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Abstract. We investigate rigidity of measurable structure for higher-rank Abelian algebraic
actions. In particular, we show that ergodic measures for these actions fiber over a
zero entropy measure with Haar measures along the leaves. We deduce various rigidity
theorems for isomorphisms and joinings as corollaries.

1. Introduction
We consider algebraic actions of higher-rank Abelian groups on homogeneous spaces.
We establish rigidity properties of the measurable structure for these actions. This is part
of a general program investigating such actions and their rigid structures such as local
rigidity and triviality of cocycles [13, 14]. As for the measurable structure for Anosov
actions without rank-one factors, one conjectures that invariant ergodic measures for
such actions are always algebraic, i.e. Haar measures on closed homogeneous subspaces
[15, 21]. For the case of measures on the circle invariant under x2, x3 this is the famous
Furstenburg conjecture [4]. To this date, the only results known in this direction concern
the classification of invariant measures with positive entropy. The first such results
were achieved by Lyons and later Rudolph and Johnsson for the Furstenburg conjecture
[7, 8, 22, 29]. More general results were obtained later by Katok and Spatzier in [15, 16]
using geometric ideas.

In this paper we generalize the approach of [15] to general partially hyperbolic algebraic
actions assuming that certain one-parameter subgroups have ‘large’ ergodic components.
As a main application we show that measurable isomorphisms between two algebraic
actions of this type have to be algebraic. This had previously only been proved for the
case of a partially hyperbolic Zk-action by toral automorphisms [11]. Our result covers
actions on nilmanifolds by automorphisms as well as Weyl chamber flows and other actions
on homogeneous spaces of higher-rank semisimple groups. We also obtain results on the
rigidity of joinings. In particular, joinings in the semisimple case have to be algebraic
assuming suitable one-parameter subgroups are ergodic. Previously, rigidity results for
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joinings had only been obtained for actions by toral automorphisms [9]. Even in that case,
our results apply more generally and resolve some questions raised in [9].

We state the main results for Rk-actions in §3 and for Zk-actions in §4 after establishing
basic notions in §2. The proof in the case of an Rk-action on a homogeneous spaceG/� is
given in §§5 and 6. The central idea of the proof is the same as in [15]. Essentially we prove
a dichotomy for the conditional measures of an invariant measure µ along various coarse
Lyapunov foliations. They are either Haar or atomic. This is done as in [15] by moving
these conditional measures by suitable elements in Rk which act isometrically along these
foliations. Now either all these conditional measures are atomic and the entropy is zero or
the measure is invariant under unipotent groups. Ratner’s theorem then shows that suitable
ergodic components of the measure for the unipotent action are Haar measures on compact
orbits of some subgroupH ofG. We now show that µ essentially lives on an orbit or orbit
closure of the normalizer of H . From this we can describe µ as a measure on a fibration
with H -orbits and Haar measures as fibers. In the semisimple and nilpotent case, we can
additionally show that this quotient is algebraic. The main novelty of our argument lies
in this latter part of the proof. The factorization obtained is quite strong and allows us in
particular to get general results about isomorphism rigidity and joinings. Our techniques
give new results about joinings even for toral automorphisms. We derive the results for
measurable isomorphisms and joinings as well as the results for Zk-actions in the later
sections of the paper.

2. Preliminaries and notations
2.1. Algebraic Rk-actions. Let G be a connected Lie group and � ⊂ G be a uniform
lattice. Let ρ be an embedding of Rk into G and let A = ρ(Rk) ⊂ G be its image.
Then Rk acts on M = G/� via left translations by corresponding elements of A.
We denote this action by α. The linear part of α is the adjoint representation ofA on the Lie
algebra g of G. We will assume that for all a ∈ A, Ad(a) is a diagonalizable (semisimple)
automorphism of the Lie algebra g. We note that α preserves the Haar measure λ on
M = G/�. We call (α,µ) an algebraic Rk-action. A prime example of such an action is
given by an embedding of Rk into a split Cartan subgroup of a semisimple Lie group G,
for example SL(n,R) with n > k.

Let us briefly describe the relation between the Lyapunov exponents and the algebraic
structure of the action. Since A is commutative the Lie algebra g splits into invariant
subspaces for the adjoint action of A, which are the eigenspaces corresponding to real
eigenvalues and invariant subspaces corresponding to the pairs of complex eigenvalues.
For each invariant subspace let us denote by χ(a) the logarithm of the modulus of the
corresponding eigenvalue of Ad(a). Then χ(a) is a linear functional on A. This splitting
gives rise to the right-invariant splitting of the tangent bundle of G, which projects to the
α-invariant splitting of the tangent bundle of M = G/�. The latter is a refinement of the
Lyapunov decomposition of TM into Lyapunov subspaces for the action α. Indeed, it is
easy to see that for any vector v in one of the right-invariant distributions its Lyapunov
exponent χ(α(a), v) is equal to the corresponding χ(a).

In fact it is easy to see that we can take an inner product on g such that the invariant
subspaces are orthogonal and for any a ∈ A the restriction of Ad(a) to each of the invariant
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subspaces is a scalar multiple of isometry. This inner product gives rise to the right-
invariant Riemannian metric onG, which projects to the Riemannian metric on M = G/�.
It follows that with respect to this metric

‖Dα(a)v‖ = eχ(a)‖v‖
for any a ∈ Rk and vector v in the distribution corresponding to χ .

Each Lyapunov exponent for the action α is a linear functional on A. Its positive
half-space is called a Lyapunov half-space and its boundary a Lyapunov hyperplane.
Note that Lyapunov exponents may be proportional to each other with positive or negative
coefficients. In this case, they define the same Lyapunov hyperplane. Combining Lyapunov
distributions with the same Lyapunov half-space we obtain coarse Lyapunov distributions
which form the coarse Lyapunov decomposition.

An element a ∈ Rk is called regular if it does not belong to any Lyapunov hyperplane.
All other elements are called singular. Call a singular element generic if it belongs to only
one Lyapunov hyperplane.

For an element a ∈ A the stable, unstable and neutral distributions E−
a , E

+
a and E0

a

are defined as the sum of the Lyapunov spaces for which the value of the corresponding
Lyapunov exponent on a is negative, positive or zero respectively. From the above
discussion we see that the derivative of any singular element a acts isometrically on its
neutral distribution. So in this case E0

a coincides with the isometric distribution EIa .
Notice that while some Lyapunov distributions may not be integrable the stable and

unstable distributions always integrate to homogeneous foliations whose leaves are in fact
cosets of nilpotent subgroups. For an element a we will denote the integral foliations of
the stable and unstable distributions E−

a and E+
a byW−

a and W+
a .

We note that E−
a is the sum of certain coarse Lyapunov distributions. Conversely,

any coarse Lyapunov distribution is the intersection of the strong stable distributions for
certain elements of the action. Thus, any coarse Lyapunov distribution integrates to a
homogeneous foliation whose leaves are also cosets of a nilpotent subgroup.

2.2. Algebraic Zk-actions and their suspensions. LetG be a simply connected nilpotent
Lie group and � ⊂ G be a uniform lattice. If A is an automorphism of A such that
A(�) = �, than it projects to an automorphism FA of the nilmanifold M = G/� which
preserves the Haar measure λ on M. The differential of A at e ∈ G is an automorphism
of the Lie algebra g of G and is called the linear part of A. By a theorem of Parry [24]
FA is ergodic with respect to λ if and only if no eigenvalue of the quotient of the linear
part of A on the Abelianization g/[g, g] is a root of unity, furthermore, in this case FA is a
K-automorphism.

If automorphisms A1, . . . , Ak as above commute, they define a Zk-action α by
automorphisms FAi of G/�. Such an action we call an algebraic Zk-action by auto-
morphisms of the nilmanifold M = G/�. A prime example of such an action is given
by an embedding of Zk into SL(n,Z), with n > k, whose elements act by automorphisms
of Rn which preserve the lattice Zn and thus project to the automorphisms of the torus Tn.
In this paper we will restrict our attention to the actions for which the linear parts of the
automorphisms are diagonalizable.
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Let us briefly describe the Lyapunov exponents for the algebraic Zk action by
automorphisms of the nilmanifolds. Since A1, . . . , Ak commute the Lie algebra g splits
into invariant subspaces for their linear parts, which are the eigenspaces corresponding
to real eigenvalues and invariant subspaces corresponding to the pairs of complex
eigenvalues. For each invariant subspace let us denote by χ(a) the logarithm of the
modulus of the corresponding eigenvalue of Ad(a). Then χ(a) is an additive functional
on Zk . This splitting gives rise to the right-invariant splitting of the tangent bundle of G,
which projects to the α-invariant splitting of the tangent bundle of M = G/�. The latter
is again a refinement of the Lyapunov decomposition of TM into Lyapunov subspaces
for the action α. Similarly to the case of algebraic Rk-actions, one can easily construct a
Riemannian metric on M = G/� with respect to which

‖Dα(a)v‖ = eχ(a)‖v‖
for any a ∈ Zk and vector v in the distribution corresponding to χ .

We would like to view the additive functionals on Zk as linear functionals on Rk and be
able to operate with the elements in their kernels, i.e. in the Lyapunov hyperplanes. For this
we need to pass from an action of Zk to the corresponding action of Rk via the so-called
suspension construction.

Suppose Zk acts on G/�. Embed Zk as a lattice in Rk . Let Zk act on Rk × (G/�) by
z(x,m) = (x − z, z ·m) and form the quotient

N = (Rk × (G/�))/Zk.

Note that the action of Rk on Rk × (G/�) by x · (y, n) = (x + y, n) commutes with the
Zk-action and therefore descends to the solvmanifoldN .

The manifold N is a fibration over the ‘time’ torus Tk with the fiber G/�. We note
that TN splits into the direct sum TN = TfN ⊕ ToN where TfN is the subbundle tangent
to the G/� fibers and ToN is the subbundle tangent to the orbit foliation. The Lyapunov
exponent corresponding to ToN is always identically zero. To exclude this trivial case,
we will consider only the Lyapunov exponents corresponding to TfN . These Lyapunov
exponents of the Rk-action are the extensions of the Lyapunov exponents of the Zk-action
to the linear functionals on Rk.

We note that the suspension of an algebraic Zk-action is an algebraic Rk-action.
The further definitions and basic properties related to the Lyapunov exponents,
distributions and foliations are the same as in the case of algebraic Rk-actions. We call
an action totally non-symplectic (TNS) if no Lyapunov exponents are proportional with
negative coefficients.

Note that any Zk-invariant measure on G/� lifts to a unique Rk-invariant measure on
N and conversely any invariant measure for the suspension induces a unique invariant
measure for the original action.

2.3. Measure-theoretic notations. Let α be a Zk- or Rk-action on a compact metric
space. For any α-invariant Borel probability measure µ we denote by ξa the partition
into ergodic components of the element α(a) and by hµ(a) the measure-theoretic entropy
of the map α(a). If W is a continuous foliation of the metric space, ξ(W) denotes its
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measurable hull, i.e. the measurable partition whose elements consistµ-almost everywhere
of complete leaves of W .

Suppose α and α′ are measurable actions of the same group T by measure-preserving
transformations of the spaces (X, λ) and (Y, ν), respectively. A probability measure µ on
X × Y is called a joining of α and α′ if it is invariant under the diagonal (product) action
α × α′ of T on X × Y and its projections to X and Y coincide with λ and ν, respectively.
The product measure µ = λ× ν is called the trivial joining, and all other joining measures
are called non-trivial joinings.

A particular case of a joining is given by a measurable isomorphism, i.e. a measurable
map φ which intertwines the actions α and α′. In fact, the push-forward of λ under the
graph of φ, (id ×φ)∗(λ), is a joining. We call a measurable isomorphism φ between two
algebraic Zk-actions α and α′ algebraic if φ lifts to an affine isomorphism ψ between the
ambient groups, i.e. ψ is a composite of an isomorphism with left translations.

For a probability measureµ onG/� we denote by
(µ) the subgroup of all elements in
G whose left translations preserveµ and by L(µ) the Lie algebra of
(µ). The measure µ
is called algebraic if there exists x ∈ G/� such that µ(x
(µ)) = 1, i.e. µ is the Haar
measure on a single left coset of 
(µ).

3. Main results

In this section we formulate our main results on rigidity of invariant measures, measure-
preserving isomorphisms, and joinings for homogeneous Rk-actions.

3.1. Rigidity of invariant measures.

THEOREM 3.1. Let G be a connected Lie group, � ⊂ G be a uniform lattice, and A
be a subgroup of G isomorphic to Rk , with k ≥ 2, such that for all a ∈ A, Ad(a) is a
diagonalizable-over-C automorphism of the Lie algebra g. Let α denote the A-action on
G/� by left translations, and let µ be an ergodic invariant measure for α. Suppose further
that either the eigenvalues of Ad(a) are real for all a ∈ A or µ is weakly mixing for α.

Suppose for some regular element b ∈ A we have that for each coarse Lyapunov
subfoliation WP ⊂ W−

b there exists a singular element a in the corresponding Lyapunov
hyperplane ∂P which acts ergodically on WP , i.e. ξa ≤ ξ(WP ).

Then there exists a subgroup H ⊂ G such that:

(1) A normalizes H , i.e. aHa−1 = H for any a ∈ A;
(2) H ⊂ 
(µ), i.e. left translations by elements of H leave µ invariant;
(3) for almost every leaf of W−

b the conditional measure of µ on this leaf is Haar on a
single left coset of the Lie subgroup ofG with Lie algebra E−

b ∩h, where h is the Lie
algebra of H ;

(4) for µ-almost every x the coset Hx is compact in M, and the ergodic components of
µ with respect to the left action of H are Haar measures on the left cosets of H .
Moreover, α induces a measurable factor action of A on the space of these ergodic
components. The entropy of the factor measure is zero with respect to any element in
the Weyl chamber of b;
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(5) if, in addition, the coset NG(H)y of the normalizer of H in G is compact for
some y whose A orbit is dense in supp(µ), then supp(µ) ⊂ NG(H)y and for any
x ∈ NG(H)y the coset Hx is compact in G/�. In this case, the restriction of α to
NG(H)y induces an algebraic factor action which is algebraically isomorphic to the
action of y−1Ay on (y−1Hy)\y−1NG(H)y/�. The entropy of the factor measure is
zero with respect to any element in A and the conditional measures in the fibers are
Haar. Also, conclusion (3). holds for the stable foliationW−

c of any element c ∈ A.

We prove this theorem in §§5 and 6.

Remark 1. If H is a normal subgroup then NG(H)y = Gy and the last conclusion of the
theorem above applies.

Remark 2. It is easy to see that the measure µ in the theorem is algebraic, i.e. is supported
on a single coset of H , if and only if A ⊂ H , in other words if H is α-invariant.

Theorem 3.1 allows us to obtain some important corollaries, which include the
isomorphism rigidity theorem in §3.4.

COROLLARY 3.2. Suppose, in addition to the assumptions of Theorem 3.1, that for
some element c in the Weyl chamber of b, α(c) is a K-automorphism with respect to the
measure µ. Then µ is an algebraic measure, i.e. it is Haar on a single left coset Hx.

Proof. Since α(c) is a K-automorphism with respect to the measure µ, the measurable
factor with zero entropy has to be trivial. Hence µ is Haar on a single left coset Hx. �

COROLLARY 3.3. (Semisimple case) Let G be a semisimple group and � ⊂ G be a
uniform lattice. Let α be an Rk-action, k ≥ 2, on G/� by left translations given by
an embedding ρ of Rk into a split Cartan subgroup of G. Let µ be an ergodic invariant
measure for α.

Suppose for some regular element b ∈ Rk we have that for each coarse Lyapunov
subfoliation WP ⊂ W−

b there exists a singular element a in the corresponding Lyapunov
hyperplane ∂P which acts ergodically on WP , i.e. ξa ≤ ξ(WP ). Then the conclusions
(1)–(5) of Theorem 3.1 hold.

We prove this corollary in §7.
While the ergodicity assumption ξa ≤ ξ(WP ) in Theorem 3.1 and Corollary 3.3, and

K-automorphism assumption in Corollary 3.2 are somewhat restrictive, they can be verified
for a certain type of joining measure associated with measure-preserving isomorphisms.
This allows us to deduce the following results on the rigidity of measure-preserving
isomorphisms.

3.2. Isomorphism rigidity and rigidity of joinings. We note that the ergodicity and
K-automorphism assumptions in the following theorem are with respect to the Haar
measure. Therefore they can be checked in various cases as Corollary 3.5 illustrates.
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THEOREM 3.4. LetG be a connected Lie group and � ⊂ G be a uniform lattice. Let ρ be
an embedding of Rk intoG such that for all a ∈ Rk , Ad(ρ(a)) is a diagonalizable-over-C
automorphism of the Lie algebra g. Let α denote the corresponding Rk-action on G/� by
left translations, and let λ be the Haar measure on G/�. Let (α′, λ′) be an Rk-action of
the same type on G′/�′.

Suppose that Rk contains a subgroup S isomorphic to R2 for which:
(1) the α-action of any one-parameter subgroup is ergodic with respect to λ;
(2) there exists an element b ∈ S such that α(b) is a K-automorphism with respect to λ.

Then any measure-preserving isomorphism h : G/� → G′/�′ between (α, λ)

and (α′, λ′) coincides (mod 0) with an affine isomorphism, and hence α and α′ are
algebraically isomorphic.

Proof. Consider the diagonal action α × α′ of Rk on G/� × G′/�′. Let µ be the push-
forward of λ to the graph of the measure-preserving isomorphism h. Thenµ is an invariant
measure for α × α′, and (α × α′, µ) has the same ergodic properties as (α, λ). Hence the
assumptions of Theorem 3.1 and Corollary 3.2 are satisfied for the restriction of α × α′ to
the subgroup S ⊂ Rk . Thus µ is Haar on a single left coset Hx. Since h is a measure-
preserving isomorphism and µ projects to the Haar measures in the factors, we see that
the coset Hx has to project one-to-one onto the factors. Thus Hx is a graph of an affine
isomorphism h̃ betweenG/� and G′/�′ which coincides (mod 0) with h. �

COROLLARY 3.5. (Semisimple case) Let G be a semisimple group without compact
factors, � ⊂ G be an irreducible uniform lattice, and λ be the Haar measure on G/�.
Let (α, λ) be an Rk-action, k ≥ 2, on G/� by left translations given by an embedding ρ
of Rk into a split Cartan subgroup of G.

Let G′ be any simply connected Lie group and �′ ⊂ G′ be a uniform lattice. Let ρ′
be an embedding of Rk into G′ such that for all a ∈ Rk, Ad(ρ′(a)) is a diagonalizable-
over-C automorphism of the Lie algebra g′. Let α′ denote the corresponding Rk-action on
G′/�′ by left translations, and let λ′ be the Haar measure on G′/�′. Then any measure-
preserving isomorphism h : G/� → G′/�′ between (α, λ) and (α′, λ′) coincides
(mod 0) with an affine isomorphism, and hence α and α′ are algebraically isomorphic.

Proof. We apply Theorem 3.4. It suffices to check that the restriction of α to any one-
parameter subgroup of Rk is ergodic with respect to λ and that there exists an element
b ∈ Rk such that α(b) a K-automorphism with respect to λ. The first follows from the
Howe–Moore theorem [14] and the latter is proved in [2]. �

In the proof of Theorem 3.4 we applied the main Theorem 3.1 to a special type of
joining measure. The following theorem describes the rigidity of joinings in general.
Here, however, we make the ergodicity assumption for the joining measure itself.

THEOREM 3.6. (Semisimple case) Let G1 be a semisimple group, �1 ⊂ G1 be a
cocompact lattice, and λ1 be the Haar measure on G1/�1. Let (α1, λ1) be an Rk-action,
k ≥ 2, on G1/�1 by left translations given by an embedding ρ1 of Rk into a split Cartan
subgroup of G1. Suppose that α1(a) is a K-automorphism with respect to λ1 for some
a ∈ Rk .
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Let (α2, λ2) be an Rk-action of the same type onG2/�2, and let (G1/�1×G2/�2, α1×
α2, µ) be a non-trivial joining of the actions α1 and α2. If all one-parameter subgroups
of Rk act ergodically with respect to the joining measure µ, then µ is algebraic and the
actions α1 and α2 have algebraic factors whose finite covers are algebraically isomorphic.

We prove this theorem in §9.

4. Zk-actions by automorphisms of nilmanifolds
In this section we state the counterparts of the rigidity results of §3 in the context of
Zk-actions by automorphisms of tori and nilmanifolds.

4.1. Rigidity of invariant measures. We will consider actions of Zk on nilmanifolds
G/� by automorphisms. If the automorphisms are diagonalizable, we can extend the
homomorphism of Zk into the automorphisms of G to Rk . This allows us to consider
the induced action in the next theorem.

THEOREM 4.1. Let α be a Zk-action, k ≥ 2, by automorphisms of G/�, where G is
a simply connected nilpotent Lie group and � ⊂ G is a cocompact lattice. Let µ be an
ergodic invariant measure for α. Suppose that the corresponding automorphisms of the
Lie algebra g are diagonalizable over C, and either all their eigenvalues are real or µ is a
weakly mixing measure for α.

Suppose for some regular element b for the suspension action of Rk we have that for
each coarse Lyapunov subfoliation WP ⊂ W−

b there exists a singular element a in the
corresponding Lyapunov hyperplane ∂P which acts ergodically on WP , i.e. ξa ≤ ξ(WP ).

Then there exists a subgroup H ⊂ G such that:
(1) H is α-invariant;
(2) H ⊂ 
(µ), i.e. left translations by elements of H leave µ invariant;
(3) for any element c ∈ Zk and for almost every leaf of W−

c the conditional measure of
µ on this leaf is Haar on a single left coset of the Lie subgroup ofG with Lie algebra
E−
c ∩ h, where h is the Lie algebra of H ;

(4) µ is supported on a coset NG(H)y of the normalizer of H in G. For any
x ∈ NG(H)y the coset Hx is compact in G/�, and the restriction of α to
NG(H)y induces an algebraic factor action which is isomorphic to (y−1Hy) \
y−1NG(H)y/�. The entropy of the factor measure is zero with respect to any
element in Zk and the conditional measures in the fibers are Haar.

This theorem is proved in §8. It generalizes the earlier results for the actions by toral
automorphisms, see Theorem 5.1′ in [16] and its modified form Theorem 3.1 in [10].
In the toral case, however, these theorems make no assumption on the corresponding
automorphisms of the Lie algebra. While technically complicated, one can probably
allow the presence of Jordan blocks and thus remove the diagonalizability assumption
in the nilmanifold case. The presence of complex eigenvalues in the absence of weak
mixing is overcome in the toral case by, possibly, splitting the measure into finitely many
components. However, it is not clear whether the corresponding arguments in the proof of
Theorem 3.1 in [10] can be generalized to the non-Abelian case.
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In the case of actions by automorphisms of nilmanifolds the ergodicity assumption
ξa ≤ ξ(WP ) in Theorem 4.1 can be verified for an arbitrary measure in the important
special case of TNS actions, i.e. the partially hyperbolic actions with no negatively
proportional Lyapunov exponents. This is illustrated by the following corollary (cf. [15]).

COROLLARY 4.2. (TNS case) Let α be a TNS Zk-action by automorphisms of G/�,
where G is a simply connected nilpotent Lie group and � is a cocompact lattice. Let µ be
an ergodic invariant measure for α. Suppose that the corresponding automorphisms of the
Lie algebra g are diagonalizable, and either all their eigenvalues are real or µ is a weakly
mixing measure for α.

Then the conclusions (1)–(4) of Theorem 4.1 hold.

Proof. To apply Theorem 4.1 we need to check for some regular element b ∈ Rk in the
suspension of α that for each coarse Lyapunov subfoliation WP ⊂ W−

b there exists a
singular element a in the corresponding Lyapunov hyperplane ∂P which acts ergodically
on WP , i.e. ξa ≤ ξ(WP ). In the case of TNS actions this is actually true for any regular
element b and any generic singular element a ∈ ∂P .

Consider a generic singular element a ∈ ∂P . Take a regular element c in the
complement of P so close to a that it is not separated from a by any Lyapunov hyperplane.
Then all Lyapunov exponents that are non-zero for a have the same signs on a and c.
Since the action is TNS, all Lyapunov exponents that correspond to WP become positive
on c. Thus W+

c = W+
a ⊕WP and W−

c = W−
a . Birkhoff averages with respect to α(a) of

any continuous function are constant on the leaves of ξa . Since such averages generate the
algebra of α(a)-invariant functions we conclude that ξa ≤ ξ(W−

a ). On the other hand both
ξ(W−

c ) and ξ(W+
c ) coincide with the Pinsker algebra π(α(c)) [19, Theorem B]. Thus we

conclude

ξa ≤ ξ(W−
a ) = ξ(W−

c ) = π(α(c)) = ξ(W+
c ) = ξ(W+

a ⊕WP ) ≤ ξ(EP ). �

COROLLARY 4.3. Suppose, in addition to the assumptions of Theorem 4.1 or
Corollary 4.2, that α(c) is a K-automorphism with respect to the measure µ for some
element c ∈ Zk . Then µ is an algebraic measure, i.e. it is Haar on a single left coset Hx.

We note that under K-automorphism assumption µ is automatically weakly mixing, so
that complex eigenvalues are allowed with no extra assumption.

Proof. Since α(c) is a K-automorphism with respect to the measure µ, the factor with zero
entropy has to be trivial. Hence µ is Haar on a single left coset Hx. �

4.2. Isomorphism rigidity and rigidity of joinings. As in the case of the homogeneous
Rk-actions, we apply the previous theorems to obtain the following results on the
isomorphism rigidity and rigidity of joinings.

THEOREM 4.4. Let α be a Zk-action by automorphisms of G/�, where G is a simply
connected nilpotent Lie group and � ⊂ G is a cocompact lattice. Let λ be the Haar
measure onG/�. Let (α′, λ′) be a Zk-action of the same type on G′/�′.

Suppose there is a subgroup S ⊂ Zk isomorphic to Z2 such that α(a) is ergodic with
respect to λ for all a ∈ S. Then any measure-preserving isomorphism h : G/� → G′/�′
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between (α, λ) and (α′, λ′) coincides (mod 0) with an affine isomorphism, and hence α
and α′ are algebraically isomorphic.

Proof. The proof of this theorem uses Corollary 4.3 and closely follows the proofs of
Theorem 3.4 and Corollary 3.5.

Consider the suspension actions α̃ and α̃′ of Rk on the corresponding solvmanifolds M

and M′. By assumption, the restriction of α to S ⊂ Zk acts by ergodic automorphisms
of G/�. Then the proof of Corollary 4 in [14] shows that the ergodicity assumption
ξa ≤ ξ(WP ) of Theorem 4.1 is satisfied for the restriction of α̃ to the linear hull S̃ ⊂ Rk

of S. We recall that any ergodic automorphism of G/� is a K-automorphism [24].

Consider the diagonal (product) action α̃×α̃′ of Rk on M×M′. The measure-preserving
isomorphism h : G/� → G′/�′ between (α, λ) and (α′, λ′) can be lifted to a measure-
preserving isomorphism h̃ between α̃ and α̃′. Let µ̃ be the push-forward of the invariant
measure on M to the graph of the measure-preserving isomorphism h̃. Then µ̃ is an
invariant measure for α̃ × α̃′ and can be viewed as the suspension of the invariant measure
µ for α × α′ which is the push-forward of λ to the graph of h in G/� ×G′/�′.

Since (α×α′, µ̃) has the same ergodic properties as α̃, the assumptions of Theorem 4.1
and Corollary 4.3 are satisfied for the measure µ invariant under the restriction of α × α′
to the subgroup S ⊂ Zk . Thus µ is Haar on a single left coset Hx ⊂ G/� × G′/�′.
Since h is a measure-preserving isomorphism and µ projects to the Haar measures in the
factors, we see that the coset Hx has to project one-to-one onto the factors. Thus Hx is
a graph of an affine isomorphism h′ between G/� and G′/�′ which coincides (mod 0)
with h. �

THEOREM 4.5. Let α1 be a Zk-action, k ≥ 2, by automorphisms of G1/�1, where G1 is
a simply connected nilpotent Lie group and �1 ⊂ G1 is a cocompact lattice. Suppose that
the corresponding automorphisms of the Lie algebra g1 are diagonalizable over C and
suppose that there exists such an element a ∈ Zk that α1(a) is an ergodic automorphism
with respect to the Haar measure λ1 on G1/�1. Let (α2, λ2) be a Zk-action on G2/�2 of
the same type.

Let (G1/�1 × G2/�2, α1 × α2, µ) be a non-trivial joining of the actions α1 and α2.
Suppose that either the eigenvalues of the corresponding automorphisms of G1/�1 ×
G2/�2 are all real, or µ is weakly mixing.

If for any one-parameter subgroup of Rk , the ergodic components of the suspension of
the joining measure µ contain the fibers of the suspension, then the actions α1 and α2 have
algebraic factors which have algebraically isomorphic finite covers. Moreover, the joining
measure µ is an extension of a zero-entropy measure for a common measurable factor with
Haar measures in fibers.

We prove this theorem in §9.

COROLLARY 4.6. (TNS case) Let α1 be a TNS Zk-action by automorphisms of G1/�1,
where G1 is a simply connected nilpotent Lie group and �1 ⊂ G1 is a cocompact lattice.
Suppose that the corresponding automorphisms of the Lie algebra g1 are diagonalizable
over C and suppose that there exists an element a ∈ Zk such that α1(a) is an ergodic
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automorphism with respect to the Haar measure λ1 onG1/�1. Let (α2, λ2) be a Zk-action
on G2/�2 of the same type.

Let (G1/�1 × G2/�2, α1 × α2, µ) be a non-trivial joining of the actions α1 and α2.
Suppose that either the eigenvalues of the corresponding automorphisms of G1/�1 ×
G2/�2 are all real, or µ is weakly mixing. Then the actions α1 and α2 have algebraic
factors which are algebraically isomorphic. Moreover, the joining measure µ is an
extension of a zero-entropy measure for a common measurable factor with Haar measures
in fibers.

Proof. This corollary follows from Theorem 4.5 similarly to the way Corollary 4.2 follows
from Theorem 4.1 (cf. [9]). �

In the case of actions by automorphisms of tori the previous two results can be slightly
strengthened using the stronger theorem on invariant measures for the toral case, see [16,
Theorem 5.1′] and [10, Theorem 3.1]. The proof of Theorem 4.5 yields in the toral case
Theorem 4.7 below. This theorem generalizes Theorem 3.1 in [9] and gives partial answer
to the open problems posed in [9]. Instead of the TNS assumption in Theorem 4.7 we may
assume k ≥ 2 and the ergodicity of one-parameter subgroups for the joining measure.

THEOREM 4.7. Let (α1, λ1) and (α2, λ2) be TNS actions of Zk by automorphisms of
Tm1 and Tm2 , where λ1 and λ2 are Lebesgue measures on Tm1 and Tm2 correspondingly.
Suppose that there exists an element a ∈ Zk such that α1(a) is ergodic with respect to λ1.
If there exists a non-trivial joining measure µ on Tm = Tm1 × Tm2 then there exists a
subgroup � ⊂ Zk of finite index such that the actions α1 and α2 restricted to � have
algebraic factors which are conjugate over Q.

Moreover, if the joining measure µ is ergodic it decomposes as (1/N)(µ1 + · · · +µN),
where each µi , i = 1, . . . , N , is an invariant measure for the restriction of α1 × α2 to �
and is an extension of a zero-entropy measure for the corresponding algebraic factor with
Haar measures in the fibers.

5. Proof of Theorem 3.1
5.1. Scheme of the proof of Theorem 3.1. We will say that an integrable invariant
distributionE and its foliation F satisfy property (A) if there exists a Lie subgroupL ⊂ G

such that for µ-almost every x the conditional measure µFx is a Haar measure on a single
left coset Lx.

The main part of the proof is to show thatW−
b satisfies property (A). This is done in §6.

After this we prove in §5.2 the existence of the subgroup H which satisfies the first three
conclusions of the theorem. Then in §§5.3 and 5.4 we describe the properties of the action
in the factor and thus complete the proof of the theorem.

5.2. The construction and properties of H . Let 
0 be the connected component of the
identity of 
(µ), and let M ⊂ 
0 be the maximal Lie subgroup of 
0 generated by
unipotent subgroups of 
0. Since W−

b satisfies property (A) measure µ is invariant under
left translations by the corresponding Lie group L and thus L is contained in M . Let µx
denote the ergodic components of µ with respect to the left action of M . By Ratner’s
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theorem [27, Corollary C] applied toM , each µx is algebraic, i.e. µx is a Haar measure on
some closed orbitHx · x of some subgroupHx of G which containsM .

Since A ⊂ 
0 and the adjoint action of A maps unipotent elements to unipotent
elements, we see that M is normalized by A. Hence the left action of A preserves the
above ergodic decomposition, i.e.,

aµx = µax.

In particular, a maps the support of µx to the support of µax . Hence aHxx = Haxax and
thus

Hax = aHxa
−1. (1)

We will now show thatHx = H is µ-almost every constant. First we note that sinceA acts
ergodically (1) implies that dim(Hx) = d is µ-almost every constant. So we can consider
the measurable function φ from G/� to the Grassmanian Gd of d-plains in g given by
x �→ hx , where hx is the Lie algebra of Hx . By (1) we have φ(ax) = aφ(x)a−1 =
Ad(a)φ(x). Then ν = φ∗(µ) is an ergodic measure on Gd with respect to the adjoint
action of A. To show that Hx = H is µ-almost every constant we will prove that ν is a
δ-measure.

Since for all a ∈ A, Ad(a) is a diagonalizable-over-C automorphism of the Lie
algebra g, g splits into the direct sum of α-invariant subspaces, which are the eigenspaces
corresponding to real eigenvalues and invariant two-dimensional subspaces corresponding
to the pairs of complex eigenvalues. Consider a regular element c for which different
Lyapunov exponents take different values. The support of ν is contained in the set of
non-wandering points of Ad(c) on Gd . It is easy to see that this set consists of d-planes
that are spanned by their intersections with the invariant subspaces of the above splitting.
If eigenvalues of Ad(a) are real for all a ∈ A then clearly all such d-planes are fixed
by the adjoint action of A. Hence the ergodic measure ν which is supported on this set
must be concentrated on a single point. If complex eigenvalues are present, the set of non-
wandering points of Ad(c) may include invariant tori on which the adjoint action of A is
represented by translations. However, since in this case µ is assumed to be weakly mixing
for α we see that ν can not be supported on such tori.

Thus we conclude that Hx = H is µ-almost every constant. Now (1) implies that
Hx = Hax = aHxa

−1 for µ-almost every x and a ∈ A, i.e. A normalizes H . This proves
the first conclusion of Theorem 3.1.

Since the ergodic components of µ with respect to M are Haar measures on left
cosets of H we see that µ is invariant under left translations by H and thus H ⊂ 
(µ).
This shows the second conclusion of Theorem 3.1.

Since L is contained in M ⊂ H , its Lie algebra is contained in E−
b ∩ h, where h is the

Lie algebra of H . But it clearly can not be strictly contained in E−
b ∩ h, for otherwise

the conditional measures on leaves of W−
b could not be supported on a single left coset

of L. This proves the third conclusion of Theorem 3.1.

5.3. Measurable factor with zero entropy. We have established above that for µ-almost
every x the ergodic componentµx ofµwith respect toM is a Haar measure on the compact
left coset Hx. We note that this µx is also the ergodic component of µ with respect to H .



Measurable rigidity for higher-rank Abelian actions 187

Since H is normalized by A the left action of A preserves this ergodic decomposition.
Hence α induces a measurable factor action of A on the space of the ergodic components
of µ for the left action of H . Thus to establish the fourth conclusion of Theorem 3.1 it
remains for us to prove that the entropy of the factor measure is zero with respect to any
element in the Weyl chamber of b.

To prove that the entropy is zero we show that the measurable factor can be embedded
into a topological factor of the restriction of α to the support of µ and then use
Proposition 4.1 in [15].

We first show that the volume of cosets Hx is constant almost everywhere. The fact
that the left action of A preserves the above ergodic decomposition means that

a∗µx = µax (2)

where µx is the Haar measure on Hx normalized to be probability. We fix some
(bi-invariant) Haar measure on H and denote the corresponding measure on Hx by νx .
Since both νx and µx are Haar measures νx = ρ(x)µx , where ρ(x) is an almost-
everywhere-finite measurable function. Since a∗νx = |det (Ad(a))|νax we obtain using
(2) that ρ(ax) = |det (Ad(a))|ρ(x). Using recurrence under a we conclude that
|det (Ad(a))| = 1 µ-almost everywhere. This implies that ρ(x) is A-invariant, hence
Vol(Hx) = νx(Hx) = ρ(x) is constant almost everywhere. We denote this constant by V .

Now we show that for any x ∈ supp(µ) ⊂ M = G/� the coset Hx has finite volume.
For any x ∈ M the coset Hx, as an orbit of the left action of H , is isomorphic to

H/stab(x) ∼= H/H ∩ x�x−1.

Here we slightly abuse notation by writing x in x�x−1 instead of an element in G which
projects to x. This is justified since x�x−1 does not depend on the choice of such an
element.

For any x in the support of µ there exists a sequence of typical points xn converging to
x for which Vol(H/H ∩ xn�x−1

n ) = Vol(Hxn) = V . It is easy to see that the sequence of
lattices H ∩ xn�x−1

n converges to a discrete subgroup �′ of H which lies in H ∩ x�x−1.
By Chabauty’s theorem [25],

Vol(Hx) = Vol(H/H ∩ x�x−1) ≤ Vol(H/�′) ≤ lim inf Vol(H/H ∩ xn�x−1
n ) = V.

Thus for any x in the support of µ the coset Hx has volume bounded above by V .
Now we show that it is compact. Since G/� is compact, there exists a small open
neighborhood U of e ∈ G such that U · U−1 ∩ y�y−1 = {e} for any y ∈ G.
Hence U · U−1 ∩ stab(y) = U · U−1 ∩ H ∩ y�y−1 = {e}. This implies that for any
y ∈ M the projection from H to H/H ∩ y�y−1 is injective on H ∩ U . Hence for any
coset Hx and point y ∈ Hx there is a fixed-size neighborhood of y in Hx which carries a
fixed volume Vol(H ∩ U).

Since for all x in the support of µ the coset Hx has volume bounded above by V we
conclude that Hx has to be compact. Moreover, the diameter of these cosets (with respect
to the intrinsic metric) is bounded uniformly in x ∈ supp(µ).

Now we can consider the projection π given by π(x) = Hx, from the support of µ
to the space X of all compact subsets of M = G/� equipped with the Hausdorff metric.
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Since the (intrinsic) diameters of these cosets are uniformly bounded in x it is easy to see
that π is Lipschitz continuous.

Let us denote by F and G the projections to X of the foliations W−
b and W+

b ⊕ W 0
b

respectively. Then F is strictly contracted by any element c in the Weyl chamber of
b. Since for µ-almost every x ∈ M the conditional measure of µ on the leaf W−

b (x)

is Haar on a single left coset Lx, where L ⊂ H , we conclude that the conditional
measures of the factor measure π∗(µ) on the leaves of F are atomic almost everywhere.
Now Proposition 4.1 in [15] implies that the entropy of the action in the factor is zero for
any element c in the Weyl chamber of b. This completes the proof of the fourth conclusion
of Theorem 3.1.

5.4. Algebraic factor with zero entropy. The last conclusion of Theorem 3.1 describes
the case when the measurable factor obtained above carries a natural algebraic structure.
This is always the case when the coset NG(H)y of the normalizer of H in G is compact
for some ‘typical’ point y whose α-orbit is dense in supp(µ). Indeed, since A normalizes
H the orbit α(y) is contained in NG(H)y. If the closure of the orbit α(y) is supp(µ) and
if NG(H)y is compact then clearly supp(µ) ⊂ NG(H)y. In this case, the restriction of α
to NG(H)y has an algebraic factor action isomorphic to (y−1Hy) \ y−1NG(H)y/�.

To complete the proof of the last conclusion of Theorem 3.1 it remains for us to note
that the entropy of the factor measure is zero with respect to any element in A. The fourth
conclusion of Theorem 3.1 tells us that the entropy is zero for any element in the Weyl
chamber of b. Clearly, the same is true for any element in the Weyl chamber of b−1.
Since any element in A can be represented as a convex combination of elements in these
Weyl chambers, the statement follows from subadditivity of entropy for smooth actions
established in [6].

Since for any element c ∈ A the entropy in the factor is zero, the conditional measures
on its stable foliation in this factor are atomic ([15], Proposition 4.1). This implies that
its stable foliation for the original action satisfies property (A). Thus we have proved that
conclusion (3) of the theorem now holds for the stable foliationW−

c of any element c ∈ A.
To complete the proof of Theorem 3.1 it remains for us to show that W−

b satisfies
property (A), which is done in the next section.

6. W−
b satisfies property (A)

The proof of the fact thatW−
b satisfies property (A) has two main steps. First we show that

each coarse Lyapunov subfoliation of W−
b satisfies property (A). From this we deduce in

the second step that W−
b also satisfies property (A).

6.1. Step 1. In this section we show that each coarse Lyapunov subfoliation of W−
b

satisfies property (A).
Let us consider one of the coarse Lyapunov subfoliations WP ⊂ W−

b , where P is the
corresponding Lyapunov half-space that contains b. By the assumption of Theorem 3.1
there exists a singular element a in the Lyapunov hyperplane ∂P which acts ergodically
on WP , i.e. ξai ≤ ξ(WP ). Recall that we denote by ξa the partition into ergodic
components of element a and by ξ(F ) the measurable hull of F .
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The desired result is established by applying Lemmas 6.1, 6.2, 6.3, and 6.4 to F = WP .
Note that by the assumption of Theorem 3.1, Ad(c) is a diagonalizable automorphism of
the Lie algebra g for all c ∈ A. This implies that the derivative of the element a acts
isometrically on WP .

The general setup for these lemmas is as follows. Let a ∈ A be a singular element
acting isometrically on an invariant foliation F . Denote by BF1 (x) the closed unit ball
about x in the leaf F(x) with respect to the induced metric. Denote by µFx the system of
conditional measures on F normalized by the requirement µx(BF1 (x)) = 1 for all x in the
support of µ. Denote by Ix the subgroup of all isometries of F(x) which preserve µFx up
to a scalar multiple.

The first three lemmas are the analogs of the Lemmas 5.4, 5.5, and 5.6 from [15]; see
also Lemmas 3.2, 3.3, and 3.4 in [10].

LEMMA 6.1. [15, Lemma 5.4] Suppose that a acts isometrically on some α(a)-invariant
foliation F which satisfies ξa ≤ ξ(F ). Then for µ-almost every x, Ix is closed and the
support of µFx is the orbit of x under the group Ix . Furthermore, φ∗µFx = µFφx for any
φ ∈ Ix .

The proof of Lemma 5.4 in [15] (Lemma 3.2 in [10]) works verbatim for the general
case.

LEMMA 6.2. Suppose that an invariant subfoliation F of W−
b for an element b satisfies

the conclusions of Lemma 6.1. Then for µ-almost every x, the support Sx of µFx is a
homogeneous submanifold of F(x); more precisely it is a left coset Sx = Lxx of some
subgroup Lx .

Proof. Let E denote the tangent distribution of the foliation F . Let us denote by
λ1, . . . , λm the negative Lyapunov exponents of b and by Eλi , i = 1, . . . ,m, the
intersections of E with the corresponding Lyapunov subspaces.

The conclusion of Lemma 6.1 states that for µ-almost every x the support Sx of the
measure µFx is the orbit of a closed group of isometries. Therefore Sx is a submanifold of
the leaf F(x), possibly disconnected. Thus the tangent space TxSx depends on x smoothly
along the leaf F(x) and measurably on M. Our main goal it to show that the tangent
distribution of Sx is invariant under left translations along Sx in the following sense. If x
and hx belong to the same connected component then the left translation by h takes the
tangent space at x to the tangent space at hx.

We note that b maps Sx to Sbx and contracts F . Using recurrence under the iterates
of b and the fact that the tangent vectors in different Eλi have different exponential rates
of contraction one can see that TxSx = ⊕m

i=1(TxSx ∩Eλi ). Thus to prove that the tangent
distribution T Sx is invariant under left translations it suffices to show that TxSx ∩ Eλi is
invariant under left translations for every i = 1, . . . ,m.

Let us fix i and put Vx = TxSx ∩Eλi . Note that for y ∈ Sx we have Sx = Sy . Let βx(y)
be the maximal angle between the subspaces Vy and Rg(Vx), where g = x−1y. Then

K(x) = lim sup
ε→0

1

ε
sup{βx(y)|d(x, y) < ε}
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gives a maximal rate of deviation of the distribution Vx from the left invariant distribution
and thus plays the role of maximal curvature. Since Vx = TxSx ∩ Eλi , it is measurable
in x and smooth along Sx . Thus we see that βx(y) is measurable in x and Lipschitz
along Sx . Thus K(x) exists and is measurable. Moreover, it is easy to see that K(y) gives
an upper bound for the derivative of βx at y. Hence to prove that Vx is invariant under left
translations for almost every x it suffices to show that K(x) = 0 almost everywhere.

To show this we use the element b for which λ(b) < 0. Thus the iterates of b
exponentially contract the leaves of F . We note that b maps Vx to Vb x and left invariant
distributions to left invariant distributions. Since Vx is contained in a single Lyapunov
subspace, we see that the exponential contractions in all directions Vx are the same.
Since the derivative of b along Eλi is semisimple, b preserves the angles. Since b
also contracts the distances it follows that K(bnx) goes to infinity unless K(x) = 0.
Since Poincaré recurrence under b implies that this is impossible, we conclude that
K(x) = 0 almost everywhere. Hence Vx is left invariant.

Thus we conclude that the tangent distribution of every connected component of Sx
is left invariant in the sense that if x and hx belong to the same connected component
then the left translation by h takes the tangent space at x to the tangent space at hx.
Hence Sx = ⋃

xiHxi .
Let us now show that the support is connected. Suppose to the contrary that the support

is a union
⋃
Ai of at least two affine subspaces Ai . Let dx denote the minimum of the

distances from x to any Ai which does not contain x. Since the support is a closed subset,
dx > 0 for all x. Note that dbnx → 0 as n → ∞. This again contradicts Poincaré
recurrence under b. �

Remark. If we do not assume that the derivative of b along Eλi is semisimple, it may
contain Jordan blocks. In this case the angles may not be preserved, but the distortion of
the angles is at most polynomial and does not affect the above argument since the distances
are contracted exponentially.

LEMMA 6.3. Suppose that a b-invariant subfoliation F ⊂ W−
b satisfies the conclusions

of Lemma 6.1 and suppose that the support Sx of µFx is, for µ-almost every x, a left coset
Sx = Lxx of some subgroup Lx . Then µFx is a Haar measure on Sx = Lxx.

A modified version (see Lemma 3.2 in [10]) of the proof of Lemma 5.4 in [15] can be
applied for the general case. It shows that the isometries of Lemma 6.1 actually preserve
the measure. We note that the existence of such a transitive group of measure-preserving
isometries implies that the measure is Haar.

LEMMA 6.4. Suppose that for an α-invariant foliation F the conditional measure µFx is,
for µ-almost every x, a Haar measure on a left coset Sx = Lxx of some subgroup Lx .
Then Lx = L is constant almost everywhere. Hence F satisfies property (A) and
aLa−1 = L.

Proof. The proof is the same as the proof in Section 5.2 of the fact that Hx is constant
almost everywhere. �
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6.2. Step 2. In this step we complete the proof of Theorem 3.1 by showing that the
foliation W−

b satisfies property (A). We will prove this by using the results of Step 1 and
establishing property (A) inductively for larger and larger invariant subfoliations of W−

b .
Let Pi , 1 ≤ i ≤ l, be the Lyapunov half-spaces containing b and let EPi (WPi ) be the

corresponding coarse Lyapunov distributions in E−
b (subfoliations of W−

b ). The results of
the first step imply that all foliationsWPi satisfy property (A).

To arrange the inductive process we restrict the action to a generic 2-plane which
contains b and intersects all the Lyapunov hyperplanes in generic lines. For each Lyapunov
hyperplane ∂Pi we choose a generic singular element ci in the intersection of ∂Pi with the
generic 2-plane. We can now reorder elements ci and Lyapunov half-spaces Pi in such
a way that for any 1 ≤ j ≤ l − 1 the distribution EP1 ⊕ · · · ⊕ EPj is integrable and is
contracted by cj+1.

Now the fact that the foliation W−
b satisfies property (A) follows from inductive

application of the following lemma, which is the main part of Step 2.

LEMMA 6.5. LetW be an invariant subfoliation ofWI
c and F be an invariant subfoliation

of W−
c for some generic singular element c. Suppose that W and F satisfy property (A)

and are jointly integrable to the foliationW ⊕ F ⊂ W−
b for some element b. ThenW ⊕F

satisfies property (A).

Proof. We prove this lemma inductively by adding one-dimensional subfoliations of W to
the foliation F until we exhaust the whole of F ⊕W . We first set up the inductive process
and then use Lemma 6.6 to show that on each step of this process we obtain a foliation that
satisfies property (A).

Notation. Throughout the proof we denote byH the one-dimensional subfoliation ofW
which is being added at the current step of the induction and by D the sum of all one-
dimensional subfoliations of W which have already been added (thus D is trivial in the
beginning). We denote by EF , EW , ED , and EH the tangent distributions of foliations F ,
W , D, and H correspondingly.

Description of the induction.To arrange the induction we will choose a basis of EW

and an ordering of this basis according to which the corresponding one-dimensional
subfoliations will be added. SinceW ⊂ W−

b is an invariant subfoliation,EW is an invariant
subalgebra of E−

b . Since E−
b is nilpotent so is EW . Thus the central series of EW gives

the invariant filtration EW = V k ⊃ · · · ⊃ V 1 ⊃ V 0 = 0 such that [V i, V i] ⊂ V i−1,
for i = 1, . . . , k. In particular each V i is a subalgebra invariant under the adjoint action
of b and c. Recall that L(µ) is the Lie algebra of 
(µ), the subgroup of G whose left
translations preserve µ. Hence V i ∩ L(µ) is a subalgebra of V i , for i = 1, . . . , k, which
is invariant since L(µ) is. To obtain the desired ordered basis of EW we first choose
a basis of V 1 ∩ L(µ) and complement it to a basis of V 1. After that we complement
it to a basis of V 1 ⊕ V 2 ∩ L(µ) and then to a basis of V 1 ⊕ V 2. Continuing in the
same way we obtain a basis of EW with the natural partial order. The order of the basis
directions within V 1 ∩ L(µ) and within each step of the complementing can be chosen
arbitrarily. We note that the subspace spanned by the first several basis directions is
always a subalgebra and thus is integrable. Hence the foliations D and D ⊕ H above
are well defined.
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Since Ad(b) and Ad(c) are diagonalizable, commute, and leave all subspaces V i and
V i∩L(µ) invariant, the basis above can be chosen in such a way that on each inductive step
the foliationsD andD⊕H are invariant for some multiples sb and tc in A of the elements
b and c. Indeed, if all eigenvalues of Ad(b) and Ad(c) on EW are real the basis above
can be chosen as a common eigenbasis for Ad(b) and Ad(c). In this case on each step
the foliations D and D ⊕ H are clearly invariant under b and c. If Ad(b) and Ad(c) have
complex eigenvalues, a similar basis can be chosen using the real normal forms for Ad(b)
and Ad(c). We then add the one-dimensional foliations in such a way that if one direction
of a complex eigenspace gets added, the other gets added in the next step. Now choose
multiples sb and tc of b and c in such a way that their eigenvalues corresponding to EH

are real. Then on each inductive step the foliations D and D ⊕ H are invariant under sb
and tc.

Thus we have arranged the inductive process in such a way that on each step the
foliations D and D ⊕ H are well defined and invariant for some multiples sb and tc
of the elements b and c. We also note that the distributions EF ⊕ ED , EF ⊕ EH and
EF ⊕ ED ⊕ EH are integrable. This clearly follows from the next observation. If a
subdistribution E of EW is a subalgebra then the direct sum E ⊕ EF is also a subalgebra
and thus is integrable. Indeed, since bothE andEF are subalgebras it suffices to show that
the Lie bracket of an element in E with an element in EF belongs to EF . Since F ⊕ W

is integrable it must belong to EF ⊕ EW . We note that if the Lie bracket is non-zero then
its Lyapunov exponent is the sum of the Lyapunov exponents of the original elements.
Since the kernels of these two Lyapunov exponents are different we see that the kernel of
their sum is different from both of them. Since EW ⊂ EIc and all Lyapunov exponents
of EIc have the same kernel we see that the Lyapunov subspace of the bracket cannot be
in EW . Hence it must belong to EF .

Inductive step. It follows from the construction of the basis that on each step either EH

is contained in L(µ) or the intersection of ED ⊕ EH with L(µ) is contained in ED .
If the current H is contained in L(µ) the inductive step is simple. Indeed, in this case

for µ-almost every x the conditional measure on the leaf F ⊕D⊕H(x) is invariant under
the left translations by the Lie subgroupU ⊂ G corresponding to (EF⊕D ∩ L(µ))⊕EH .
Hence this conditional measure is an integral of Haar measures on the left cosets of U .
Moreover, we see that it must be supported on a single left coset of U since we know
that the conditional measure on the leaf (F ⊕ D)(x) is supported on a single left coset of
U ∩ (F ⊕D). Thus F ⊕D ⊕H satisfies property (A).

The next lemma proves the inductive step in the case when the intersection of ED⊕EH
with L(µ) is contained in ED . This will complete the proof of Lemma 6.5. �

LEMMA 6.6. Let F , D and H be b- and c-invariant subfoliations of W−
b . Suppose that

H is one-dimensional, that the distributions EF ⊕ ED ⊕ EH , EF ⊕ ED , EF ⊕ EH and
ED ⊕ EH are integrable, and that we have (D ⊕H) ⊂ WI

c and F ⊂ W−
c .

If the foliationsF⊕D andD⊕H satisfy property (A) and if the intersection ofED⊕EH
with L(µ) is contained in ED , then the foliation F ⊕D ⊕H also satisfies property (A).

Proof. We consider a measurable partition, which is subordinate to the foliation F⊕D⊕H
and tiles the intersection of each leaf with a set of measure at least 0.99 by small ‘boxes’
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of roughly the same size. The boxes can be chosen in the following way. Take y ∈ M and
small open neighborhoodsU and V of y in F(y) andD(y) correspondingly. Since F ⊕D

is integrable we can define a rectangle Ry as the set of intersections

{z ∈ (F ⊕D)(y) : z = F(v) ∩D(u), where v ∈ V and u ∈ U}.
Similarly, since (F ⊕ D) ⊕ H is integrable we can define a box Ty as the product of the
above type of Ry with an interval in one-dimensional leaf H(y). For any x in the above
set of measure at least 0.99 we denote by T (x) the box it belongs to.

Since the foliationD⊕H satisfies property (A) there exists a compact setK of measure
at least 0.98 such that for any point x the intersection of the box T (x)withK∩(D⊕H)(x)
is contained in the intersection of T (x)with a single left coset of
(µ)∩(D⊕H). Since the
foliationF⊕D also satisfies property (A)we may assume the similar relationship between
K and F ⊕D.

Denote by X the set of points in K whose distance from the union of the boundaries of
the boxes is at least γ . By the ‘boundary of a box’ we understand its leafwise boundary
with respect to the leaf ofF⊕D⊕H . The measurable partition can be easily chosen in such
a way that the total measure of the union of these boundaries is small and µ(X) > 0.96 for
some γ > 0.

Let µX be the restriction of the measure µ to the ‘good’ set X, i.e. µX(·) = µ(X ∩ ·).
We note that the measure µX may not be invariant. Let us consider the system of
the conditional measures of µX with respect to the measurable partition into the boxes
described above (the set not covered by the boxes has µX measure 0). These measures will
be referred to as the conditional measures of boxes.

We try to slice each box T (x) into three parts T Lx , TMx and T Rx of equal conditional
measure by two leaves of the foliation F ⊕D, where T Mx is the middle part. This may not
be possible if the intersection of a box with a single leaf of F ⊕D has positive conditional
measure, but then we can proceed as in the second case of the dichotomy below. For each
x ∈ X we denote by d(x) the minimal distance (along the one-dimensional H direction)
between T Lx and T Rx . For the measurable function d(x) we have the following dichotomy:
(1) either d(x) ≥ d > 0 on a set Y which consists of whole boxes and has measure

µX(Y ) > 0.95;
(2) or for every box in a set of positive measure, at least 1/3 of its conditional measure

is concentrated on the intersection with a single leaf of F ⊕D.
In the latter case we argue as follows. Consider a point x in this set of positive measure

and the corresponding box T (x). Since the foliation F ⊕ D satisfies property (A) the
conditional measure on the leaf (F⊕D)(x) is Haar on a single left coset of
(µ)∩(F⊕D).
The fact that the intersection of this left coset with the box T (x) carries at least 1/3 of the
conditional measure of T (x) means that the measure of this intersection dominates the
measure of its small tubular neighborhood in the leaf (F ⊕ D ⊕ H)(x). By applying
measure-preserving transformation b−1, which expands F ⊕D ⊕ H , we see that, in a set
of positive measure, the Haar measure on a single left coset of
(µ)∩ (F ⊕D) dominates
a larger and larger part of the leaf of F ⊕D⊕H . Using this and recurrence under b−1 we
conclude that the conditional measure on a typical leaf of F ⊕D ⊕H is Haar on a single
left coset of
(µ) ∩ (F ⊕D). This proves that F ⊕D ⊕H satisfies property (A).
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To complete the proof it remains for us to eliminate the first alternative of the dichotomy.
Now we use the special properties of D ⊕H .

Recall that the intersection of the compact set K with any box consists of the pieces of
left cosets of
(µ)∩D, with at most one piece for each leaf ofD⊕H . Hence the projection
(along the D direction) of this intersection to the ‘F ⊕ H face of the box’ is the graph of
a continuous (not necessarily everywhere defined) function from the F -direction to the
H -direction. Since K is compact the family of these functions is equicontinuous. We will
show that this equicontinuity contradicts the recurrence under the action of a properly
chosen element in A.

Since b contracts F ⊕ D ⊕ H we can find a sufficiently large number n such that
the size of the image of any box under the action of bn is γ -small. The distance along
the H -direction between the images of T Lx and T Rx , which was at least d , becomes at
least d ′. Let us fix some ε < d ′ and consider δ > 0 given for this ε by the equicontinuity.
Since c acts isometrically on D ⊕ H and contracts F we can choose k so large that the
image of any box under ckbn is δ-small in the F -direction. We conclude that the element
ckbn satisfies the following conditions:
(1) the image of any box is δ-narrow in the F -direction;
(2) the distance along the H -direction between the images of the right and the left parts

of any box is at least ε;
(3) the diameter of the image of any box is less than γ .

Consider a point y ∈ Y and the corresponding box T . Since the set X does not intersect
the γ -neighborhood of the boundaries of the boxes, (3) implies that ckbn(T )∩X lies in one
box. Hence by (1) and (2), ckbn(T L) and ckbn(T R) cannot both intersect X. This implies
that there exists a set Z ⊂ Y with µX(Z) ≥ 1

3µX(Y ) for which ckbn(Z)∩X = ∅. But this
is impossible sinceµ(X) > 0.96 andµ(ckbn(Z)) = µ(Z) ≥ µX(Z) ≥ 1

3µX(Y ) >
1
3 0.95.

This shows that the second alternative of the dichotomy is impossible and thus proves
that foliation F ⊕D ⊕H satisfies property (A). �

This completes the proof of Theorem 3.1.

7. Proof of Corollary 3.3
We will use the notations from Theorem 3.1 and its proof.

We first claim that the subgroup H is reductive. Without loss of generality we suppose
that H itself rather than a conjugate intersects � in a lattice. If H is not reductive, then
it can be decomposed as H = SK Rad, where S is semisimple without compact factors,
K is a compact semisimple group, and Rad is the radical of H . Then K Rad intersects
� in a lattice (cf. e.g. [31, Corollary 2.12]). That H is reductive follows once we know
that the unipotent radical Ru of H is trivial. If not, we may pick a non-trivial one-
parameter unipotent subgroupU ofRu. Any non-trivial u ∈ U is horocyclic in the sense of
[28, Definition 2], as follows from the Jacobson–Morozov lemma. Since � is a cocompact
lattice in G, we may apply [26, Corollary 2] to the subgroup K Rad. Hence K Rad will
contain a copy of sl2, which is impossible. Thus H is reductive.

Recall that the Haar measure onH x is ergodic with respect to a subgroup generated by
unipotents contained in H . In particular, it is ergodic with respect to S. Note that S acts
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trivially on the maximal Euclidean quotient of Hx (the quotient by SK). Hence S cannot
act ergodically unless H is semisimple.

Since H is semisimple the connected component of its normalizer is a product of H
with the centralizer of H (connected components always). ThusH intersects � in a lattice
which is Zariski dense in H by the Borel Density Theorem. Hence the centralizer of H
is the same as the centralizer of H ∩ �. The latter is an intersection of centralizers of all
the elements of H ∩ �. Since � is arithmetic by Margulis’ Arithmeticity Theorem, G is
defined over a number field F , and � is commensurable with the integer points of G with
respect to F . Hence the centralizer of γ ∈ �∩H is defined over F , and so is ZGH . Hence
� ∩NGH is commensurable with integer points ofNGH which form a lattice onNGH by
Borel and Harish-Chandra’s theorem [1].

8. Proof of Theorem 4.1

In this section we will reduce Theorem 4.1 to Theorem 3.1. As α is given by diagonalizable
automorphisms, the homomorphism from Zk to the automorphisms of G extends to Rk .
Hence we can form the semidirect product groups G′ = Rk � G, �′ = Zk � G and its
compact quotient G′/�′. Then the action α′ of Rk on G′/�′ is the action of Rk induced
from Zk . We will freely use all the notation from the main theorem, denoting any relevant
object for the induced action by a α′.

Then α′ almost satisfies the assumptions of Theorem 3.1. The main assumption on
the existence of suitable singular elements is already postulated in the formulation of
Theorem 4.1. If the eigenvalues of the automorphisms α(Zk) have real eigenvalues so
do those of α(Rk). Thus we only need to discuss what to do when α is weakly mixing.
Consider the natural fibration ofG′/�′ over T = Rk/Zk . Then any eigenfunction f for Rk

is an eigenfunction for Zk on almost every fiber G/�. Hence f is constant along almost
every fiber. In the proof of the main theorem, we consider the function x �→ H ′

x . If α is
weakly mixing, the H ′

x are constant along almost every fiber G/�, as desired. Since the
H ′
x are generated by unipotent elements, it is clear that H ′

x ⊂ G.

Note that conclusions (1)–(3) of Theorem 3.1 immediately imply the corresponding
claims of Theorem 4.1. Furthermore, statements (4) and (5) of Theorem 3.1 imply
conclusion (4) of Theorem 4.1 if we can show that the normalizer NG′(H ′) intersects �′
in a lattice. This follows from the following result. We thank D. Witte for providing a
proof for us. As we could not find precise references for standard facts, we give a detailed
account.

PROPOSITION 8.1. Suppose:

• G is a 1-connected, nilpotent Lie group;
• A is a 1-connected, Abelian Lie group which acts onG by automorphisms;
• G′ = A�G;
• H is a closed, connected subgroup of G;
• � is a lattice in G;
• � ∩H is a lattice in H ;
• Zk is a lattice in A.
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Let �′ = Zk � �. Then �′ ∩ NG′(H) is a lattice in NG(H), and also � ∩ NG(H) is a
lattice in G.

Proof. Since �′ is a polycyclic group, �′ admits a faithful representation ρ into GL(n,Z)
by [25, Theorem 4.12] such that the image of the nilradical of �′ consists of unipotent
matrices. Thus ρ(�) is unipotent. As � is nilpotent, ρ extends to a representation of G
into a unipotent subgroup of GL(n,R) by [25, Theorem 2.11]. Also ρ | Zk extends to a
representation of A into GL(n,R) such that ρ(A) normalizes ρ(G).

Hence we may assume G′ ⊂ GL(�,R), for some �, in such a way that:
• G is unipotent; and
• G′ ∩ GL(�,Z) is (commensurable with) �.
Let:
• L be the Zariski closure of G′ in GL(�,R); and
• 
 = L ∩ GL(�,Z).
Dani’s generalization of the Borel Density Theorem [3] shows that 
 is Zariski dense in a
cocompact subgroup of L, which implies that L has no characters defined over Q. By the
compactness criterion for lattices [25, Theorem 10.19],
 is a cocompact lattice in L.

Because �∩H is Zariski dense inH , we know thatH is defined over Q. HenceNL(H)
is also defined over Q. Therefore, 
 ∩ NL(H) is a cocompact lattice in NL(H). By [25,
Lemma 1.19], we conclude that 
 ∩G′ ∩ NL(H) is a lattice in G′ ∩ NL(H) = NG′(H).
This proves the first claim since
∩G′ is commensurable with �′. Finally, that �∩NG(H)
is a lattice inG follows immediately since NG(H)/�∩NG(H) is the fiber of the fibration
NG′(H)/� ∩NG′(H) over the torus Rk/Zk . �

9. Proofs of Theorems 3.6 and 4.5
In this section we prove Theorems 3.6 and 4.5. The proofs are very similar, so we first
prove Theorem 3.6 and then in §9.2 describe the changes needed for the nilmanifold case.

9.1. Proof of Theorem 3.6. We introduce the following notations: α = α1 × α2,
G = G1 × G2, � = �1 × �2 ⊂ G, and A = ρ(Rk) = {(ρ1(a), ρ2(a)) ∈ G : a ∈ Rk},
where ρ = ρ1 × ρ2 is the diagonal embedding of Rk into G = G1 ×G2.

Since (α,µ) satisfies the assumptions of Corollary 3.3 there exists a subgroup H ⊂

(µ) ⊂ G such thatµ is supported on a compact cosetNG(H)y ⊂ G/� of the normalizer
of H in G. By passing if necessary to the algebraically isomorphic action of y−1Ay on
(y−1Hy)\y−1NG(H)y/�, we may assume that ē = {e�} ∈ G/� is a density point for µ,
and hence µ is supported on NG(H)ē ⊂ G/�.

Let Hi = H ∩ Gi , i = 1, 2. We would like to factorize by H1 × H2 ⊂ H , so we
first prove that H1 × H2 is normal in G. By symmetry, it suffices to show that H1 is
normal in G1. For this we note that since µ is supported on NG(H) and projects to the
Haar measure on the G1/�1, the projection of NG(H) to G1 must be onto. Hence for any
g1 ∈ G1 there exists g2 ∈ G2 such that (g1, g2) ∈ NG(H), i.e. (g−1

1 , g−1
2 )H(g1, g2) = H .

This, together with the equality (g−1
1 , g−1

2 )G1(g1, g2) = G1, shows that (g−1
1 , g−1

2 )

(G1 ∩ H)(g1, g2) = (G1 ∩ H). But the latter implies that g−1
1 H1g1 = H1. Thus we

have proved that H1 ×H2 is normal in G.
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Hence we can consider the factor action α′ on G′/�′, where G′ = (H1 × H2) \ G =
G′

1 × G′
2 with G′

i = Hi \ Gi , i = 1, 2. We note that since � = �1 × �2, the lattice
�′ in the factor is also the product of lattices �′

1 and �′
2, which are the projections of

�1 and �2 to G′
1 and G′

2 respectively. Recall that for the measure µ we have a natural
measurable partition ξ into compact cosets Hx, x ∈ NG(H), with Haar conditional
measures. It follows that the factor measure µ′ on G′/�′ is invariant under the left action
of H ′ = (H1 × H2) \ H , and that the projection of ξ to G′/�′ is a measurable partition
ξ ′ into compact cosets H ′x. We note that since H ′ ∩G′

i = {e}, the subgroup H ′ projects
injectively to G′

1 and G′
2. Let H ′

1 = p1(H
′), where p1 is the projection to the first factor.

Since p1(H
′x) = H ′

1 · p1(x), it is easy to see that ξ ′ projects to a measurable partition
ξ ′

1 of M′
1 = G′

1/�
′
1 which consists of compact cosets H ′

1y. We will show below that ξ ′
1

is coarser than the Pinsker partition for α′
1(a), where α′

1 is the action on M′
1 and a ∈ Rk

is from the statement of Theorem 3.6. Since α′
1(a) is a factor of α1(a) and the latter

is, by assumption, a K-automorphism with respect to the Haar measure on G1/�1, we
conclude that ξ ′

1 has to be the trivial partition. Therefore, µ′
1 = (p1)∗µ′ is concentrated

on a single compact coset H ′
1x. Since µ′

1 is Haar, as the projection to M′
1 of the Haar

measure λ1 on G1/�1, we conclude that H ′
1 = G′

1. Thus the subgroup H ′ projects
injectively and onto G′

1. By the same argument, H ′ projects injectively and onto G′
2.

Hence H ′ is the graph of the isomorphism f : G′
1 → G′

2 determined by the equality
H ′ = {(g, f (g)) ∈ G′ : g ∈ G′

1}.
We know that µ′ is invariant under H ′ and is supported on the normalizer NG′H ′

of H ′ in G′. We now describe NG′H ′ to show that µ′ is supported on a single
coset H ′x. If (g1, g2)∈NG′H ′, then for any g ∈G′

1 we have (g, f (g)) ∈ H ′ and thus
(g−1

1 gg1, g
−1
2 f (g)g2) is again inNG′H ′. Hence f (g−1

1 gg1) = g−1
2 f (g)g2, which implies

f (g) = (f (g1)g
−1
2 )−1f (g)(f (g1)g

−1
2 ). Since this holds for all g ∈ G1, z = (f (g1)g

−1
2 )

lies in the centralizer of f (G′
1), which coincides with the center Z(G′

2) of G′
2 as f is an

isomorphism. Since z·(g1, g2) = (g1, f (g1)) ∈ H ′ we conclude thatNG′H ′ = Z(G2)·H ′.
Since G′

2 is semisimple, Z(G′
2) is at most countable and thus NG′H ′ consists of at most

countably many cosets of H ′. Since µ′ is an ergodic measure for the Rk-action α′
supported on NG′H ′, it is clear that µ′ is supported on a single coset H ′x ⊂ G′/�′.
Since ē ∈ G′/�′ is a density point of µ′, we see that µ′ is Haar on H ′ē. This implies that
µ is Haar on Hē, i.e. µ is algebraic.

Since µ′ is Haar on H ′ē, the latter is also invariant under α′. Since we know that H ′ is
isomorphic to G′

1 and G′
2 it follows that H ′ē projects onto M′

1 and M′
2 = G′

2/(�
′ ∩G′

2).
In contrast to the case of isomorphism rigidity H ′x may not project injectively to M′

1 and
M′

2. Thus it may not produce an algebraic isomorphism between the actions α′
1 and α′

2.
However,H ′x is compact and thusH ′ ∩�′ is a uniform lattice in H ′. Hence the projection
of H ′ ∩ �′ to G′

1 is also a uniform lattice which is contained in �′
1 since �′ = �′

1 × �′
2,

and thus is of finite index in �′
1. Similarly, the projection ofH ′ ∩�′ toG′

2 is of finite index
in �′

2. This implies that the invariant coset H ′ē is a graph of an algebraic isomorphism
between the actions α′

1 and α′
2 on the finite coverings of G′

1/�
′
1 and G′

2/�
′
2 respectively.

To complete the proof it remains for us to show that the measurable partition ξ ′
1 of M′

1
is coarser than the Pinsker partition for α′

1(a). We note that the Pinsker partition for α′
1(a)

coincides with the measurable hull of the unstable foliation for α′
1(a) [19, Theorem B].
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Thus it suffices to prove that the projection p1(h
′) of the Lie algebra h′ of the group H ′

to the Lie algebra g′
1 of the group G′

1 contains the Lie algebra of the unstable distribution
of α′

1(a). Consider a Lyapunov exponent χ for the action α′ such that χ(a) > 0 and denote
by V χ the corresponding Lyapunov subspace in the Lie algebra g′ of the groupG′. Then χ
is also a Lyapunov exponent for at least one of the factors, and V χ is the direct sum of the
corresponding Lyapunov subspaces V χ1 ⊂ g′

1 and V χ2 ⊂ g′
2, one of which may be trivial.

We recall that both projections p1 and p2 are injective on H ′. Hence

dim(h′ ∩ V χ) ≤ dimV χi , i = 1, 2. (3)

Since µ′
1 is the Haar measure on M′

1, the entropy of α′
1(a) is

h(α′
1(a)) =

∑
χ(a) dim(V χ1 ), (4)

where the sum is taken over all Lyapunov exponents χ positive on a. Since for µ-almost
every x the conditional measure ofµ on the leafW+

α(a)(x) is Haar on a single left cosetHx,
it follows that for µ′-almost every x the conditional measure of µ′ on the leaf W+

α′(a)(x) is
Haar on a single left coset H ′x. This implies [20] that the entropy of α′(a) is

h(α′(a)) =
∑

χ(a) dim(H ∩ V χ), (5)

where the sum again is taken over all Lyapunov exponents positive on a. Since α′
1(a) is

a factor of α′(a), h(α′
1(a)) ≤ h(α′(a)). Thus (3), (4) and (5) imply that dim(h′ ∩ V χ) =

dimV χ1 for all Lyapunov exponents χ positive on a. Since p1 is injective on h′ ∩ V χ ,
this shows that it is also surjective. Hence p1(h

′) contains the Lyapunov subspaces of
all Lyapunov exponents positive on a and thus contains the unstable distribution E+

α′
1(a)

.
This completes the proof of Theorem 3.6. �

9.2. Proof of Theorem 4.5. In this section we show how to adapt the proof of
Theorem 3.6 above to the case of Zk-actions by automorphisms of a nilmanifold, and
thus establish Theorem 4.5.

Let α = α1 × α2 be the diagonal action of Zk onG1/�1 ×G2/�2, i.e. α(a)(x1, x2) =
(α1(a)x1, α2(a)x2). Then the joining (α,µ) satisfies the assumptions of Theorem 4.1.
Hence there exists an α-invariant subgroupH ⊂ 
(µ) ⊂ G1×G2 such thatµ is supported
on a compact coset N(H)y of the normalizer of H in G1 × G2. Again by passing if
necessary to the algebraically isomorphic action of Zk on (y−1Hy) \ y−1NG(H)y/�,
we may assume that µ is supported on N(H)ē, where ē is the projection of the unit to
G1/�1 ×G2/�2. We again can factorize byH1 ×H2 ⊂ H , whereHi = H ∩Gi , i = 1, 2.
In the same way we obtain that the measure µ′ in the factor is Haar on the compact cosets
of H ′ = (H1 × H2) \ H , and that H ′ projects isomorphically to the factors G′

1 and G′
2

of G1 and G2 respectively. We recall that the ergodicity of the element α1(a) from the
statement of Theorem 4.5 implies that it is a K-automorphism [24].

In contrast to the semisimple case above, in this case µ′ may not be supported on the
single coset, so thatµ′ andµmay not be algebraic. According to Theorem 4.1 the measures
µ′ and µ are extensions of a zero-entropy measure for a measurable factor of α with Haar
conditional measures in the fibers. This measurable factor can be viewed as an algebraic
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factor of the restriction of α to N(H)ē. Even though µ′ may not be supported on a single
coset of H ′, we already know that H and hence H ′ are α-invariant, and the coset H ′ē is
compact. As in the proof above, these facts easily imply thatH ′ē is a graph of an algebraic
isomorphism between the factor actions on the finite coverings of G′

1/�
′
1 and G′

2/�
′
2,

where �′
i is the projection of the lattice �i to G′

i , i = 1, 2. The measurable factor above
can be viewed as a common measurable factor of these factor actions. �
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