar
multiple.

Let us first observe that Gy is a closed subgroup. Indeed, if g, — g in Ay
then g,(Z) — g(Z) in the Hausdorff metric whenever Z c # (x) is bounded,
so 1’ (gn(2)) — u” (g(2)) if the relative boundary of g(Z) has zero conditional
measure. This implies that (g,).u” — g.u”. We also have (g,,).p” = c,u?,
where ¢, = u” (2)/u” (g, (Z)) for any Z. Since g is an invertible affine map we
can choose Z such that u” (2) > 0, u” (g(2)) > 0, and p” (8(g(2))) = 0. It follows
that ¢, — c=p” (2)I1n” (g(2)) >0and g.u” = cp”.

Since any element a(t) preserves the affine parameters on the leaves of #/,
it maps the group A, isomorphically onto Ay x. Since a(t) also preserves the
conditional measures on the leaves of #, it maps the subgroup G, isomorphi-
cally onto Ggx on the set of full measure u where the conditional measures
and affine parameters on the leaves of # are well defined. Since isomorphism
classes of closed subgroups of the group of affine transformations on the line
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form a separable space, ergodicity of a(t) implies that the groups Gy are isomor-
phic p-almost everywhere.

By Lemma 3.9, for a given Pesin set A and for y” -almost any y,z € A, N

B, (x) there exists an affine map g: # (x) — # (x) preserving u” up to a scalar
multiple with g(y) = z. Thus G, has an orbit of positive u” measure. We note
that the measures u” are nonatomic for u-almost every x, otherwise the entropy
would be zero for any element whose full unstable foliation is #. Then it follows
that G, can not be a discrete subgroup of A, for p almost every x. Hence either
Gy = Ay or the connected component of the identity in G, is a one-parameter
subgroup of the same type on the set of full y measure. Thus either G, contains
the subgroup of translations or it is conjugate to the subgroup of dilations.
(i) First consider the case when G, contains the subgroup of translations. For
any x and y € # (x) we define c,(y) by the equality gu” = c,(y)u” , where u” is
the conditional measure on # (x) and g is a translation such that g(x) = y. Note
that c,(y) is well defined. Indeed, such g is unique, and the definition does not
depend on a particular choice of u” since the conditional measures are defined
up to a scalar multiple. We need to show that c,(y) = 1 for all y € # (x).

We note that c,(y) can be calculated as

g1’ (A) _ 1’ (g7 A) _ 17 (A)
17 (A) WA w(gA)

for any set A of positive conditional measure. Since we can take the test set A
such that the boundary of g(A) relative to the leaf has zero conditional measure,
we conclude that for a fixed x the coefficient c,(y) depends continuously on y.
We see that either for u- a.e. x c,(y) = 1 for all y € # (x), or there exists a set X
of positive measure such that c,(y) is not identically equal to 1 for x € X. In the
latter case for some € > 0 we can define a finite positive measurable function

() =

@e(x) =inflr:3ye# (x) s.t.d(x,y) <r and |cx(y) — 1| > €}

on some subset Y < X of positive u-measure. By measurability there exists N
and a set Z of positive measure on which ¢, takes values in the interval (1/N, N).
We will show that

3.3) @e(a(nt)x) - 0asn— oo

uniformly on Z for an element t such that a(t) contracts the foliation #. Since
this contradicts the recurrence of the set Z we conclude that ¢, (y) must be iden-
tically equal to 1.

We will prove now that

(3.4) cx(¥) = capx(a®y)

for p-a.e. xand ye # (x). Since the iterates of a(t) exponentially contract the
leaves of #/, this invariance property implies that ¢.(a(nt)x) < CA"@¢(x), for
some C,A > 0, hence (3.4) implies (3.3).
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To prove (3.4) we consider the translation
f=a®ogoal(-t) € Gyux
We observe that f(a(t)x) = a(t) y since gx = y. Hence we obtain
1’ (B)
W (FB)
for any set B ¢ # (a(t)x) of positive conditional measure. Since a(t)(g(A)) =

f(a(t)A) and since a(t),y” is a conditional measure on the leaf # (a(t)x) we
obtain using B = a(t) A as the test set that

Cax(a(®)y) =

17 (A) (@®).u?) (@) A)
cx(y) = 7 = "
uy (g(A))  (a().uy )(a(t)(g(A)

(ii) Now suppose that G, is conjugate to the subgroup of dilations. In this case G
has a fixed point 0, and acts simply transitively on each connected component
of # (x)\ {0,}. For any x and y in the same component we consider

_Jg @ (A
1 (g(A)
where g € Gy is such that g(x) = y and Jg is the absolute value of the Jacobian

with respect to the affine parameter. To show that measure p” is Haar it is suffi-
cient to prove that for any g € G

= Ccqx(a@(®y).

Cx

3.5) gy =Jg 1y

For that it suffices to show that c,(y) = 1 identically on # (x) for p-almost every
x. This can be established by repeating the argument of the previous case. The
only difference is that to prove (3.4) we need to note that for the map

f=a)ogoal-t) € Gypx
we have Jf =Jg. -

Notice that at the end we proved that G, = A, for almost every x.

3.5. Conclusion of the proof. In order to prove that u is an absolutely continu-
ous measure it is sufficient to show that for a certain element a(m)

(2) The entropyhy,(a(m)) is equal both to the sum of the positive Lyapunov ex-
ponents and to the absolute value of the sum of the negative Lyapunov exponents.
(See [L, LY]).

First recall that there are — 2 Weyl chambers for ay and any combination
of positive and negative signs for the Lyapunov exponents, except for all positive
or all negative, appears in one of the Weyl chambers. The same is true for a by
Lemma 2.3. Denote the Lyapunov exponents for a by y1,..., Yx+1- Let 6, i =
1,...,k+1, be the Weyl chamber on which the y; >0 and y; <0 for all j # i.
Notice that we use notations different from those of Section 2.1.

2k+1
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Consider m € %6;. Since the conditional measure on 7/70:;“1) is absolutely con-
tinuous by Lemma 3.10, we obtain that

h,(a(m)) = y;(m)

for any m € ;. By the Ruelle entropy inequality hy,(a(m)) < -3 ;4; xj(m) and

hence
k+1

x;(m) <0.
j=1
If Z’]‘;“ll xj(m) = 0 then (2) holds and the proof is finished.

+

Thus we have to consider the case when Z? Yy j(m) <0 for all m in all Weyl

chambers 6;, i = 1,... k+1. Thisimplies that Ui:11 %; lies in a negative half-space

of the linear functional }_ ;‘;“11 X j- But this is impossible since there exist elements

t;€%;, i=1,...k+1suchthat Y¥!¢; = 0. O

4. PROOF OF THEOREMS 1.6 AND 1.7

4.1. Rigidity of the expansion coefficients. We consider the suspension action
of a. Let y be one of the Lyapunov exponents of a. Let E be the correspond-
ing Lyapunov distribution and L = kery c R* be the corresponding Lyapunov
hyperplane.

LEMMA 4.1. Therestriction of a to L is ergodic.

Proof. By Lemma 3.8, the partition ¢; by ergodic components of u is coarser
than the measurable hull &(#) of the foliation #, which in turn coincides with
the Pinsker algebra of a regular element in R¥. Since we have established that u
is absolutely continuous, the Pinsker algebra on T¥*! of a regular element in Z*
is at most finite [P].

Then on the suspension manifold M the Pinsker algebra is given by the corre-
sponding finite partitions of the fibers of the suspension. Since L is an irrational
hyperplane in R, its action on T* in the base of the suspension is uniquely er-
godic, and hence ¢ is at most finite. Since the action a is ergodic, ¢y is trivial
since the stationary subgroup in R¥ of any L-invariant set has to have finite in-
dex and hence must coincide with R, O

LEMMA 4.2. There is a measurable metric on E with respect to which
@1 IDa®vl =X

for anyte R*, y-a.e. x, and any v € E(x). Such a measurable metric is unique up
to a scalar multiple.

Proof. First we construct a measurable metric g on E which is preserved by an
ergodic element t € L. In other words, (4.1) is satisfied with respect to g for this
element t. Then we will show that such a metric is unique up to a scalar multiple.
The uniqueness easily implies that (4.1) is satisfied for all t € R,

Let A’ = A, and constant K be as in Lemma 3.7. Ergodicity of a|; implies
that there exists an ergodic element t € L. We fix such an element t, and let X
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be an invariant set of full measure consisting of points whose a(t) orbits visit A’
with frequency u(A").

We fix some background Riemannian metric gy on M. We use the notations
DEa(v) = D(a()|p and

IDEa@ll = IDEa® () llawx- IVI;!

where v € E(x) and |||l is the norm given by gy at x.
We define a measurable renormalization function ¢ as follows.

4.2) ¢(x) =supiDEamb)ll: neN, a(nt)xe A’}

We note that by Lemma 3.7 the supremum is bounded by K for any x € A’. More
generally, the supremum is finite for any point whose a(t) orbit visits A’. Thus
the function is well defined and finite on X. Using (4.2) we obtain

pla®x) supilDgy ambl:neN, a((n+1)t)xe A’}

d(x)  sup{IDEa(nv)]:neN, a(ntxe A}
sup{l| D%, (@t : neN, a((n+1)x e A’}

E -1
= supliDEa®| - IDEantl - neN, a(r Doxea; x40
This means that with respect to the renormalized Riemannian metric g = ¢pgo
we have
$la®x) _ L

b(x)

Suppose that (4.1) is satisfied for the fixed t with respect to another Riemann-
ian metric wgp on E. Then equation (4.1) implies that

ID¥a®llg=IDLa®] -

w(a(t)x)
v (x)

P(a(t)x)

DEa) -
1Dy a@®ll )

= |DEa®)lyg, =1=IIDEa®llgg = IDEa®Il-

and hence
ylat)x)  w(x)
pla®x) ¢x)
By ergodicity of a(t) we conclude that 1y = k¢, where « is a constant.
For any other element s € R* consider the metric a(s).g. By commutativity,
this metric is again preserved by a(t). From the uniqueness we obtain a(s).g =
x(s) - g where « (s) is a positive constant. Let us show that

logx(s) = x(s).

Indeed, let A be a set of positive measure on which C™! < ¢ < C for some con-
stant C. Since

x(s) = [Dfa(ns)llg = |DEa(s)| - %
we obtain
4.3) C2%k"(s) < | DE a(ns)|| < C*"(s)
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if both x and a(ns)x are in A. By recurrence, for almost every x € A there exists
a sequence of natural numbers n; — oo such that a(n;s) € A. Since for almost
every x

x(8) = lim n; 'log|| Dy a(ns)|

we conclude using (4.3) that y(s) =logx (s). O
4.2. Smoothness of the semiconjugacy along the Lyapunov foliations.

LEMMA 4.3. For almost every x the semiconjugacy h intertwines the actions of the
groups of translations of W (x) and W (h(x)). More precisely, for any translation
T with respect to the affine structure on W (x) there is a translation T of W (h(x))
withhoT=71oh.

Proof. The proof of this lemma closely follows the proof of Lemma 3.9. Let A be
a Pesin set. By Lemma 3.1, the affine parameters depend continuously in C1*¢
on a point in A.

By Luzin’s theorem, the measurable metric from Lemma 4.2 is uniformly con-
tinuous on sets of large measure. Hence we can take an increasing sequence of
closed sets K; such that

1. u(K)=1,where K = OL(J) K;

2. the measurable metrlicldepends continuously on x € K;.

As in the previous lemma we fix an ergodic element t € L. Then the transfor-
mation induced by a(t) on K; N A is also ergodic for any i. Hence, there is an
invariant full measure u set X < K of points x whose orbit {a(mt) x},,cz is dense
in K;nAforalli.

Let x€ X and y € # (x) n XN A. Then y € K; n A for some i. Hence there exists
a sequence mj — oo such that the points y; = a(mit) x € K; N A converge to y.
Let us consider the affine map

P = almt)ly o W (x) = W (yg).

We normalize the affine parameters using the measurable metric. Then ¢y is an
isometry with respect to the normalized parameters at x and y,. The normalized
parameters vary continuously on K; N A. Since y and yy are both in K; N A, the
normalized affine parameters at y; converge to the normalized affine parameter
at y uniformly on compact sets. Hence, by taking a subsequence if necessary, we
may assume that the ¢, converge to an isometry g: # (x) — # (x) with g(x) = y.
We also note that y; — y implies that h(yy) — h(y), and the maps

Vi = ao(MmiO)ly (heyy: W (h(x)) — # (h(yi).

are isometries. By taking a subsequence if necessary, we may assume that v
converge to an isometry f: # (h(x)) — # (h(x)) with f(h(x)) = h(y). Since hisa
semiconjugacy we obtain hog = foh.

Let G, be the set of all isometries g of # (x) for which there exists an isometry
fof W (x) with hog = foh. Itis easy to see that Gy is a closed subgroup of the
group of affine transformations of # (x).
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Since a set of full measure can be exhausted by Pesin sets we obtain that for
almost every point x and for u” -almost every y € # (x) there exists an isometry
8xy € Gy with g(x) = y. We note that by Lemma 3.10, for almost every point x
the conditional measure pu, is Haar with respect to the affine parameter. Hence
we conclude that for almost every point x there is a dense set of points y € # (x)
for which there exists an isometry g,y € G,. Since Gy is closed this implies that
G, acts transitively on # (x) and thus contains the subgroup 97 of translations
of # (x). The corresponding isometries of # (x) also have to be translations and
the lemma follows. O

LEMMA 4.4. For almost every point x and every Lyapunov foliation W the semi-
conjugacy h is a C'*¢ diffeomorphism from W (x) into # (h(x)).

Proof. This follows immediately from Lemma 4.3. Indeed, the correspondence
¥ — 7 is a continuous isomorphism between the groups of translations 9 and 9~
of # (x) and # (x) respectively. Hence there exists a € R such that if #(y) = y+t for
y € # (x) then 7(2) = z + at for z € # (h(x)). Then hof = 7o h implies that hl,
is a linear map with respect to the affine parameter on # (x) and the standard
affine parameter on # (x). Since the affine parameter on # (x) is given by a C'*¢
diffeomorphism, then so is A. O

4.3. Conclusion of the proof of Theorem 1.7. Fix a Lyapunov foliation #. Let
A be a set of positive measure such that the semiconjugacy #h is differentiable
at every x € A and the derivative L(x) of the & along # and its inverse are both
bounded by a constant C. Such a set exists by Lemma 4.4. Suppose that both x
and a(t)(x) are in A. Let v be a tangent vector at x to #. We have

(4.4) ID(@®) vl = L) Do )y (nn |1 L (@@ @) [ ]].

Since ay is a linear action, || D(ao(t)ly () Il = exp x (t), where y is the Lyapunov
exponent of a corresponding to the foliation #'. Since by assumption

C™! <min{L(x), L™  (a@(t) (%))} < max{L(x), "} (a(t)(x))} < C
we obtain from (4.4)
(4.5) C2expy® vl < ID@®)v] < C*exp y®vl.

Now let ¥ be the Lyapunov exponent of the action a corresponding to the folia-
tion # . Take s € R* such that aq(s) is ergodic (the set of such s is dense in RFK).
Then for almost every x € A one can find a sequence of natural numbers ny — co

such that a(n;s) € A. Since for almost every x and for v e Ty #

lim logllDa(nis)(v)ll _

k—oo ng

x(s)

we conclude from (4.5) that y(s) = y(s). Since this is true for a dense set of s, this
implies that ¥ = y O
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4.4. Conclusion of the proof of Theorem 1.6. For every Weyl chamber €6; we
choose an element m; € Z¥ N <€;. For every m; we choose a Pesin set A; and let
A =; A;. For apoint x in A we denote by B, (x) the ball in T*+! of radius r cen-
tered at x. We fix r sufficiently small compared to the size of the local manifolds
at points of A.

LEMMA 4.5. The semiconjugacy h is injective on B, (x) N A for any x € A.

Proof. Let y be a point in B,(x) n A different from x. Then there exists an ele-
ment m; such that W;(mi) (x) is k-dimensional and does not contain y. Indeed,
the intersection of all k-dimensional local unstable manifolds through x con-
tains only x itself. We will denote in this proof W = by F and the comple-
mentary one-dimensional local Lyapunov foliation W, by W. By Lemma 2.2,
h(F(z)) < F(h(z)) and h(W (z) € W (h(z))) for any z € B,(x) N A, where F and W
are the corresponding local foliations for . Since both x and y are in B, (x)N A,
the intersection W (x) n F(y) consists of exactly one point z € B,(x). Then h(z)
is the unique point in the intersection W (k(x)) n F(h(y)). Suppose now that
h(x) = h(y). Then h(z) = W(h(x)) n F(h(x)), which means that h(z) = h(x) and
thus h is not injective on W (x). The latter, however, contradicts the fact that,
according to Lemma 4.4, h is a diffeomorphism on W (x). O

Now we can complete the proof of Theorem 1.6 as follows. By compactness,
the set A can be covered by finitely many balls B;(x). Then the previous lemma
implies that h~!(h(x)) N A is finite for any x € A. Since we can choose the set
A to have arbitrarily large measure y, by taking an increasing sequence of such
sets we can obtain an invariant set A with p(A) = 1 such that A1~ (h(x)) N A is
at most countable for all x € A. Now we consider the measurable partition of A
into the preimages of points under /. Since the elements of this partition are at
most countable, the conditional measures are discrete. We see that h|4 gives a
countable extension of (ag, A). Since (a, u) is ergodic it follows that the the con-
ditional measures of all points in the fiber are the same and hence the extension
is finite. O
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