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ABSTRACT. We prove that every smooth action α of Zk , k ≥ 2, on the (k +1)-

dimensional torus whose elements are homotopic to corresponding elements

of an action α0 by hyperbolic linear maps preserves an absolutely continuous

measure. This is the first known result concerning abelian groups of diffeo-

morphisms where existence of an invariant geometric structure is obtained

from homotopy data.

We also show that both ergodic and geometric properties of such a measure

are very close to the corresponding properties of the Lebesgue measure with

respect to the linear action α0.

1. INTRODUCTION

1.1. Measure rigidity and hyperbolicity. It is well-known that in classical dy-

namical systems, i.e. smooth actions of Z or R, nontrivial recurrence combined

with some kind of hyperbolic behavior produces a rich variety of invariant mea-

sures (see for example, [KH] and [KM] for the uniformly and nonuniformly hy-

perbolic situations correspondingly). On the other hand, invariant measures for

actions of higher rank abelian groups tend to be scarce. This was first noticed

by Furstenberg [F] who posed the still open problem of describing all ergodic

measures on the circle invariant with respect to multiplications by 2 and by 3.

Great progress has been made in characterizing invariant measures with posi-

tive entropy for algebraic actions of higher rank abelian groups; for the measure

rigidity results for actions by automorphisms or endomorphisms of a torus see

[R, KS1, KS2, KaK1, KaK2, KaSp, EL].

For background on algebraic, arithmetic, and ergodic properties of Zk actions

by automorphisms of the torus we refer to [KKS]. Recall that an action of Zk on

T
k+1, k ≥ 2, by automorphisms which are ergodic with respect to the Lebesgue

measure is called a (linear) Cartan action. Every element of a Cartan action other
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124 BORIS KALININ AND ANATOLE KATOK

than the identity is hyperbolic and has distinct real eigenvalues, and the central-

izer of a Cartan action in the groups of automorphisms of the torus is a finite

extension of the action itself ([KKS, Section 4.1]).

A geometric approach to measure rigidity was introduced in [KS1]. It is based

on the study of conditional measures on various invariant foliations for the ac-

tion. Broadly speaking, there are three essential tools or methods within this

approach which we list in order of their chronological appearance:

1. The geometry of Lyapunov exponents and derivative objects, in particular

Weyl chambers [KS1, KS2, KaK1, KaSp].1

2. The noncommutativity and specific commutation relations between vari-

ous invariant foliations [EK1, EK2, EKL]. 2

3. Diophantine properties of global recurrence [EL].

In this paper we make the first step in extending measure rigidity from al-

gebraic actions to the general nonuniformly hyperbolic case, i.e. to positive

entropy ergodic invariant measures for actions of higher rank abelian groups

all of whose Lyapunov characteristic exponents do not vanish. Such measures

are usually called hyperbolic measures. The theory of hyperbolic measures for

smooth actions of higher rank abelian groups is described in Part II of [KaK1]. In

Sections 2.1 and 2.2 we briefly mention key elements of that theory relevant for

the specific situation considered in this paper.

In this paper we use a counterpart of the method (1) above. We will discuss

the scope of this method, difficulties which appear for its extensions, and appli-

cations of properly modified versions of other methods to various nonuniformly

hyperbolic situations in a subsequent paper.

Acknowledgement. We would like to thank Omri Sarig who carefully read the

paper and made a number of valuable comments which helped to clarify several

points in the proofs and improve presentation.

1.2. Formulation of results.

THEOREM 1.1. Any action α of Zk , k ≥ 2, by C 1+ǫ, ǫ> 0, diffeomorphisms of Tk+1,

whose elements are homotopic to those of a linear Cartan action α0, has an er-

godic absolutely continuous invariant measure.

The connection between invariant measures of α and those of α0 is estab-

lished using the following well-known result whose proof we include for the sake

of completeness.

LEMMA 1.2. There is a unique surjective continuous map h : Tk+1 →T
k+1 homo-

topic to the identity such that h ◦α=α0 ◦h.

1See in particular [KaK1, Section 2.2] for a down-to-earth proof of rigidity of positive-entropy

invariant measures for linear Cartan actions. A reader unfamiliar with measure rigidity may look

at that section first to get an idea of the basic arguments we generalize in the present paper.
2This method was first outlined at the end of [KS1]; note that it is not relevant for the actions

on the torus since in this case all foliations commute.
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RIGIDITY BEYOND UNIFORM HYPERBOLICITY 125

Proof. Consider an element m ∈Z
k \ {0}. By a theorem of Franks ([KH, Theorem

2.6.1]), there exists a unique continuous map h : Tk+1 →T
k+1 that is homotopic

to the identity and satisfies

(1.1) h ◦α(m) =α0(m)◦h.

For any other element m′ ∈Z
k consider the map

(1.2) h′
=α0(−m′)◦h ◦α(m′)

Using commutativity of both actions α and α0 as well as (1.1) we obtain

h′
◦α(m) =α0(−m′)◦h ◦α(m′)◦α(m) =α0(−m′)◦h ◦α(m)◦α(m′)

=α0(−m′)◦α0(m)◦h ◦α(m′) =α0(m)◦α0(−m′)◦h ◦α(m′) =α0(m)◦h′,

i.e. h′ satisfies (1.1). Since it is also homotopic to identity, the uniqueness of

h forces h = h′. Then (1.2) implies h ◦α(m′) = α0(m′) ◦h, so h intertwines the

actions α and α0.

Another way of stating Lemma 1.2 is that the algebraic action α0 is a topolog-

ical factor of the action α or, equivalently, α is an extension of α0.

REMARK 1. If the action α is Anosov, i.e. if α(m) is an Anosov diffeomorphism

for some m, then the map h is invertible, and both h and h−1 are Hölder [KH,

Theorems 18.6.1 and 19.1.2]. This implies various rigidity results for Zk Anosov

actions on the torus.

• For example, if α0 is a linear Z
k action on a torus which contains a Z

2

subaction all of whose elements other than identity are ergodic, then any

Anosov action α homotopic to α0 preserves a smooth measure. This fol-

lows from rigidity of Hölder cocycles over α0 and hence over α applied to

the logarithm of the Jacobian for α.

• For those cases when the positive-entropy ergodic invariant measure for

α0 is unique [EL] the same is true for α.

Consider the set of all Borel probability measures ν on T
k+1 such that (h)∗ν=

λ, where λ is Lebesgue measure on T
k+1. This set is convex, weak* compact, and

α-invariant. Hence by Tychonoff theorem it contains a nonempty subset M of

measures invariant under α. Since α0 is ergodic with respect to λ, almost every

ergodic component of an α-invariant measure ν ∈ M also belongs to M . Let µ

be such an ergodic measure.

Theorem 1.1 follows immediately from Lemma 1.2 and the following theorem,

which is the first principal technical result of the present paper.

THEOREM 1.3. Any ergodic α-invariant measure µ such that (h)∗µ = λ, where h

is the semiconjugacy from Lemma 1.2, is absolutely continuous.

Since anyα-invariant measure whose ergodic components are absolutely con-

tinuous is itself absolutely continuous we obtain the following
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COROLLARY 1.4. Every measure ν ∈M is absolutely continuous and has no more

than countably many ergodic components. Hence M contains at most countably

many ergodic measures.

In fact a much stronger statement is true. It is proved in [K-RH] using results

from the present paper.

THEOREM.

1. The set M consists of a single measure.

2. The semiconjugacy h is a measurable isomorphism between the actions α

and α0.

It is even possible that uniqueness follows from absolute continuity for a sin-

gle diffeomorphism.

CONJECTURE 1.5. Let f be a C 2 diffeomorphism homotopic to a linear hyperbolic

automorphism f0 of a torus and let h be the semiconjugacy. Then there is at most

one absolutely continuous f -invariant measure µ such that h∗(µ) =λ.

Here we prove a slightly weaker version of part (2) of the above theorem for

ergodic measures.

THEOREM 1.6. For any ergodic measure µ ∈ M the semiconjugacy h is finite-to-

one in the following sense. There is an α-invariant set A of full measure µ such

that for λ-almost every x ∈T
k+1, A∩h−1({x}) consists of equal number s of points

and the conditional measure induced byµ assigns every point in A∩h−1({x}) equal

measure 1/s.

Recall that the Lyapunov characteristic exponents of the linear action α0 are

independent of an invariant measure and are equal to the logarithms of the ab-

solute values of the eigenvalues. They all have multiplicity one and no two of

them are proportional.

THEOREM 1.7. The Lyapunov characteristic exponents of the action αwith respect

to any ergodic measure µ ∈M are equal to the Lyapunov characteristic exponents

of the action α0.

Either of the last two theorems immediately implies the following.

COROLLARY 1.8. The entropy function of α with respect to any measure ν ∈M is

the same as the entropy function of α0 with respect to Lebesgue measure, i.e. for

any measure ν ∈M and any m ∈Z
k we have hν(α(m)) =hλ(α0(m)).

Since every element of α0 other than the identity is Bernoulli with respect

to the Lebesgue measure, Theorem 1.6 also implies that every element of α is

Bernoulli up to a finite permutation.

COROLLARY 1.9. There exist a partition of a set A of full measure µ into finitely

many sets A1, . . . , Am of equal measure such that every element ofαpermutes these

sets. Furthermore, there is a subgroup of finite index Γ⊂Z
k such that for any γ ∈Γ
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other than the identityα(γ)Ai = Ai , i = 1, . . . ,m, and the restriction ofα(γ) to each

set Ai is Bernoulli.

In particular, if all non-identity elements ofαare ergodic then they are Bernoulli.

REMARK 2. Since by Lemma 2.3 the measure µ is hyperbolic, Corollary 1.9 fol-

lows directly from Theorem 1.3 and the classical result of Pesin [P] that an er-

godic hyperbolic absolutely continuous invariant measure for a diffeomorphism

is Bernoulli up to a finite permutation.

REMARK 3. Theorem 1.1 for k = 2 was announced in [KaK1] as Theorem 8.2.

The proof in the present paper follows a path different from the one outlined in

[KaK1]. There it is derived from Theorem 8.1 about hyperbolic invariant mea-

sures for Z
2 actions on three-dimensional manifolds. A proof of the latter the-

orem (and its n-dimensional version) following the outline presented in [KaK1,

Section 8.3] and some essential new ingredients will appear in [KKRH].

2. LYAPUNOV EXPONENTS, WEYL CHAMBERS,

AND INVARIANT “FOLIATIONS” FOR α

2.1. Preliminaries.

2.1.1. Entropy. Since h∗µ=λ the measure-theoretic entropy hµ satisfies

hµ(α(m)) ≥ hλ(α0(m)) ≥ max
1≤i≤k+1

| log |ρi (m)| |,

where ρi (m), i = 1, . . . ,k +1 are the eigenvalues of the matrix α0(m).

Since every element of α0 other than identity is hyperbolic this implies in par-

ticular that

(E ) The entropies hµ(α(m)) for all m ∈ Z
k \ {0} are uniformly bounded away

from zero.

2.1.2. Lyapunov exponents. The linear functionals χi = log |ρi |, i = 1, . . . ,k +1 on

Z
k are the Lyapunov characteristic exponents of the linear action α0 which are

independent of an invariant measure. See [KaK1, Section 1.2] for definitions and

discussion of Lyapunov characteristic exponents, related notions (Lyapunov hy-

perplanes, Weyl chambers, etc.) and suspensions in this setting. We will use this

material without further references.

The following property of linear Cartan actions will play an important role in

our considerations, in particular in Section 3.3.

(C ) For every i ∈ {1, . . . ,k+1} there exists an element m∈Z
k such that χi (m) < 0

and χ j (m) > 0 for all j 6= i . (The same inequalities hold for any other element m′

in the Weyl chamber of m.)

Corresponding notions in a general setting, which includes that of Zk actions

by measure preserving diffeomorphisms of smooth manifolds, are defined and

discussed in Sections 5.1 and 5.2 of the same paper [KaK1]. We will also use those

notions without special references.

Let χ̃i , i = 1, . . . ,k +1, be the Lyapunov characteristic exponents of the action

α, listed with their multiplicities if necessary. We will eventually show that in our
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setting the exponents can be properly numbered so that χ̃i = χi , i = 1, . . . ,k +1

(see Section 4.3).

As the first step in this direction we will show in Section 2.3 that exponents

for α can be numbered in such a way that they become proportional to χi with

positive scalar coefficients.

2.1.3. Suspensions. Although the Lyapunov characteristic exponents for a Z
k ac-

tion are defined as linear functionals on Z
k , it seems natural to extend them to

R
k . For example, Lyapunov hyperplanes (the kernels of the functionals) may be

irrational and hence “invisible” within Z
k . It is natural to try to construct an R

k

action for which the extensions of the exponents from Z
k will provide the non-

trivial exponents.

This is given by the suspension construction which associates to a given Z
k

action on a space N an R
k action on a bundle over T

k with fiber N . The topo-

logical type of the suspension space depends only on the homotopy type of the

Z
k action. In particular, the suspension spaces for α0 and α are homeomorphic.

There is a natural correspondence between the invariant measures, Lyapunov

exponents, Lyapunov distributions, stable and unstable manifolds, etc. for the

original Zk action and its suspension. Naturally, the suspension has k additional

Lyapunov exponents corresponding to the orbit directions which are identically

equal to zero. In our setting, the semiconjugacy between α and α0 naturally ex-

tends to the suspension. The extended semiconjugacy is smooth along the sus-

pension orbits and reduces to the original semiconjugacy in the fiber over the

origin in T
k .

At various stages of the subsequent arguments it will be more convenient to

deal either with the original actions α and α0 on T
k+1 or with their suspensions.

So we will take a certain liberty with the notations and will use the same notations

for the corresponding objects, i.e. α and α0 for the suspension actions, χ̃i and χi

for the Lyapunov exponents etc, modifying the notations when necessary, as in

α(m) for m ∈Z
k and α(t) for t ∈R

k .

2.2. Pesin sets and invariant manifolds. We will use the standard material on

invariant manifolds corresponding to the negative and positive Lyapunov expo-

nents (stable and unstable manifolds) for C 1+ǫ measure preserving diffeomor-

phisms of compact manifolds. See for example [BP, Chapter 4]. It is customary

to use the words “distributions” and “foliations” in this setting although in fact

we are dealing with measurable families of tangent spaces defined almost ev-

erywhere with respect to an invariant measure, and with measurable families

of smooth manifolds, which coincide if they intersect and which fill a set of full

measure.

We will denote by W̃ −
α(m)

(x) and W̃
−
α(m)

(x) correspondingly the local and global

stable manifolds for the diffeomorphism α(m) at a point x that is regular with

respect to this diffeomorphism. The global manifold is an immersed Euclidean

space and is defined uniquely. Any local manifold is a C 1+ǫ embedded open disc

in a Euclidean space. Its germ at x is uniquely defined and for any two choices
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RIGIDITY BEYOND UNIFORM HYPERBOLICITY 129

their intersection is an open neighborhood of the point x in each of them. On a

compact set of arbitrarily large measure, called a Pesin set, the local stable man-

ifolds can be chosen of a uniform size and depending continuously in the C 1+ǫ

topology.

The local and global unstable manifolds W̃ +
α(m)

(x) and W̃
+
α(m)

(x) are defined as

the stable manifolds for the inverse map α(−m).

Recall that the stable and unstable manifolds W̃
−
α(m) and W̃

+
α(m)

are tangent

to the (almost everywhere defined) stable and unstable distributions E−
α(m)

and

E+
α(m) accordingly. These distributions are the sums of the distributions corre-

sponding to the negative and positive Lyapunov exponents for α(m) respectively.

At the moment, we do not know the dimensions of those distributions. How-

ever, the following lemma shows that W̃
−
α(m) and W̃

+
α(m)

are transverse for any reg-

ular element m ∈Z
k . An element of Zk or Rk is called singular if a nonzero Lya-

punov exponent vanishes on it, i.e. the element belongs to a Lyapunov hyper-

plane. All other elements are called regular.

LEMMA 2.1. All Lyapunov exponents of µ are nonzero, i.e. µ is a hyperbolic mea-

sure for α. In particular, α(m) is nonunifomly hyperbolic on T
k+1 for any regular

element m ∈Z
k .

Proof. Suppose there is an identically zero Lyapunov exponent for α. Then α has

at most k nonzero Lyapunov exponents. Intersecting the Lyapunov hyperplanes

inductively one can easily see that there exists a line in R
k on which at least k

Lyapunov exponents vanish and thus at most one is nonzero. By the Ruelle in-

equality [KM] this implies that the entropy of the elements of the suspension

along that line vanishes. Since there are elements of Zk either on the line (if the

line is rational) or arbitrary close to it (if it is irrational), there are nonzero ele-

ments m ∈ Z
k such that the entropy hµ(α(m)) is arbitrarily small. This however

contradicts (E ).

The corresponding stable and unstable manifolds for the linear action α0 will

be denoted by the same symbols without the tilde. Of course those manifolds are

affine, and they are defined everywhere, not just on large sets as for the nonlinear

action α.

2.3. Preservation of Weyl chambers under the semiconjugacy.

LEMMA 2.2. For any element m ∈Z
k \ {0} the following inclusions hold

h(W̃ −
α(m)(x)) ⊂W

−
α0(m)(h(x)) and h(W̃ +

α(m)(x)) ⊂W
+
α0(m)(h(x)),

h(W̃ −
α(m)(x)) ⊂W −

α0(m)(h(x)) and h(W̃ +
α(m)(x)) ⊂W +

α0(m)(h(x)).

on the set of full measure µ where W̃
−
α(m)(x) and W̃

+
α(m)

(x) exist.

Proof. The global stable manifold W̃
−
α(m)

(x) is the set of all points y ∈ T
k+1 for

which dist(α(nm)x,α(nm)y) → 0 as n →∞. Since h is continuous, this implies

in turn that dist(α0(nm)h(x),α0(nm)h(y)) → 0 as n → ∞, and hence h(y) be-

longs to the stable manifold W
−
α0(m)

(h(x)).
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Thus, if y is in the local stable manifold W̃ −
α(m)(x) then dist(α(nm)x,α(nm)y)

remains small for all n > 0. Since h is continuous, dist(α0(nm)h(x),α0(nm)h(y))

also remains small for all n > 0. Since α0(m) is uniformly hyperbolic, this implies

that h(y) belongs to the local stable manifold W −
α0(m)(h(x)).

The corresponding statements for unstable manifolds follow by taking inverses.

LEMMA 2.3. The Lyapunov half-spaces and Weyl chambers for α with respect to

the measure µ are the same as the Lyapunov half-spaces and Weyl chambers for

α0. Hence the Lyapunov exponents for α can be numbered χ̃i , i = 1, . . . ,k + 1 in

such a way that χ̃i = ciχi , where ci is a positive scalar.

Proof. Suppose that a Lyapunov hyperplane L of α0 is not a Lyapunov hyper-

plane of α. Then there exist m,n ∈Z
k which lie on the opposite sides of L so that

W̃ −
α(m) = W̃ −

α(n) but W −
α0(m) 6=W −

α0(n).

Let Λ be the intersection of a Pesin set for α(m) with a Pesin set for α(n). Con-

sider a point x ∈Λ such that any open neighborhood of x intersects Λ by a set of

positive measure µ. By the previous lemma we have

h(W̃ −
α(m)(x)) =h(W̃ −

α(n)(x)) ⊂ (W −
α0(m)(h(x))∩W −

α0(n)(h(x)))

and

h(W̃ +
α(m)(x)) ⊂W +

α0(m)(h(x)).

Let R be the intersection of Λ with a neighborhood of x sufficiently small com-

pared to the size of the local manifolds at points of Λ. Then since µ is a hyper-

bolic measure by Lemma 2.1, for any point y ∈ R the intersection W̃ +
α(m)(x)∩

W̃ −
α(m)(y) consists of a single point z1. Similarly, W̃ −

α(m)(x)∩W̃ +
α(m)

(y) = {z2} and

hence W̃ −
α(m)(z1) ∩ W̃ +

α(m)
(z2) = {y}. By the previous lemma the latter implies

that W −
α0(m)(h(z1))∩W +

α0(m)(h(z2)) = {h(y)}. Using the inclusions above we see

that the image h(R) is in the direct product V = (W −
α0(m)(h(x))∩W −

α0(n)(h(x)))×

W +
α0(m)

(h(x)). Since W −
α0(m) 6= W −

α0(n), we conclude that V is contained in a sub-

space of dimension at most k . Hence λ(V ) = 0 which contradicts the fact that

λ(h(R)) ≥ µ(R) > 0. We conclude that any Lyapunov hyperplane of α0 is also a

Lyapunov hyperplane of α. Recall that α0 is Cartan and thus has the maximal

possible number, k +1, of Lyapunov hyperplanes. Hence α also has exactly k +1

distinct Lyapunov hyperplanes, which coincide with the Lyapunov hyperplanes

of α0. In particular, all Lyapunov exponents of α do not vanish.

It follows that for either action there is exactly one Lyapunov exponent that

corresponds to a given Lyapunov hyperplane. It remains to check that for every

Lyapunov hyperplane L the corresponding Lyapunov exponents of α and α0 are

positively proportional. Suppose that for some L the corresponding Lyapunov

exponents are negatively proportional. Let W be the corresponding Lyapunov

foliation for α0. We can take m close to L in the negative half-space of the cor-

responding Lyapunov exponent for α and n sufficiently close to m across L in

the negative half-space for α0, so that m and n are not separated from L by any
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RIGIDITY BEYOND UNIFORM HYPERBOLICITY 131

other Lyapunov hyperplane. Then we observe that W̃ +
α(m)

⊂ W̃ +
α(n)

and that W is

contained neither in W −
α0(m) nor in W +

α0(n).

We choose Λ, x, and R as above. Using Lemma 2.2 we obtain

h(W̃ −
α(m)(x)) ⊂W −

α0(m)(h(x)) and h(W̃ +
α(m)(x)) ⊂ h(W̃ +

α(n)(x)) ⊂W +
α0(n)(h(x)).

As above, these inclusions imply that the image h(R) is contained in the product

V = W −
α0(m)(h(x))×W +

α0(n)(h(x)). We observe that V lies in a subspace that does

not contain W (h(x)) and thus has dimension at most k . This again contradicts

that λ(h(R))≥µ(R)> 0.

Let us summarize the conclusions for the case of Cartan actions.

COROLLARY 2.4. If α0 is Cartan all Lyapunov characteristic exponents for the ac-

tion α with respect to measure µ are simple, no two of them are proportional and

the counterpart of property (C ) holds.

For every Lyapunov exponent χ̃i its Lyapunov distribution integrates to an in-

variant family of one-dimensional manifolds defined µ-almost everywhere. This

family will be referred to as the Lyapunov foliation corresponding to χ̃i . The semi-

conjugacy h maps these local (corr. global) manifolds to the local (corr. global)

affine integral manifolds for the exponents χi .

3. PROOF OF THEOREM 1.3

Throughout this section we fix one of the Lyapunov exponents of α. We de-

note by L the corresponding Lyapunov hyperplane in R
k , by E the correspond-

ing one-dimensional Lyapunov distribution, and by W̃ the corresponding Lya-

punov foliation. Then W̃ is the one-dimensional stable foliation for some ele-

ment α(m), m ∈ Z
k . The notions of regularity and Pesin sets will refer to the

corresponding notions for such an element.

In this section we study properties of the action α related to W̃ . We will show

that the conditional measure µW̃
x on the leaf W̃ (x) is absolutely continuous for

µ-almost every x. We then conclude the proof of Theorem 1.3 by showing that

the absolute continuity of µ follows from the absolute continuity of conditional

measures for every Lyapunov foliation.

3.1. Invariant affine structures on leaves of Lyapunov foliations. The follow-

ing proposition gives a family of α-invariant affine parameters on the leaves of

the Lyapunov foliation W̃ . By an affine parameter we mean an atlas with affine

transition maps.

PROPOSITION 3.1. There exists a unique measurable family of C 1+ǫ smooth α-

invariant affine parameters on the leaves W̃ (x). Moreover, within a given Pesin

set they depend uniformly continuously on x in the C 1+ǫ topology.

REMARK 4. Note that those transition maps may not always preserve orienta-

tion. In fact in some situations a measurable choice of orientation is not possi-

ble. This however is completely irrelevant for our uses of affine structures.
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REMARK 5. In the proof below we use the counterpart of the property (C ) for

α and do not use existence of a semiconjugacy with α0. In fact, the assertion

is true under a more general condition. Namely, let χ be a simple (multiplicity

one) Lyapunov exponent for an ergodic hyperbolic measure µ for a C 1+ǫ diffeo-

morphism with the extra condition that there are no other exponents propor-

tional to χ with the coefficient of proportionality greater than one. Then the

Lyapunov distribution for χ is integrable µ-almost everywhere to an invariant

family of one-dimensional manifolds and invariant affine parameters still exist.

In the C 2 case one-dimensionality of the Lyapunov foliation may be replaced

by the following bunching condition: Lyapunov exponents may be positively

proportional with coefficients of proportionality between 1/2 and 2. The coarse

Lyapunov distribution is always integrable and in this case the integral manifolds

admit a unique invariant family of smooth affine structures.

The proofs of these statements can be obtained using nonuniform versions of

the methods from [G].

Proof. The proposition is established using the three lemmas below. We take

an element m ∈ Z
k such that W̃ is the stable foliation of α(m). Then we apply

Lemma 3.2 with f =α(m) to obtain the family H of nonstationary linearizations.

Lemma 3.3 then shows that these nonstationary linearizations give an affine at-

las. Since the linearization H is unique by Lemma 3.4, the family H linearizes

any diffeomorphism which commutes with f . Indeed, if g ◦ f = f ◦ g , then it is

easy to see that d g−1◦Hg (·)◦g also gives a nonstationary linearization for f , and

hence H ◦ g = d g ◦ H . Therefore, H provides a nonstationary linearization for

every element of the action α, i.e. the action is affine with respect to the param-

eter.

LEMMA 3.2. Let W̃ be the one-dimensional stable foliation of a C 1+ǫ nonuni-

formly hyperbolic diffeomorphism f . Then for µ-almost every point x ∈ M there

exists a C 1+ǫ diffeomorphism Hx : W̃ (x) → E (x)= TxW̃ such that

(i) H f (x) ◦ f = D f ◦Hx ,

(ii) Hx (x) = 0 and Dx Hx is the identity map,

(iii) Hx depends continuously on x in the C 1+ǫ topology on a Pesin set.

Proof. We denote by E the one-dimensional stable distribution for f . We fix

some background Riemannian metric g on M and denote

J f (x) = ‖D f (v)‖ f x · ‖v‖−1
x

where v ∈ E (x) and ‖.‖x is the norm given by g at x.

We first construct the diffeomorphism Hx on the local manifold W̃ (x) as fol-

lows. Since E (x) is one-dimensional, Hx (y) for y ∈ W̃ (x) can be specified by its

distance to 0 with respect to the Euclidean metric on E (x) induced by g . We

define this distance by integrating a Hölder continuous density

(3.1) |Hx (y)| =

∫y

x
ρx (z)d z
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where

ρx (z) = lim
n→∞

J f n(z)

J f n(x)
=

∞
∏

k=0

J f ( f k (z))

J f ( f k (x))
.

If z is in the local manifold W̃ (x) then dist( f k (z), f k (x)) ≤ C (x)e−kλdist(z, x)

for all k > 0. In particular, f k (z) remains in the local manifold W̃ ( f k (x)) even

though the size of W̃ ( f k (x)) may decrease with k at a slow exponential rate. The

tangent space E (s)= TsW̃ ( f k (x)) depends Hölder continuously on s ∈ W̃ ( f k (x)),

with Hölder exponent ǫ and a constant which may increase with k at a slow ex-

ponential rate. Since f is C 1+ǫ, the same holds for J f (z). We conclude that

∣

∣

∣

∣

∣

J f ( f k (z))

J f ( f k (x))
−1

∣

∣

∣

∣

∣

≤C (x)dist(z, x)e−k(λ+δ).

This implies that the infinite product which defines ρx (z) converges, and that ρx

is Hölder continuous on W̃ (x). Moreover, the convergence is uniform when x is

in a given Pesin set. Hence ρx depends continuously in Cε topology on x within

a given Pesin set. Since ρx (x) = 1, we conclude that (3.1) defines a C 1+ǫ diffeo-

morphism satisfying conditions (ii) and (iii). To verify condition (i) we differen-

tiate H f (x)( f (y)) = Dx f (Hx (y)) with respect to y and obtain ρ f (x)( f (y)) · J f (y) =

J f (x) ·ρx(y). Since the latter is satisfied by the definition of ρ, the condition (i)

follows by integration.

Since f contracts W̃ , we can extend H to the global stable manifolds W̃ (x) as

follows. For y ∈ W̃ (x) there exists n such that f n(y)∈ W̃ ( f n x) and we can set

Hx (y) =D f −n
◦H f (x) ◦ f n(y).

This defines Hx on an increasing sequence of balls exhausting W̃ (x) with con-

ditions (i) and (ii) satisfied by construction. Condition (iii) is satisfied in the fol-

lowing sense. Hx is a C 1+ǫ diffeomorphism with locally Hölder derivative. Its

restriction to a ball of fixed radius in W̃ (x) centered at x depends continuously

in C 1+ǫ topology on x within a given Pesin set.

REMARK 6. In general, the regularity of the density ρx on W̃ (x) is the same as the

regularity of the differential D f , and hence the function Hx is as regular as f .

LEMMA 3.3. Under the assumptions of Lemma 3.2, the map

Hy ◦H−1
x : E (x) → E (y)

is affine for any x and y on the same leaf of W̃ . Hence the nonstationary lineariza-

tion H defines affine parameters on the leaves of W̃ .

Proof. By invariance under f , it suffices to consider x and y close, and show that

the map is affine in a neighborhood of zero. We will show that the differential

D
(

Hy ◦H−1
x

)

is constant on E (x). Consider z ∈ W̃ (x) close to x and y and let z̄ =

Hx (z). From the definition of H we have Dz (Hx ) = ρx (z) and Dz (Hy )(z) = ρy (z).
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Hence, using the definition of ρ, we obtain

D z̄

(

Hy ◦H−1
x

)

= Dz (Hy ) ·D z̄ (H−1
x ) = Dz (Hy ) · (Dz (Hx ))−1

=

=
ρy (z)

ρx (z)
=

∞
∏

k=0

J f ( f k (z))

J f ( f k y)
·

(

∞
∏

k=0

J f ( f k (z))

J f ( f k (x))

)−1

=

∞
∏

k=0

J f ( f k y)

J f ( f k (x))
.

We conclude that the differential D z̄

(

Hy ◦H−1
x

)

is independent of z̄ and thus the

map Hy ◦H−1
x is affine.

LEMMA 3.4. The family of diffeomorphisms {Hx } satisfying conditions (i)-(iii) of

Lemma 3.2 is unique.

Proof. We note that it is sufficient for the proof to have Hx defined only locally,

in a neighborhood of x in W̃ (x).

Suppose that H1 and H2 are two families of maps satisfying (i)-(iii). Then the

family of maps G = H1 ◦H−1
2 : E → E satisfies G f (x) ◦Dx f = Dx f ◦Gx , and hence

Gx = (Dx f )−1
◦G f (x) ◦Dx f = ·· · = (Dx f n)−1

◦G f n (x) ◦Dx f n .

or, since E is one–dimensional,

Gx (t ) = (J f n(x))−1G f n (x)(J f n(x) · t ).

Since J f n(x) → 0 and since Gx depends continuously in the C 1-topology on x

in a Pesin set, we obtain using returns to such a set that

Gx (J f n(x) · t )

J f n(x) · t
→G ′

x (0) = 1

and hence

Gx (t )= lim
n→∞

t ·
G f n (x)(J f n(x) · t )

J f n(x) · t
= t .

Thus Gx is the identity, and H1 = H2

3.2. Uniform growth estimates along the walls of Weyl chambers. In the rest

of this section we consider suspensions of the actions α0 and α. According to

our convention we will use the same notations for the suspension actions and

associated objects.

We fix a Pesin set Λ and a small r > 0. For x ∈Λ we denote by B̃r (x) the ball (in-

terval) in the inner metric of W̃ (x) of radius r centered at x. An important corol-

lary of the existence of affine parameters is the following estimate of derivatives

along W̃ .

LEMMA 3.5. For a given Pesin set Λ and r > 0 there exists a constant C = C (Λ,r )

such that for any x ∈Λ and t ∈R
k satisfying α(t)x ∈Λ

C−1
‖D(α(t))|E(x)‖≤ ‖D(α(t))|E(y)‖≤C‖D(α(t))|E(x)‖

for any y ∈ B̃r (x) satisfying α(t)y ∈ B̃r (α(t)x).
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Proof. We use the affine parameter on W̃ (x) given by Proposition 3.1 with respect

to which α(t) has constant derivative. More precisely, using the linearization H

along the leaves of W̃ we can write

α(t)|
W̃ (x) = (Hα(t)x )−1

◦Dα(t)|E(x) ◦Hx ,

and hence

Dα(t)|E(y) = (Dα(t)y Hα(t)x )−1
◦Dα(t)|E(x) ◦Dy Hx .

Since Hz |B̃r (z) depends continuously in the C 1+ǫ topology on z in the Pesin set

Λ, both ‖Dt Hz‖ and ‖(Dt Hz )−1‖ are uniformly bounded above and away from 0

for all z ∈Λ and t ∈ B̃r (z). Hence the norms of the first and last term in the right

hand side are uniformly bounded and the lemma follows.

We consider x ∈Λ and the ball B̃r (x) ⊂ W̃ (x). The image h(B̃r (x)) is contained

in W (x). We denote by mr (x) the radius of the largest ball (interval) in W (h(x))

that is centered at h(x) and contained in h(B̃r (x)). Then mr is a measurable

function on Λ.

LEMMA 3.6. For any Pesin set Λ and r > 0 the function mr is positive almost ev-

erywhere on Λ. Hence for any ε > 0 there exists m > 0 and a set Λr,m ⊂ Λ with

µ(Λ\Λr,m) < ε such that mr (x) ≥ m for all x ∈Λr,m .

Proof. Let x ∈Λbe such a point that the intersection ofΛwith any neighborhood

of x has positive measure. Furthermore, assume that x is not an endpoint of a

complementary interval to the intersection W̃ (x)∩Λ. Let m ∈Z
k be an element

such that W̃ = W̃
−
α(m)

. Let R be the intersection of Λ with a sufficiently small

neighborhood of x. If mr (x) = 0 then h(W̃ −
α(m)(x)) = {h(x)}. This implies, as in

Lemma 2.3, that the image h(R) is contained in W +
α0(m)

(h(x)). But this implies

that λ(h(R))= 0, which is impossible since λ(h(R))≥µ(R)> 0.

Using the derivative estimate in Lemma 3.5 and the topological semiconju-

gacy h we obtain in the next lemma the crucial estimate for the derivatives of the

elements in the Lyapunov hyperplanes.

We fix a Pesin set Λ, r > 0, and a set Λr,m as in Lemma 3.6.

LEMMA 3.7. For a given set Λr,m there exists a constant K such that for any t in

the Lyapunov hyperplane L

K −1
≤ ‖D(α(t))|E(x)‖≤ K

if both x ∈Λr,m and α(t)x ∈Λr,m .

Proof. First we note that it suffices to establish the lower estimate, then the up-

per estimate follows by applying it to α(−t).

By uniform continuity of the semiconjugacy h there exists δ> 0 such that for

any x the image h(B̃δ(x)) is contained in the ball Bm/2(h(x)) in W (x). By the

choice of Λr,m we also have Bm(h(x))⊂ h(B̃r (x)). Since t ∈ L, α0(t) is an isometry

on W , and hence α0(t)(Bm(h(x))) = Bm(α0(t)(h(x))). Then since h is a semicon-

jugacy we obtain

(3.2) Bm(α0(t)(h(x))) ⊂ (α0(t)◦h)(B̃r (x)) = (h ◦α(t))(B̃r (x)).
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Together with the uniform continuity of h this implies that α(t)(B̃r (x)) cannot

be contained in B̃δ(α(t)x). Indeed, otherwise we would have Bm(α0(t)(h(x))) ⊂

h(B̃δ(α(t)x)) ⊂α(t)(B̃r (x)) ⊂ Bm/2(α0(t)(h(x))).

Hence there exists z ∈ B̃r (x) with dist(α(t)x,α(t)z) = δ. We may assume that

δ< r and z is chosen so that dist(α(t)x,α(t)y)< δ for all y ∈ B̃r (x) between x and

z. Using Lemma 3.5 we obtain

δ= dist(α(t)x,α(t)z) ≤ dist(x, z) ·sup‖D(α(t))|E(y)‖< r ·C‖D(α(t))|E(x)‖.

This implies that ‖D(α(t))|E(x)‖>
δ

Cr .

3.3. Ergodicity along the walls of Weyl chambers. We will call an element t ∈R
k

a generic singular element if it belongs to exactly one Lyapunov hyperplane. The

following lemma presents a variation of an argument from [KS1] for the present

setting.

LEMMA 3.8. Let L be one of the Lyapunov hyperplanes in R
k . Let E and W̃ be the

corresponding Lyapunov distribution and foliation of α. Then for any generic sin-

gular element t ∈R
k the corresponding partition ξα(t) into the ergodic components

of µ with respect to α(t) is coarser than the measurable hull ξ(W̃ ) of the foliation

W̃ .

Proof. Consider a generic singular element t in L. Then the only nontrivial Lya-

punov exponent that vanishes on t is the one with kernel L and the correspond-

ing Lyapunov distribution is E . Take a regular element s close to t for which

this Lyapunov exponent is positive and all other nontrivial exponents have the

same signs as for t. Thus E+
α(s)

= E+
α(t)

⊕E and E−
α(s)

= E−
α(t)

. The Birkhoff aver-

ages with respect to α(t) of any continuous function are constant on the leaves

of W̃
−
α(t). Since such averages generate the algebra of α(t)–invariant functions, we

conclude that the partition ξα(t) into the ergodic components of α(t) is coarser

than ξ(W̃ −
α(t)), the measurable hull of the foliation W̃

−
α(t). On the other hand, the

measurable hulls ξ(W̃ −
α(s)

) and ξ(W̃ +
α(s)

) of both W̃
−
α(s)

and W̃
+
α(s)

coincide with the

Pinsker algebra π(α(s)). Since ξ(W̃ +
α(s)

) is coarser than ξ(W̃ ), we conclude that

ξα(t) ≤ ξ(W̃ −
α(t)) = ξ(W̃ −

α(s)) =π(α(s))= ξ(W̃ +
α(s)) ≤ ξ(W̃ ).

3.4. Invariance and absolute continuity of conditional measures. Let W̃ be

one of the Lyapunov foliations of α (recall that it is one–dimensional), and let

L ⊂ R
k be the corresponding Lyapunov hyperplane. We fix a Pesin set Λ, r > 0,

and a set Λr,m as in Lemma 3.6.

LEMMA 3.9. For µ- a.e. x ∈ Λr,m and for µW̃
x - a.e. y ∈ Λr,m ∩ B̃r (x) there exists

an affine map g : W̃ (x) → W̃ (x) with g (x) = y which preserves the conditional

measure µW̃
x up to a positive scalar multiple. Furthermore, the absolute value of

the derivative of this affine map is bounded away from zero and infinity uniformly

in x and y. The bounds depend on r and m.
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Proof. We fix a generic singular element t ∈ L ⊂ R
k . By Lemma 3.8 the partition

ξα(t) into the ergodic components of µ for α(t) is coarser than the measurable

hull ξ(W̃ ) of the foliation W̃ . Then there is a set X1 of full µ-measure such that for

any x ∈ X1 the ergodic component Ex of α(t) passing through x is well-defined

and contains W̃ (x) up to a set of µW̃
x -measure 0. Let µx be the measure induced

by µ on Ex .

For n > 0 we denote by B n(x) the image under H−1
x of the ball in TxW̃ of radius

n centered at 0, where Hx comes from Lemma 3.2. We note that the sets B n(x)

exhaust W̃ (x), i.e. W̃ (x) =
⋃

n>0 B n(x). For almost every x we can normalize µW̃
x

so that µW̃
x (B n(x)) = 1 and denote its restriction to B n(x) by µn

x .

We use a fixed Riemannian metric to identify TxW̃ with R and then use Hx to

identify B n(x) with the interval [−n,n]. Thus we can consider the system of nor-

malized conditional measures µn
x as a measurable function from the suspension

manifold M to the weak* compact set of Borel probability measures on the in-

terval [−n,n]. By Luzin’s theorem, we can take an increasing sequence of closed

sets Ki contained in the support of µ such that

1. µ(K )= 1, where K =
∞
⋃

i=1
Ki

2. µn
x depends continuously on x ∈ Ki with respect to the weak∗ topology.

Set X2 = X1 ∩K . Since by definition the transformation α(t) restricted to the

ergodic component Ex is ergodic, the transformation induced by α(t) on X1 ∩

Ex ∩Ki ∩Λr,m is also ergodic for any i . Hence the set X3, which consists of points

x ∈ X2 whose orbit {α(mt) x}m∈Z is dense in a subset of full µx measure of X1 ∩

Ex ∩Ki ∩Λr,m for all i , has full measure µ.

Let x ∈ X3 ∩Λr,m and y ∈ X3 ∩Λr,m ∩ B̃r (x). Then x, y ∈ X1 ∩Ex ∩Ki ∩Λr,m

for some i . Hence there exists a sequence mk → ∞ such that the points yk =

α(mk t) x ∈ X1 ∩Ex ∩Ki ∩Λr,m converge to y . Let us consider the map

φk =α(mk t)|
W̃ (x) : W̃ (x) → W̃ (yk ).

Since x and yk =α(mk t) x are both in Λr,m , Lemma 3.7 yields K −1 ≤ ‖Dxφk‖ ≤K

for all k . The map φk is affine with respect to the affine parameters on W̃ (x)

and W̃ (yk ). By Proposition 3.1, the affine parameters depend continuously in

the C 1+ǫ topology on a point in the Pesin set Λ. Thus the affine parameters

at yk converge to the affine parameter at y uniformly on compact sets in the

leaves. Hence, by taking a subsequence if necessary, we may assume that the

φk converge uniformly on compact sets to an affine map gn : W̃ (x) → W̃ (x) with

gn(x) = y .

Since both (φk )∗µ
n
x and µn

yk
are conditional measures on the same leaf W̃ (yk ),

there exists a constant c(k)> 0 such that

µn
yk

(φk (A)) = c(k)µn
x (A) for any A ⊂ B n(x)∩φ−1

k (B n
yk

).

Similarly, there exists a constant c > 0 such that

µn
y (A) = cµn

x (A) for any A ⊂ B n(x)∩ (B n
y ).
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Since µn
x depends continuously on x ∈ Ki with respect to the weak* topology, the

measures µn
yk

weak* converge to the measure µn
y . Assuming that the boundary

of A relative to the leaf has zero conditional measure, we obtain that

c(k)µn
x (A) =µn

yk
(φk (A)) →µn

y (gn A) = cµn
x (gn A)

and hence

µn
x (gn A) =

lim c(k)

c
µn

x (A) for any A ⊂ B n(x)∩ g−1
n (B n

y ).

We obtain that gn preserves the conditional measure µW̃
x up to a scalar on the set

C n(x) = B n(x)∩ g−1
n (B n

y ). We note that C n(x) contains B n/K (x) and also B̃r (x),

provided n is large enough. Since µW̃
x (B̃r (x)) > 0, taking A = C n (x) we see that

lim c(k) must be positive.

We conclude that for any n > 0 there exists a set X4 of full µ-measure such that

for any x ∈ X4 ∩Λr,m and y ∈ X4 ∩ B̃r (x)∩Λr,m there exists an affine map gn of

W̃ (x) such that gn(x) = y and gn preserves µW̃
x up to a positive scalar on C n(x).

Repeating this construction for every n > 0 we can choose a set X of full mea-

sure µ such that for any x ∈ X ∩Λr,m , y ∈ X ∩ B̃r (x)∩Λr,m , and any n there exists

an affine map gn : W̃ (x) → W̃ (x) satisfying gn(x) = y and preserving µW̃
x up to a

positive scalar on C n(x). We note that W̃ (x) =
⋃

n>0 C n(x). Hence taking a con-

vergent subsequence we obtain that for any x ∈ X ∩Λr,m and y ∈ X ∩B̃r (x)∩Λr,m

there exists an affine map g of W̃ (x) with g (x) = y which preserves µW̃
x up to a

positive scalar. This completes the proof of the lemma since we may assume that

the set X of full measure is chosen so that for x ∈ X ∩Λr,m the set X ∩ B̃r (x) has

full µW̃
x -measure.

LEMMA 3.10. The conditional measures µW̃
x are absolutely continuous for µ - a.e.

x.

Proof. Let Ax be the group of affine transformations of W̃ (x), and let Gx be the

subgroup of Ax consisting of elements which preserve µW̃
x up to a positive scalar

multiple.

Let us first observe that Gx is a closed subgroup. Indeed, if gn → g in Ax

then gn(Z ) → g (Z ) in the Hausdorff metric whenever Z ⊂ W̃ (x) is bounded,

so µW̃
x (gn(Z )) → µW̃

x (g (Z )) if the relative boundary of g (Z ) has zero conditional

measure. This implies that (gn)∗µ
W̃
x → g∗µ

W̃
x . We also have (gn)∗µ

W̃
x = cnµ

W̃
x ,

where cn = µW̃
x (Z )/µW̃

x (gn(Z )) for any Z . Since g is an invertible affine map we

can choose Z such that µW̃
x (Z )> 0, µW̃

x (g (Z )) > 0, and µW̃
x (∂(g (Z ))) = 0. It follows

that cn → c =µW̃
x (Z )/µW̃

x (g (Z )) > 0 and g∗µ
W̃
x = cµW̃

x .

Since any element α(t) preserves the affine parameters on the leaves of W̃ ,

it maps the group Ax isomorphically onto Aα(t)x . Since α(t) also preserves the

conditional measures on the leaves of W̃ , it maps the subgroup Gx isomorphi-

cally onto Gα(t)x on the set of full measure µ where the conditional measures

and affine parameters on the leaves of W̃ are well defined. Since isomorphism

classes of closed subgroups of the group of affine transformations on the line
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form a separable space, ergodicity of α(t) implies that the groups Gx are isomor-

phic µ-almost everywhere.

By Lemma 3.9, for a given Pesin set Λ and for µW̃
x -almost any y, z ∈ Λr,m ∩

B̃r (x) there exists an affine map g : W̃ (x) → W̃ (x) preserving µW̃
x up to a scalar

multiple with g (y) = z. Thus Gx has an orbit of positive µW̃
x measure. We note

that the measures µW̃
x are nonatomic for µ-almost every x, otherwise the entropy

would be zero for any element whose full unstable foliation is W̃ . Then it follows

that Gx can not be a discrete subgroup of Ax for µ almost every x. Hence either

Gx = Ax or the connected component of the identity in Gx is a one-parameter

subgroup of the same type on the set of full µ measure. Thus either Gx contains

the subgroup of translations or it is conjugate to the subgroup of dilations.

(i) First consider the case when Gx contains the subgroup of translations. For

any x and y ∈ W̃ (x) we define cx (y) by the equality gµW̃ = cx (y)µW̃ , where µW̃ is

the conditional measure on W̃ (x) and g is a translation such that g (x) = y . Note

that cx (y) is well defined. Indeed, such g is unique, and the definition does not

depend on a particular choice of µW̃ since the conditional measures are defined

up to a scalar multiple. We need to show that cx (y)= 1 for all y ∈ W̃ (x).

We note that cx (y) can be calculated as

cx (y)=
g∗µ

W̃ (A)

µW̃ (A)
=

µW̃ (g−1 A)

µW̃ (A)
=

µW̃ (A)

µW̃ (g (A))

for any set A of positive conditional measure. Since we can take the test set A

such that the boundary of g (A) relative to the leaf has zero conditional measure,

we conclude that for a fixed x the coefficient cx (y) depends continuously on y .

We see that either for µ- a.e. x cx (y)= 1 for all y ∈ W̃ (x), or there exists a set X

of positive measure such that cx (y) is not identically equal to 1 for x ∈ X . In the

latter case for some ǫ> 0 we can define a finite positive measurable function

ϕǫ(x) = inf{r : ∃ y ∈ W̃ (x) s.t . d (x, y)< r and |cx (y)−1| > ǫ}

on some subset Y ⊂ X of positive µ-measure. By measurability there exists N

and a set Z of positive measure on which ϕǫ takes values in the interval (1/N , N ).

We will show that

(3.3) ϕǫ(α(nt)x) → 0 as n →∞

uniformly on Z for an element t such that α(t) contracts the foliation W̃ . Since

this contradicts the recurrence of the set Z we conclude that cx (y) must be iden-

tically equal to 1.

We will prove now that

(3.4) cx (y) = cα(t)x (α(t)y)

for µ-a.e. x and y ∈ W̃ (x). Since the iterates of α(t) exponentially contract the

leaves of W̃ , this invariance property implies that ϕǫ(α(nt)x) ≤ Cλnϕǫ(x), for

some C ,λ> 0, hence (3.4) implies (3.3).
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To prove (3.4) we consider the translation

f =α(t)◦ g ◦α(−t) ∈Gα(t)x

We observe that f (α(t)x) =α(t)y since g x = y . Hence we obtain

cα(t)x (α(t)y)=
µW̃ (B )

µW̃ ( f B )

for any set B ⊂ W̃ (α(t)x) of positive conditional measure. Since α(t)(g (A)) =

f (α(t)A) and since α(t)∗µ
W̃
x is a conditional measure on the leaf W̃ (α(t)x) we

obtain using B =α(t)A as the test set that

cx (y)=
µW̃

x (A)

µW̃
x (g (A))

=
(α(t)∗µ

W̃
x )(α(t)A)

(α(t)∗µ
W̃
x )(α(t)(g (A)))

= cα(t)x (α(t)y).

(ii) Now suppose that Gx is conjugate to the subgroup of dilations. In this case Gx

has a fixed point 0x and acts simply transitively on each connected component

of W̃ (x) \ {0x }. For any x and y in the same component we consider

cx (y)=
J g ·µW̃ (A)

µW̃ (g (A))

where g ∈ Gx is such that g (x) = y and J g is the absolute value of the Jacobian

with respect to the affine parameter. To show that measure µW̃
x is Haar it is suffi-

cient to prove that for any g ∈Gx

(3.5) g∗µ
W̃

x = J g ·µW̃

x

For that it suffices to show that cx (y) = 1 identically on W̃ (x) for µ-almost every

x. This can be established by repeating the argument of the previous case. The

only difference is that to prove (3.4) we need to note that for the map

f =α(t)◦ g ◦α(−t) ∈Gα(t)x

we have J f = J g .

Notice that at the end we proved that Gx = Ax for almost every x.

3.5. Conclusion of the proof. In order to prove that µ is an absolutely continu-

ous measure it is sufficient to show that for a certain element α(m)

(P ) The entropy hµ(α(m)) is equal both to the sum of the positive Lyapunov ex-

ponents and to the absolute value of the sum of the negative Lyapunov exponents.

(See [L, LY]).

First recall that there are 2k+1 −2 Weyl chambers for α0 and any combination

of positive and negative signs for the Lyapunov exponents, except for all positive

or all negative, appears in one of the Weyl chambers. The same is true for α by

Lemma 2.3. Denote the Lyapunov exponents for α by χ1, . . . ,χk+1. Let Ci , i =

1, . . . ,k + 1, be the Weyl chamber on which the χi > 0 and χ j < 0 for all j 6= i .

Notice that we use notations different from those of Section 2.1.
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Consider m ∈ Ci . Since the conditional measure on W̃
+
α(m)

is absolutely con-

tinuous by Lemma 3.10, we obtain that

hµ(α(m)) = χi (m)

for any m ∈ Ci . By the Ruelle entropy inequality hµ(α(m)) ≤ −
∑

j 6=i χ j (m) and

hence
k+1
∑

j=1

χ j (m) ≤ 0.

If
∑k+1

j=1
χ j (m) = 0 then (P ) holds and the proof is finished.

Thus we have to consider the case when
∑k+1

j=1
χ j (m) < 0 for all m in all Weyl

chambers Ci , i = 1, . . .k+1. This implies that
⋃k+1

i=1
Ci lies in a negative half-space

of the linear functional
∑k+1

j=1 χ j . But this is impossible since there exist elements

ti ∈Ci , i = 1, . . .k +1 such that
∑k+1

i=1 ti = 0.

4. PROOF OF THEOREMS 1.6 AND 1.7

4.1. Rigidity of the expansion coefficients. We consider the suspension action

of α. Let χ be one of the Lyapunov exponents of α. Let E be the correspond-

ing Lyapunov distribution and L = kerχ ⊂ R
k be the corresponding Lyapunov

hyperplane.

LEMMA 4.1. The restriction of α to L is ergodic.

Proof. By Lemma 3.8, the partition ξL by ergodic components of µ is coarser

than the measurable hull ξ(W̃ ) of the foliation W̃ , which in turn coincides with

the Pinsker algebra of a regular element in R
k . Since we have established that µ

is absolutely continuous, the Pinsker algebra on T
k+1 of a regular element in Z

k

is at most finite [P].

Then on the suspension manifold M the Pinsker algebra is given by the corre-

sponding finite partitions of the fibers of the suspension. Since L is an irrational

hyperplane in R
k , its action on T

k in the base of the suspension is uniquely er-

godic, and hence ξL is at most finite. Since the action α is ergodic, ξL is trivial

since the stationary subgroup in R
k of any L-invariant set has to have finite in-

dex and hence must coincide with R
k .

LEMMA 4.2. There is a measurable metric on E with respect to which

(4.1) ‖Dα(t)v‖= eχ(t)
‖v‖

for any t ∈R
k , µ-a.e. x, and any v ∈ E (x). Such a measurable metric is unique up

to a scalar multiple.

Proof. First we construct a measurable metric g on E which is preserved by an

ergodic element t ∈ L. In other words, (4.1) is satisfied with respect to g for this

element t. Then we will show that such a metric is unique up to a scalar multiple.

The uniqueness easily implies that (4.1) is satisfied for all t ∈R
k .

Let Λ′ = Λr,m and constant K be as in Lemma 3.7. Ergodicity of α|L implies

that there exists an ergodic element t ∈ L. We fix such an element t, and let X
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be an invariant set of full measure consisting of points whose α(t) orbits visit Λ′

with frequency µ(Λ′).

We fix some background Riemannian metric g0 on M . We use the notations

DE
x α(t) =D(α(t))|E(x) and

‖DE
x α(t)‖ = ‖DE

x α(t)(v)‖α(t)x · ‖v‖−1
x

where v ∈ E (x) and ‖.‖x is the norm given by g0 at x.

We define a measurable renormalization function φ as follows.

(4.2) φ(x) = sup{‖DE
x α(nt)‖ : n ∈N, α(nt)x ∈Λ

′}

We note that by Lemma 3.7 the supremum is bounded by K for any x ∈Λ
′. More

generally, the supremum is finite for any point whose α(t) orbit visits Λ
′. Thus

the function is well defined and finite on X . Using (4.2) we obtain

φ(α(t)x)

φ(x)
=

sup{‖DE
α(t)xα(nt)‖ : n ∈N, α((n +1)t)x ∈Λ

′}

sup{‖DE
x α(nt)‖ : n ∈N, α(nt)x ∈Λ′}

=
sup{‖DE

α(t)xα(nt)‖ : n ∈N, α((n +1)t)x ∈Λ
′}

sup{‖DE
x α(t)‖ ·‖DE

x α(nt)‖ : n ∈N, α((n +1)t)x ∈Λ′}
= ‖DE

x α(t)‖−1

This means that with respect to the renormalized Riemannian metric g = φg0

we have

‖DE
x α(t)‖g = ‖DE

x α(t)‖ ·
φ(α(t)x)

φ(x)
= 1.

Suppose that (4.1) is satisfied for the fixed t with respect to another Riemann-

ian metric ψg0 on E . Then equation (4.1) implies that

‖DE
x α(t)‖ ·

ψ(α(t)x)

ψ(x)
= ‖DE

x α(t)‖ψg0
= 1 = ‖DE

x α(t)‖φg0
= ‖DE

x α(t)‖ ·
φ(α(t)x)

φ(x)

and hence
ψ(α(t)x)

φ(α(t)x)
=

ψ(x)

φ(x)

By ergodicity of α(t) we conclude that ψ=κφ, where κ is a constant.

For any other element s ∈ R
k consider the metric α(s)∗g . By commutativity,

this metric is again preserved by α(t). From the uniqueness we obtain α(s)∗g =

κ(s) · g where κ(s) is a positive constant. Let us show that

logκ(s) = χ(s).

Indeed, let Λ be a set of positive measure on which C−1 < φ < C for some con-

stant C . Since

κ(s) =‖DE
x α(ns)‖g = ‖DE

x α(s)‖ ·
φ(α(ns)x)

φ(x)

we obtain

(4.3) C−2κn(s) < ‖DE
x α(ns)‖ <C 2κn(s)
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if both x and α(ns)x are in Λ. By recurrence, for almost every x ∈Λ there exists

a sequence of natural numbers ni → ∞ such that α(ni s) ∈ Λ. Since for almost

every x

χ(s) = lim
i→∞

n−1
i log‖DE

x α(nk s)‖

we conclude using (4.3) that χ(s) = logκ(s).

4.2. Smoothness of the semiconjugacy along the Lyapunov foliations.

LEMMA 4.3. For almost every x the semiconjugacy h intertwines the actions of the

groups of translations of W̃ (x) and W (h(x)). More precisely, for any translation

τ̃ with respect to the affine structure on W̃ (x) there is a translation τ of W (h(x))

with h ◦ τ̃= τ◦h.

Proof. The proof of this lemma closely follows the proof of Lemma 3.9. Let Λ be

a Pesin set. By Lemma 3.1, the affine parameters depend continuously in C 1+ǫ

on a point in Λ.

By Luzin’s theorem, the measurable metric from Lemma 4.2 is uniformly con-

tinuous on sets of large measure. Hence we can take an increasing sequence of

closed sets Ki such that

1. µ(K )= 1, where K =
∞
⋃

i=1
Ki

2. the measurable metric depends continuously on x ∈ Ki .

As in the previous lemma we fix an ergodic element t ∈ L. Then the transfor-

mation induced by α(t) on Ki ∩Λ is also ergodic for any i . Hence, there is an

invariant full measure µ set X ⊂ K of points x whose orbit {α(mt) x}m∈Z is dense

in Ki ∩Λ for all i .

Let x ∈ X and y ∈ W̃ (x)∩X ∩Λ. Then y ∈ Ki ∩Λ for some i . Hence there exists

a sequence mk →∞ such that the points yk = α(mk t) x ∈ Ki ∩Λ converge to y .

Let us consider the affine map

φk =α(mk t)|
W̃ (x) : W̃ (x) → W̃ (yk ).

We normalize the affine parameters using the measurable metric. Then φk is an

isometry with respect to the normalized parameters at x and yk . The normalized

parameters vary continuously on Ki ∩Λ. Since y and yk are both in Ki ∩Λ, the

normalized affine parameters at yk converge to the normalized affine parameter

at y uniformly on compact sets. Hence, by taking a subsequence if necessary, we

may assume that the φk converge to an isometry g : W̃ (x) → W̃ (x) with g (x) = y .

We also note that yk → y implies that h(yk) → h(y), and the maps

ψk =α0(mk t)|W (h(x)) : W (h(x))→W (h(yk )).

are isometries. By taking a subsequence if necessary, we may assume that ψk

converge to an isometry f : W (h(x)) →W (h(x)) with f (h(x)) = h(y). Since h is a

semiconjugacy we obtain h ◦ g = f ◦h.

Let Gx be the set of all isometries g of W̃ (x) for which there exists an isometry

f of W (x) with h ◦ g = f ◦h. It is easy to see that Gx is a closed subgroup of the

group of affine transformations of W̃ (x).
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Since a set of full measure can be exhausted by Pesin sets we obtain that for

almost every point x and for µW̃
x -almost every y ∈ W̃ (x) there exists an isometry

gx y ∈ Gx with g (x) = y . We note that by Lemma 3.10, for almost every point x

the conditional measure µx is Haar with respect to the affine parameter. Hence

we conclude that for almost every point x there is a dense set of points y ∈ W̃ (x)

for which there exists an isometry gx y ∈ Gx . Since Gx is closed this implies that

Gx acts transitively on W̃ (x) and thus contains the subgroup Tx of translations

of W̃ (x). The corresponding isometries of W̃ (x) also have to be translations and

the lemma follows.

LEMMA 4.4. For almost every point x and every Lyapunov foliation W̃ the semi-

conjugacy h is a C 1+ǫ diffeomorphism from W̃ (x) into W (h(x)).

Proof. This follows immediately from Lemma 4.3. Indeed, the correspondence

τ̃→ τ is a continuous isomorphism between the groups of translations T̃ and T

of W̃ (x) and W (x) respectively. Hence there exists a ∈R such that if τ̃(y) = y+t for

y ∈ W̃ (x) then τ(z) = z +at for z ∈ W (h(x)). Then h ◦ τ̃= τ◦h implies that h|
W̃ x

is a linear map with respect to the affine parameter on W̃ (x) and the standard

affine parameter on W (x). Since the affine parameter on W̃ (x) is given by a C 1+ǫ

diffeomorphism, then so is h.

4.3. Conclusion of the proof of Theorem 1.7. Fix a Lyapunov foliation W̃ . Let

Λ be a set of positive measure such that the semiconjugacy h is differentiable

at every x ∈ Λ and the derivative L(x) of the h along W̃ and its inverse are both

bounded by a constant C . Such a set exists by Lemma 4.4. Suppose that both x

and α(t)(x) are in Λ. Let v be a tangent vector at x to W̃ . We have

(4.4) ‖D(α(t))v‖ = L(x)‖D(α0(t))|W (h(x))‖L−1(α(t)(x)‖v‖.

Since α0 is a linear action, ‖D(α0(t))|W (h(x))‖ = expχ(t), where χ is the Lyapunov

exponent of α0 corresponding to the foliation W . Since by assumption

C−1
< min{L(x),L−1(α(t)(x))} < max{L(x),L−1(α(t)(x))} <C

we obtain from (4.4)

(4.5) C−2 expχ(t)‖v‖< ‖D(α(t))v‖ <C 2 expχ(t)‖v‖.

Now let χ̃ be the Lyapunov exponent of the action α corresponding to the folia-

tion W̃ . Take s ∈ R
k such that α0(s) is ergodic (the set of such s is dense in R

k ).

Then for almost every x ∈Λ one can find a sequence of natural numbers nk →∞

such that α(nk s) ∈Λ. Since for almost every x and for v ∈ TxW̃

lim
k→∞

log‖Dα(nk s)(v)‖

nk
= χ̃(s)

we conclude from (4.5) that χ̃(s) = χ(s). Since this is true for a dense set of s, this

implies that χ̃= χ
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4.4. Conclusion of the proof of Theorem 1.6. For every Weyl chamber Ci we

choose an element mi ∈ Z
k ∩Ci . For every mi we choose a Pesin set Λi and let

Λ=
⋂

i Λi . For a point x in Λ we denote by Br (x) the ball in T
k+1 of radius r cen-

tered at x. We fix r sufficiently small compared to the size of the local manifolds

at points of Λ.

LEMMA 4.5. The semiconjugacy h is injective on Br (x)∩Λ for any x ∈Λ.

Proof. Let y be a point in Br (x)∩Λ different from x. Then there exists an ele-

ment mi such that W̃ +
α(mi )(x) is k-dimensional and does not contain y . Indeed,

the intersection of all k-dimensional local unstable manifolds through x con-

tains only x itself. We will denote in this proof W̃ +
α(mi )

by F̃ and the comple-

mentary one-dimensional local Lyapunov foliation W̃ −
α(mi ) by W̃ . By Lemma 2.2,

h(F̃ (z)) ⊂ F (h(z)) and h(W̃ (z) ⊂ W (h(z))) for any z ∈ Br (x)∩Λ, where F and W

are the corresponding local foliations for α0. Since both x and y are in Br (x)∩Λ,

the intersection W̃ (x)∩ F̃ (y) consists of exactly one point z ∈ Br (x). Then h(z)

is the unique point in the intersection W (h(x)) ∩ F (h(y)). Suppose now that

h(x) = h(y). Then h(z) = W (h(x))∩F (h(x)), which means that h(z) = h(x) and

thus h is not injective on W (x). The latter, however, contradicts the fact that,

according to Lemma 4.4, h is a diffeomorphism on W (x).

Now we can complete the proof of Theorem 1.6 as follows. By compactness,

the set Λ can be covered by finitely many balls Br (x). Then the previous lemma

implies that h−1(h(x))∩Λ is finite for any x ∈ Λ. Since we can choose the set

Λ to have arbitrarily large measure µ, by taking an increasing sequence of such

sets we can obtain an invariant set A with µ(A) = 1 such that h−1(h(x))∩ A is

at most countable for all x ∈ A. Now we consider the measurable partition of A

into the preimages of points under h. Since the elements of this partition are at

most countable, the conditional measures are discrete. We see that h|A gives a

countable extension of (α0,λ). Since (α,µ) is ergodic it follows that the the con-

ditional measures of all points in the fiber are the same and hence the extension

is finite.
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