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Abstract. We investigate joinings of strongly irreducible totally non-symplectic Anosov
Zk , k ≥ 2 actions by toral automorphisms. We show that the existence of a non-trivial
joining has strong implications for these actions, in particular, that the restrictions of the
actions to a finite index subgroup of Zk are conjugate over Q. We also obtain a description
of the joining measures modulo the classification of zero entropy measures for the actions.

1. Introduction
In this paper we consider the measurable structure of certain irreducible Anosov actions
of Zk , k ≥ 2 by automorphisms of the torus Tm with respect to the Lebesgue measure.
The individual elements of such actions are Bernoulli automorphisms [9]; hence they
are metrically isomorphic if they have the same entropies [12]. In addition, the set of
conjugacies and the set of joinings of two Bernoulli automorphisms are large and do not
admit a reasonable description.

In contrast to the properties of the individual elements many natural actions of higher
rank Abelian groups have remarkable rigidity properties. In [6, 7] Katok and Spatzier
studied invariant measures with a non-vanishing entropy function for a class of algebraic
actions of Zk+, Zk and Rk, k ≥ 2 which, in particular, includes irreducible Zk actions by
ergodic automorphisms of the torus. Based on the results from [6, 7], it has been shown
in [4] that measurable conjugacies, centralizers and factors for these actions on the torus
are essentially algebraic. See [3] for a complete and detailed exposition of the properly
modified principal result from [6, 7] for the case of actions by toral automorphisms.
In particular, this exposition corrects various inaccuracies from the original papers.

Conjugacies, centralizers and factors give rise to special kinds of joinings between
actions, see Section 2.1 and [4]. Thus the natural next step in the rigidity programme
would be to describe all joinings between actions in a given class.
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Note that any invariant measure of an action by toral automorphisms gives rise to a
self-joining (see Section 2.1). Since the description of invariant measures with a vanishing
entropy function is an open and notoriously difficult problem at the moment we can only
hope to describe joinings in terms of invariant measures. A more accessible question which
is addressed in the present paper is: What are the implications of the existence of a non-
trivial joining between two actions? We treat the leading case of totally non-symplectic
actions by toral automorphisms which contain, in particular, the maximal rank (Cartan)
actions [4]. In fact we also show that, in our case, all joinings up to a finite factor are
associated with invariant measures.

Our solution is based on further development of the main technique from [6], the
consideration of conditional measures on various invariant foliations of the product action,
complemented by a new argument, a sort of relative version of the Ruelle inequality
between entropy and Lyapunov exponents (Lemma 4.9).

In the last section we discuss possible generalizations to other classes of actions.

2. Preliminaries

2.1. Ergodic toral automorphisms and joinings. We denote by GL(m,Z) the group of
integral m × m matrices with determinant 1 or −1. Any matrix A ∈ GL(m,Z) defines
an automorphism of the torus Tm = Rm/Zm which we denote by FA; it is ergodic with
respect to the Lebesgue measure on Tm if and only if no eigenvalue of A is a root of unity.
Furthermore, in this case A has eigenvalues of an absolute value greater than one and FA
is a Bernoulli automorphism [9].

Any Zk action α by automorphisms of Tm is given by an embedding ρα : Zk →
GL(m,Z) such that α(n) = Fρα(n), where n = (n1, . . . , nk) ∈ Zk .

Let α1 and α2 be two Zk actions by automorphisms of Tm1 and Tm2 correspondingly.
The action α2 is called an algebraic factor of α1 if there exists an epimorphism h:
Tm1 → Tm2 such that h ◦ α1 = α2 ◦ h.

A Borel probability measure µ on Tm1 × Tm2 is called a joining of α1 and α2 if it is
invariant under the diagonal (product) action α1 × α2 of Zk on Tm1 × Tm2 and projects
onto the Lebesgue measures on Tm1 and Tm2 . A joining of an action with itself is called
a self-joining. The Lebesgue measure on Tm1 × Tm2 is called a product or trivial joining.
Two actions are called disjoint if the only joining is the product measure.

Any isomorphism H between two action-preserving measures µ1 and µ2 correspond-
ingly generates a joining measure via the pull-back: (Id × H)∗µ1 = (H−1 × Id)∗µ2;
the same is true for a factor map, i.e. a non-invertible measure-preserving semiconjugacy.
Furthermore, any measurable factor of an action generates a self-joining via the relative
product construction.

For an action α by automorphisms of the torus Tm any α-invariant Borel probability
measureµ and any non-singular integer 2×2 matrix

(
a b
c d

)
with non-zero elements generate

the self-joining measure

(πa,b)∗λ× (πc,d )∗µ,

where λ is the Lebesgue measure and πk,l(x, y) = kx + ly, x, y ∈ Tm.
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2.2. Irreducible Zk actions on Tm. We give a brief description of the algebraic structure
of irreducible Zk actions on Tm, see [1, 2] for more details.

The action α is called irreducible if any non-trivial algebraic factor has finite fibres.
In [6, 7] irreducible actions are called completely irreducible. The following proposition
gives an alternative description of irreducible Zk actions.

PROPOSITION 2.1. [1] Let α be a Zk action by automorphisms of Tm. The following
properties are equivalent:

(1) α is irreducible;
(2) ρα(Z

k) contains a matrix with a characteristic polynomial irreducible over Q;
(3) ρα(Z

k) does not have a non-trivial invariant rational subspace; and
(4) any α-invariant closed proper subgroup of Tm is finite.

The action α is called strongly irreducible if the action of any finite index subgroup
of Zk is irreducible. Equivalently, α is strongly irreducible if and only if the orbit of any
non-trivial rational subspace is infinite.

Any matrix A ∈ GL(m,Z) with a characteristic polynomial irreducible over Q has
simple eigenvalues and hence is diagonalizable over C. Moreover, the centralizer of A in
M(m,Q), all m × m matrices with rational entries, coincides with the polynomials of A
with rational coefficients.

Let α be an irreducible Zk action on Tm and let Gα = ρα(Z
k) ⊂ GL(m,Z).

By Proposition 2.1 there exists an A ∈ Gα with an irreducible characteristic polynomial.
SinceGα is commutative we see that all matrices inGα are simultaneously diagonalizable
over C. If, in addition, all eigenvalues of A are real then the eigenvalues of any matrix in
Gα are also real. In this case all matrices in Gα are simultaneously diagonalizable over R;
in other words Gα is conjugate to a subgroup of the group of all diagonal matrices in
GL(m,R).

It follows that the tangent bundle TTm = Tm×Rm splits into the direct sum of invariant
subbundles corresponding to one-dimensional eigenspaces of real eigenvalues and two-
dimensional planes of pairs of complex eigenvalues. Each of these subbundles is tangent
to a totally irrational homogeneous foliation of Tm.

2.3. Lyapunov exponents. If v lies in one of the subbundles then the Lyapunov exponent
λ(α(n), v) is equal to the logarithm of the absolute value of the corresponding eigenvalue
of element α(n). Moreover, λ(α(·), v) is an additive functional on Zk . We see that the
eigenspace splitting of TTm is a refinement of the Lyapunov decomposition of TTm into
Lyapunov subspaces for the action α. For a detailed discussion of Lyapunov exponents for
Zk and Rk actions on manifolds see [6].

It is convenient for us to operate with Rk actions so we would like to pass from an action
of Zk to the corresponding action of Rk . This is the so-called suspension construction.

Suppose Zk acts on Tm. Embed Zk as a lattice in Rk . Let Zk act on Rk × Tm by
z(x,m) = (x − z, z ·m) and form the quotient

M = Rk × Tm/Zk.
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Note that the action of Rk on Rk × Tm by x · (y, n) = (x + y, n) commutes with the
Zk-action and therefore descends to M . This Rk-action is called the suspension of the
Zk-action.

Note that any Zk-invariant measure on Tm can be lifted to a unique Rk-invariant measure
on M and conversely any invariant measure for the suspension induces a unique invariant
measure for the original action.

The manifold M is a fibration over the ‘time’ torus Tk with the fibre Tm. We note that
TM splits into the direct sum TM = TfM ⊕ ToM where TfM is the subbundle tangent
to the Tm fibres and ToM is the subbundle tangent to the orbit foliation. The Lyapunov
exponent corresponding to ToM is always identically zero. To exclude this trivial case,
when we speak of Lyapunov exponents we will always mean the Lyapunov exponents
corresponding to TfM . These Lyapunov exponents of the Rk action are the extensions of
the Lyapunov exponents of the Zk action to the linear functionals on Rk .

The kernels of the non-zero Lyapunov exponents are called Lyapunov hyperplanes. The
pre-images of the positive half-line are called positive Lyapunov half-spaces. If there are
no non-trivial identically zero Lyapunov exponents then the action is called an Anosov
action.

An element a ∈ Rk is called regular if it does not belong to any Lyapunov hyperplane.
All other elements are called singular. We call a singular element generic if it belongs
to only one Lyapunov hyperplane. A regular element for an Anosov action is called an
Anosov element.

Lyapunov exponents may be proportional to each other with positive or negative
coefficients. In this case, they define the same Lyapunov hyperplane. An Anosov action α
is called totally non-symplectic or TNS (see [5]) if there are no Lyapunov exponents
proportional to each other with negative coefficients; or, equivalently, any two positive
Lyapunov half-spaces have a non-empty intersection. For any TNS Zk action k ≥ 2
automatically since for k = 1 all Lyapunov exponents are proportional. A typical example
of an irreducible TNS action is the Cartan action of Zm−1 on Tm, m ≥ 3 (see [4]).

For an element a ∈ Rk the stable, unstable and centre distributions E+
a , E

−
a and E0

a

are defined as the sum of the Lyapunov spaces for which the value of the corresponding
Lyapunov exponent on a is negative, positive and zero respectively. Since all elements
of any irreducible action are diagonalizable, the derivative of any singular element a acts
isometrically on its centre distribution. So in this case E0

a coincides with the isometric
distribution EIa . For an element a we will denote the integral foliations of the stable,
unstable, centre and isometric distributionsE−

a , E+
a , E0

a andEIa byW−
a ,W+

a ,W 0
a andWI

a .

For any α-invariant measure µ and invariant subfoliation F of the unstable foliation
W+
a we define the entropy with respect to µ along the foliation F as the supremum

of the conditional entropies Hµ(ξ/α(a)ξ) over all increasing measurable partitions ξ
subordinated to the foliation F . We denote this entropy by hFµ(a). We have

hµ(α(a)) = h
W+
a

µ (a),

where hµ(α(a)) is the entropy of the transformation α(a) with respect to the measure µ.
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3. The Main Theorem
THEOREM 3.1. Let (α1, λ1) and (α2, λ2) be strongly irreducible Anosov TNS actions of
Zk by automorphisms of Tm1 and Tm2 , where λ1 and λ2 are Lebesgue measures on Tm1

and Tm2 respectively. If a non-trivial joining measure µTm on Tm = Tm1 × Tm2 exists
then the following statements are true.
(1) m1 = m2.
(2) The Lyapunov exponents of the actions α1 and α2 are identical.
(3) The entropy of every element in Zk with respect to the joining measure µTm is equal

to its entropy with respect to the Lebesgue measure in each factor.
(4) There exists a subgroup $ ⊂ Zk of finite index such that the actions α1 and α2

restricted to $ are conjugate over Q.
(5) If the joining measure µTm is ergodic it decomposes as (1/N)(µ1+· · ·+µN), where

each µi , i = 1, . . . , N , is an invariant measure for the restriction of α1 × α2 to $
and is an extension of a zero-entropy measure in an algebraic factor of dimension
m1 = m2 with Haar measures in the fibres. This algebraic factor is isomorphic to a
finite factor of the actions α1 and α2 restricted to $.

4. Proof of Theorem 3.1
4.1. Scheme of proof. We denote by αTm the product action α1 × α2 of Zk on Tm =
Tm1 × Tm2 . Let µTm be a non-trivial joining measure on Tm. We use the suspension
construction to pass to the corresponding Rk action (α,µ) on a manifoldM . Using ergodic
decomposition we may assume without loss of generality that the µTm and hence µ are
ergodic.

Step 1. (Section 4.2) We start by considering a Lyapunov foliation of the action α on M .
If the corresponding Lyapunov exponent is also a Lyapunov exponent in both factors then
the Lyapunov foliation splits as the sum of two invariant subfoliations which correspond
to the Lyapunov foliations in the factors. In this case, instead of considering the whole
Lyapunov foliation we consider each of these invariant subfoliations separately.

Let F be a foliation as described earlier. For any such foliation we establish the
following fact.

LEMMA 4.1. The conditional measures of µ on F are atomic.

We first prove that the conditional measures are Haar measures on certain affine spaces
(Lemmas 4.2–4.4, and checking the ergodicity condition for Lemma 4.2). Next we show
that if those affine spaces have a positive dimension then both actions cannot be strongly
irreducible (Lemma 4.5).

Step 2. (Section 4.3) We compare the Lyapunov exponents of the actions α1 and α2.
We show that the conditional measures of µ are atomic on some sufficiently large
subfoliation G of the unstable foliation of some Anosov element b ∈ Rk . Specifically
this subfoliationG contains all Lyapunov foliations corresponding to Lyapunov exponents
for the actions α1 and α2 positive at b which do not have matching exponents for the
other action (taking multiplicities into account), as well as at least one Lyapunov foliation
for each matching pair. The atomicity is proved by induction by first adding foliations
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corresponding to exponents which are positively proportional to a given one in increasing
order (Lemma 4.6) and then foliations corresponding to the non-proportional exponents
(Lemma 4.7).

Step 3. (Section 4.4) Lemma 4.9 implies that the entropy of α(b) with respect to the
joining measure is less than the sum of the remaining positive Lyapunov exponents, i.e.
exponents not coming from the foliationG. Thus if exponents of α1 and α2 are not identical
(with multiplicities), then the entropy of α(b) is less than the entropy with respect to the
Lebesgue measure of α1(b) or α2(b) which is impossible since these measures are the
factors of the joining measure. This shows that the Lyapunov exponents of α1 and α2 must
be identical, in particular m1 = m2. In this case this argument also shows that for any
element b the conditional measures of µ are atomic on ‘half’ of its unstable foliation so
that the entropy of b with respect to the joining measure cannot be more than the entropy
in each factor.

Step 4. (Section 4.5) Having thus proven that the Lyapunov exponents of actions α1 and
α2 and their multiplicities coincide we now consider a Lyapunov foliation for the product
action and the conditional measures of the joining measure on that foliation. As in the
arguments in Step 1 these conditionals are Haar measures on affine subspaces. However,
now the atomic option (zero-dimensional spaces) is excluded either by an entropy argument
as in Step 3, or, more straightforwardly, by considering projections. Thus Lemma 4.5 can
be applied to deduce that up to a subgroup of finite index the joining measure decomposes
into Haar measures on parallel rational subtori. By irreducibility the dimensions of these
subtori cannot be either greater or less than the dimension of the factors. Thus it is equal
and the invariance of such a subtorus implies the existence of a rational conjugacy between
the restrictions of α1 and α2 to a finite index subgroup. Finally, the decomposition of
the joining measure according to the partition into parallel invariant subtori provides the
structure described in the theorem.

Now we proceed to the details.

4.2. Proof of Lemma 4.1. We use three lemmas which appeared as [6, Lemmas 5.4–5.6]
(see also [3, Lemmas 3.2–3.4]) to describe the conditional measures on the foliation F .

Step 1.1: Algebraicity of conditional measures. Since F is either a Lyapunov foliation or
an invariant subfoliation of a Lyapunov foliation we can take a generic singular element a
in the corresponding Lyapunov hyperplane so that F ⊂ WI

a . We will verify the ‘ergodicity’
assumption of Lemma 4.2 (ξa ≤ ξ(F )) later.

Suppose that a ∈ Rk is a generic singular element and F ⊂ WI
a is some α-invariant

subfoliation of WI
a . Denote by BF1 (x) the unit ball in F(x) about x with respect to the

flat metric. Let µFx denote the system of conditional measures on F normalized by the
requirement µx(BF1 (x)) = 1 for all x in the support of µ. For a detailed discussion of
conditional measures on foliations see [6]. We denote by ξa the partition into ergodic
components of a and by ξ(F ) the measurable hull of F .

LEMMA 4.2. Suppose that ξa ≤ ξ(F ). Then for µ-a.e. x, the support of µFx is the orbit of
the closed subgroup Gx of isometries of F(x) which preserve µFx up to a scalar multiple.
Furthermore, for µFx -a.e. y ∈ F(x), µFy is the image of µFx under an isometry in Gx .
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LEMMA 4.3. In addition to the assumptions in Lemma 4.2, let F be contained in the
intersection of WI

a with a Lyapunov subspace for a non-zero Lyapunov exponent λ. Then
for µ-a.e. x, the support Sx of µFx is an affine subspace of F(x).

LEMMA 4.4. Under the assumptions of Lemma 4.3, µFx is a Haar measure on Sx .

These three lemmas show (modulo the assumption of Lemma 4.2) that, for µ-a.e. x, µFx
is a Haar measure on an affine subspace Sx of the leaf F(x).

Step 1.2: Checking the ergodicity assumption. We now verify the assumption

ξa ≤ ξ(F )

of Lemma 4.2. This is the only place in the proof where the TNS condition is used. Let
W−
a,1 be the subfoliation ofW−

a that corresponds to the Lyapunov exponents of α1, in other
words it is the maximal invariant subfoliation of W−

a which is subordinate to the partition
of M into horizontal tori. The Hopf argument shows that ξa ≤ ξ(W−

a ). Indeed, if f is a
continuous function on M then the forward ergodic averages

f+(x) = lim
n→∞

1

n

n−1∑
k=0

f (anx)

are constant along stable manifolds of a as they contract exponentially under a. Since
the continuous functions are dense in L2

µ(M), it follows that any invariant L2
µ-function is

constant a.e. on F with respect to the conditional measure induced by µ.
Let P be the Lyapunov hyperplane that contains a. Since α1 is a TNS action we see that

all Lyapunov exponents of α1 with kernel P are positively proportional. This implies
that we can take a regular element b in the positive half-space P+ sufficiently close to
a so that α1(b) is Anosov and W−

a,1 = W−
b,1, where W−

b,1 is again the part of W−
b that

corresponds to the Lyapunov exponents of α1.
We note that ξ(W−

b,1) = ξ(W+
b,1) since they are both equal to the conditional Pinsker

algebra of b. This can be seen in [11].
Now using the decomposition into Lyapunov spaces we see that W−

a,1 = W−
b,1 implies

thatW 0
a,1 ⊂ W 0

a,1 ⊕W+
a,1 = W+

b,1 and hence that ξ(W+
b,1) ≤ ξ(W 0

a,1).
Combining all the inequalities between σ -algebras established earlier we obtain

ξa ≤ ξ(W−
a,1) = ξ(W−

b,1) = ξ(W+
b,1) ≤ ξ(W 0

a,1) ≤ ξ(F ).

Step 1.3: Excluding the positive dimension case. To complete the proof of Lemma 4.1
it remains to consider the case when conditional measures are Haar measures on affine
subspaces of positive dimension.

LEMMA 4.5. Let F be an invariant foliation. Suppose that for µ-a.e. x, the conditional
measure µFx is a Haar measure on an affine subspace Sx with dim Sx = l ≥ 1. Then there
exist a finite index subgroup $ of Zk , rational subtori Ti ⊂ Tm, i = 1, . . . , N , of the same
dimension, and Borel probability measures µi , i = 1, . . . , N , on Tm such that
(1) for µ-a.e. x, the closure of Sx is a translation of Ti for some i;
(2) the joining measure decomposes as µTm = (1/N)(µ1 + · · · + µN);
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(3) µi , i = 1, . . . , N is invariant under the group of translations in the direction of Ti;
and

(4) Ti and µi , i = 1, . . . , N , are invariant under α($).

Proof. Let us denote the closure of Sx by T (x). T (x) is a rational subtorus which
corresponds to the minimal rational subspace that contains Sx . Hence dim T (x) is an
invariant function. Since the joining is ergodic we conclude that dimT (x) is constant
µ-a.e. Let us call two points x and y equivalent if T (x) = T (y). This equivalence relation
gives rise to a measurable partition of Tm into rational subtori.

We first show that the conditional measures on these tori are Lebesgue. Indeed, let us
consider a typical torus T with conditional measure µT . T is foliated by affine subspaces
Sx in such a way that the conditional measures of µT on Sx are Haar measures for
µT -a.e. x. One can assign an orthonormal basis to each subspace Sx in a measurable way.
This produces a measurable Rl action on T which preserves µT . Let us take the ergodic
decomposition of µT with respect to this Rl action and consider one ergodic component.
The direction of Sx is invariant under the action since the subspace Sx is the same for all
points on one trajectory. Hence almost all subspaces Sx within one ergodic component
have the same direction, i.e. they are parallel. It follows that the measure on this ergodic
component is invariant under translations in this direction. By the construction of T the
closure of Sx equals T for all x. This implies that the measure on any ergodic component
is a Haar measure on T . Hence µT is the Lebesgue measure on T .

Since there can be, at most, countably many classes of parallel tori we conclude that
there exists a torus T1 such that the set E1 consisting of all points x for which T (x) is
parallel to T1 has a positive measure. By recurrence, for any generator Aj of the action α
there exists n > 0 such that µTm(E1 ∩ Anj (E1)) > 0. This means that for any point x in
this intersection the element Anj maps T (x) to a parallel torus. Since Anj is an affine map it
follows that Anj preserves this class of parallel tori. Hence Anj (E1) = E1. In the same way
it follows that the set E1 is invariant with respect to the action of a finite index subgroup
$ ⊂ Zk . The orbit of the setE1 consists of finitely many sets E1, . . . , EN of equal measure
which correspond to the elements of Zk/$. By the ergodicity of the joining the union of
these sets has a full measure. Hence µTm = (1/N)(µ1 + · · · + µN), where µi = µTm |Ei .
We note that T (x) is parallel to the torus Ti = a(T1) for µi-a.e. x, where a is an element
of the action α which maps E1 to Ei . We conclude that Ti and µi are invariant under α($)
and that µi is invariant under the group of translations in the direction of Ti . ✷

We have proved so far that for µ-a.e. x, µFx is a Haar measure on an affine subspace Sx
of the leaf F(x). Since dim Sx is an invariant function and the joining measure is ergodic
we conclude that either for µ-a.e. x, µFx is atomic or for µ-a.e. x, µFx is a Haar measure on
an affine subspace Sx with dim Sx = l ≥ 1. In the latter case we apply Lemma 4.5. The
foliation F is subordinate either to the first or second factor. Assume the former. Then the
rational subtori Ti given by Lemma 4.5 are contained in Tm1 . Since the action α1 is strongly
irreducible and the tori Ti are invariant under the action of some finite index subgroup we
conclude that Ti = Tm1 for all i. This implies that the conditional measures corresponding
to the partition of Tm into ‘horizontal’ tori Tm1 × {x}, x ∈ Tm2 are Lebesgue. Since the
measure µ2 in the factor is also Lebesgue we conclude that µTm is Lebesgue on Tm, which



Measurable rigidity and disjointness for Zk actions 515

contradicts the assumption that the joining is not trivial. The other case is completely
symmetric.

Thus the proof of Lemma 4.1 is complete. ✷

4.3. Atomicity of the joining measure on a large foliation. Lemma 4.1 implies that the
conditional measures of µ are atomic on any invariant foliation of M which corresponds
to some Lyapunov exponent of α1 or α2. We need to prove that the Lyapunov exponents
of α1 and α2 are identical including multiplicities.

Step 2.1: Construction of a sufficiently large foliation. Suppose the opposite. Then
there exists an Anosov element b such that different Lyapunov exponents take different
values on α(b) and the positive Lyapunov exponents of α1(b) and α2(b) are not the same.
We would like to construct an invariant splitting W+

b = F ⊕ G such that the conditional
measures onG are atomic andG is sufficiently large, i.e. it contains all Lyapunov foliations
corresponding to the Lyapunov exponents for the actions α1 and α2 positive at b which do
not have matching exponents for the other action, taking multiplicities into account, as well
at least one of the Lyapunov foliations for each matching pair.

The foliationW+
b splits as a sum of Lyapunov foliations corresponding to the Lyapunov

exponents of the factors α1 or α2 which are positive on b. LetW be one of these foliations
with the corresponding Lyapunov exponent λ. If λ is not a Lyapunov exponent in the
other factor then we assign W to G. If λ is a Lyapunov exponent in the other factor then
we compare the multiplicities of λ in the two factors. We assign the higher-dimensional
foliation toG and the lower-dimensional foliation to F . Thus the foliationG is sufficiently
large in the previous sense.

It is clear that the invariant splitting W+
b = F ⊕G thus obtained has the property that

the intersection of any Lyapunov foliation of α with G is subordinate to one of the factors.
If the Lyapunov exponents of α1(b) and α2(b) are not the same then the sum of Lyapunov
exponents of b corresponding to F is strictly less than the sum of all positive Lyapunov
exponents of α1(b) or α2(b). Let us assume that it is less than the sum of all positive
Lyapunov exponents of α1(b). This sum is equal to hλ1(α1(b)), where λ1 is the Lebesgue
measure on Tm1 .

Step 2.2: Atomicity of conditional measures. We will show that the conditional measures
for the foliationG are atomic.

Restrict the action α to a generic 2-plane in Rk which contains b and intersects
Lyapunov hyperplanes by generic lines. Let us consider the lines L1, . . . , Ll that
correspond to the Lyapunov exponents positive on b. Then foliation G ⊂ W+

b splits into
the sum of invariant subfoliationsG = ⊕

Wi whereWi ⊂ (WI
ai

∩W+
b ) and ai is a generic

singular element on Li . We can reorder the lines L1, . . . , Ll and choose elements ai in
such a way that (W1 ⊕ · · · ⊕Wi−1) ⊂ (W−

ai
∩W+

b ) for i = 2, . . . , l.
Consider the decomposition Wi = ∑

Wλ
i into its intersections Wλ

i = Wi ∩ Wλ with
the Lyapunov foliations. We note that, by the construction ofG, eachWλ

i is subordinate to
one of the factors hence the conditional measures on each Wλ

i are atomic by Lemma 4.1.
If Wi is subordinate to one of the factors then the ergodicity assumption of Lemma 4.2

is fulfilled and this lemma shows that the conditional measures on Wi are supported
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on smooth submanifolds of the leaves. If Wi contains Lyapunov foliations from both
factors then we see that there are no Lyapunov exponents of the whole action α which are
negatively proportional to the exponents corresponding to Wi . In this case the ergodicity
assumption of Lemma 4.2 follows from (the simpler version of) the argument in the proof
of Lemma 4.1 and we also obtain that the conditional measures on Wi are supported on
smooth submanifolds of the leaves. Then Lemma 4.6 shows that the conditional measures
on the foliation Wi are atomic. Once we know that the conditional measures on Wi ,
i = 1, . . . , l, are atomic we apply Lemma 4.7 inductively to conclude that the conditional
measures on G = W1 ⊕ · · · ⊕Wl are atomic.

Thus to complete the proof of the atomicity of the conditional measures for the foliation
G it remains to prove Lemma 4.6 and Lemma 4.7. Note that we can use the inverse of
element b from Step 2.1 as the element b required in Lemmas 4.6 and 4.7.

LEMMA 4.6. Let F be an invariant subfoliation of foliation WI
a ∩W−

b for some element
b and let F = ∑

λ(F ∩ Wλ) be the splitting into intersections with Lyapunov foliations.
Assume that the conditional measures on all foliations F ∩ Wλ are atomic and that the
support Sx of measureµFx is a smooth submanifold of F(x). Then the conditional measures
on F are also atomic.

The proof of this lemma follows the proof of Lemma 5.8 in [6] and we include it for the
sake of completeness.

Proof. The support Sx of measure µFx is a smooth submanifold which intersects every
F ∩ Wλ in, at most, one point. Let λ be the smallest Lyapunov exponent on b. Let
D be the distribution of the tangent spaces of Sx . It is measurable, b-invariant and C∞
on F(x). Since D cannot intersect the component in the Wλ-direction in a subspace of
positive dimension, D must be tangent to the sum

∑
µ�=λ Wµ by b-invariance. By taking

the Lyapunov exponents inductively in increasing order, we see that D is trivial and µFx
are atomic. ✷

LEMMA 4.7. LetW be an invariant subfoliation ofWI
a and F be an invariant subfoliation

of W−
a for some element a. Suppose that F ⊕W ⊂ W−

b for some element b and that the
conditional measures of µ on both foliations F and W are atomic. Then the conditional
measures on the foliation F ⊕W are also atomic.

This lemma is very similar to Lemma 5.10 in [6] and the proof employs the idea of the
proof of Lemma 5.10. While the latter lemma is correct its proof in [6] lacks some essential
details. We give a new argument to complete the proof.

Proof. We prove the lemma inductively by adding one-dimensional subfoliations of W to
the foliation F one by one until we exhaust the whole F ⊕ W . Then the next lemma
which contains the main technical argument shows that on each step of this process we
obtain a foliation with atomic conditional measures. We note that W splits into one-
dimensional invariant foliations corresponding to the real eigenvalues of α(a) and α(b)
and two-dimensional invariant foliations corresponding to pairs of complex eigenvalues
of α(a) and α(b). In order to add a two-dimensional foliation we consider the proper
multiples ta, sb ∈ Rk of elements a and b for which the corresponding eigenvalues of
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α(ta) and α(sb) are real. Then the two-dimensional foliation splits into a sum of one-
dimensional subfoliations invariant with respect to α(ta) and α(sb). Then these one-
dimensional foliations can be added using the next lemma with elements ta and sb in
place of a and b.

LEMMA 4.8. Let F1 and F2 be invariant subfoliations of WI
a and F be an invariant

subfoliation of W−
a for some element a. Suppose that F2 is one-dimensional, (F ⊕ F1 ⊕

F2) ⊂ W−
b for some element b and that the conditional measures of µ on both foliations

F1⊕F2 andF⊕F1 are atomic. Then the conditional measures on the foliation F⊕F1⊕F2

are also atomic.

Proof of Lemma 4.8. Since the conditional measures on the foliations F1 ⊕F2 and F ⊕F1

are atomic we can find a set of full measure and its compact subset K of measure at least
0.99 which intersect any leaf of the foliations F1 ⊕ F2 and F ⊕ F1 in at most one point.

Consider a measurable partition, subordinate to F ⊕ F1 ⊕ F2 , which consists ‘mainly’
of small ‘rectangles’ of the same size with sides parallel to the foliations F , F1 and F2 and
has the following property:

The measure of the set Intγ is at least 0.99 for some γ > 0, where Intγ consists of points
inside rectangles on the distance at least γ from the relative (to the leaf of F ⊕ F1 ⊕ F2)
boundary of the rectangle that contains the point.

We would like to consider only the ‘good’ part of the measure µ, so we introduce a
new measure µX by µX(·) = µ(· ∩ X), where X = K ∩ Intγ with µ(X) ≥ 0.98. Let us
consider a system of conditional measures of µX with respect to the measurable partition
into the rectangles (the remaining elements have µX measure 0). These measures will be
referred to as the conditional measures of the rectangles. We regard each rectangle as a
direct product of its F , F1 and F2 directions.

We observe the following dichotomy:

(1) For every rectangle, in a set of positive measure, at least one-third of its conditional
measure is concentrated on a single F ⊕ F1 leaf, hence at one point; or

(2) there exists a set Y with µX(Y ) > 0.97 which consists of whole rectangles and a
number d > 0 such that for any rectangle in Y any subrectangle that carries at least
one-third of the conditional measure has width at least d along the F2 direction.

In the first case the existence of atoms for the conditional measures of the rectangles
implies the existence of atoms for the conditional measures on the foliation F ⊕ F1 ⊕ F2.
Since this foliation is contracted by b we can see that the existence of atoms forces the
conditional measures on F ⊕ F1 ⊕ F2 to be atomic.

In the latter case each rectangle in Y can be split into three subrectangles of width at
least d along the one-dimensional F2 direction so that both the left and the right ones have
a conditional measure of at least one-third (we may assume that the conditional measures
do not have atoms since otherwise we could argue as in the first case).

Now we regard the intersection of the compact set K with any rectangle as a graph
of a continuous (not necessarily everywhere defined) function from the F direction to the
F1⊕F2 direction. The family of these functions is equi-continuous. We would like to show
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that this equi-continuity is in contradiction to recurrence under the action of a properly
chosen element.

Since b contracts F ⊕ F1 ⊕ F2 we can find a sufficiently large number n such that the
size of the image of any rectangle under the action of bn is γ -small, i.e. has a diameter
less than γ . The distance along the F2 direction between the images of the right and left
subrectangles, which was at least d , becomes at least d ′. Let us fix some ε < d ′ and
consider δ > 0 given by the equi-continuity. Since a acts isometrically on F1 ⊕ F2 and
contracts F we can choose k so large that the image of any rectangle under akbn is δ-small
in the F direction. We see that the element akbn satisfies the following conditions:
(1) the image of any rectangle is δ-narrow in the F direction;
(2) the distance along the F2 direction between the images of the right and the left

subrectangles is at least ε;
(3) the diameter of the image of any rectangle is less than γ , hence it cannot intersect

the γ -interiors of two different rectangles simultaneously.
Under these conditions the images of the right and left subrectangles cannot intersect

Z = X ∩ Y simultaneously. But this implies that µX(akbn(Z) ∩ Z) ≤ 2
3µX(Z) which is

impossible since µ(Z) = µX(Z) ≥ 0.95. This shows that the second alternative of the
dichotomy is impossible and proves that the conditional measures on F ⊕ F1 ⊕ F2 are
atomic. ✷

Thus the proof of Lemma 4.7 is complete. ✷

4.4. Equality of exponents. We will now complete the proof of equality of Lyapunov
exponents for actions α1 and α2.

Step 3.1: The entropy lemma.

LEMMA 4.9. Let F , G and H = F ⊕ G be invariant subfoliations of W+
b for some

element b. Suppose that the conditional measures of µ on G are atomic. Then hHµ (b) ≤
χF , where χF is the sum of the Lyapunov exponents (counted with multiplicities) that
correspond to the foliation F .

Proof. Since the conditional measures on the foliationG are atomic there exist a set of full
measure and its compact subset K of measure at least 1 − ε which intersects any leaf of
the foliationG in at most one point.

We would like to construct a partition of M convenient for calculating the entropy
along the foliation H . We start with a coarse measurable partition of M , subordinate
to H , which consists mainly of identical parallelepipeds with edges of length ρ and sides
parallel to the foliations F and G. These parallelepipeds will be referred to as cubes.
The remaining elements of the partition can be chosen to be polytopes with diameters not
more than C1ρ and containing balls of radius at least c2ρ. For ρ sufficiently small this
partition can be chosen in such a way that the total measure of the remaining elements and
σ -neighbourhoods of the boundaries of the cubes is small. More precisely we assume that
µ(Intσ ) > 1 − ε for some 0 < σ < ρ, where Intσ is the union of all relative σ -interiors of
the cubes. Then µ(Kσ ) > 1 − 2ε, where Kσ = K ∩ Intσ .
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Let us fix a large m and take d > 0 satisfying 2emλd < σ , where λ denotes the
maximal Lyapunov exponent of b corresponding to H . The intersection of K with any
cube is a graph of a continuous (not necessarily everywhere defined) function from the F
direction to the G direction; moreover, the family of these functions is equi-continuous.
So for the given d > 0, we can take δ > 0 such that if x, y ∈ K lie in one cube with a
distance along the F direction which is less than δ then the distance along the G direction
is less than d . The F direction of each cube Q can be partitioned into identical cubes
Qi of diameter δ. Then for each Qi there exists a cube Qj0

i along the G direction of
diameter at most C3d containing a ball of radius d such that the set Q ∩Kσ is covered by
rectangles Ri = Qi ⊕ Q

j0
i . The remaining part of each Q can be covered by rectangles

R
j
i = Qi ⊕ Q

j
i , where Qji has a diameter of at most C3d and contains a ball of radius

d/2. We see that all these rectangles satisfy the following properties: diam(Rji ) ≤ C3d

and Vol(Rji ) ≥ c4δ
dimF ddimG.

If d and c4 are chosen small enough all remaining elements of the initial coarse partition
can be partitioned into sets satisfying the same properties. We denote the constructed
partition by ξ = {Cα}. Since d and δ can be chosen to be as small as we wish we can
assume that hµ(bm, ξ) > hHµ (b

m) − ε. Let us introduce the notation φ(x) = −x log x,
bmξ = {Dβ} and let µβ be the conditional measure on Dβ . Then we obtain

mhHµ (b)− ε = hHµ (b
m)− ε ≤ h(ξ, bmξ)

=
∫
h(ξ,Dβ) dµ(β)

=
∫ ∑

α:Cα∩Kσ �=∅
φ(µβ(Cα)) dµ(β)+

∫ ∑
α:Cα∩Kσ=∅

φ(µβ(Cα)) dµ(β).

Since diam(Dβ) ≤ emλ2d < σ the intersection Dβ ∩ Cα ∩Kσ can be non-empty only
for Cα inside one cube of the coarse partition. The number of these Cαs can be estimated
using the volume in the F direction.

The F cross sections of Dβ have volume VolF (Dβ) ≤ C5e
mχF δdimF and the F cross

sections of Cα have volume VolF (Cα) ≥ c6δ
dimF . So for the given Dβ there are at most

C7e
mχF elements Cα that intersect Dβ ∩Kσ . This implies that

∫ ∑
α:Cα∩Kσ �=∅

φ(µβ(Cα)) dµ(β) ≤
∫

log card{α : Cα ∩Dβ ∩Kσ �= ∅} dµ(β)

≤ logC7 +mχF .

Since Vol(Dβ) ≤ C8e
mλ dimHδdimF ddimG and Vol(Cα) ≥ c4δ

dimF ddimG for any α, the
number of elements Cα that intersect Dβ is bounded above by C9e

mλ dimH .

Let r(β) = µβ(Dβ \Kσ ). Then since

−
(

1

N

N∑
i=1

xi

)
log

(
1

N

N∑
i=1

xi

)
= φ

(
1

N

N∑
i=1

xi

)
≥ 1

N

N∑
i=1

φ(xi)
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by taking N = log card{α : Cα ∩Dβ ∩Kσ = ∅} we obtain
∫ ∑

α:Cα∩Kσ=∅
φ(µβ(Cα)) dµ(β)

≤
∫
r(β)(log card{α : Cα ∩Dβ ∩Kσ = ∅} − log r(β)) dµ(β)

≤ µ(M \Kσ )(logC9 +mλ dimH)−
∫
r(β) log r(β) dµ(β)

≤ 2ε(logC9 +mλ dimH)+ 1.

Finally we obtain

mhHµ (b)− ε ≤ logC7 +mχF + 2ε(logC9 +mλ dimH)+ 1.

Since C7 and C9 do not depend on m, taking the limit as m → ∞ we obtain

hHµ (b) ≤ χF + 2ελ dimH.

Since ε is arbitrary the lemma follows. ✷

Step 3.2: Excluding non-equal exponents. We proved in §4.3 that the conditional measures
on G are atomic. If the Lyapunov exponents are not identical to the multiplicities then
Lemma 4.9 shows that the sum of the Lyapunov exponents of b corresponding to F gives
the upper estimate for hµ(α(b)) so that we obtain hµ(α(b)) < hλ1(α1(b)). Since α1 is a
factor of α this is impossible and we conclude that the Lyapunov exponents of α1 and α2

must be identical.

4.5. Conjugacy over Q and the structure of the joining measure. In this section we
complete the proof of the Main Theorem. We show that µTm has a specific structure and
the restrictions of α1 and α2 to some finite index subgroup $ ⊂ Zk are conjugate over Q.

Step 4.1: Lyapunov conditionals are non-atomic. We consider a Lyapunov foliation W
for α. Since the Lyapunov exponents of α1 and α2 are the same, W splits into the direct
sum of two invariant subfoliations of equal dimensions corresponding to the factors. We
note that the conditional measures on W cannot be atomic. The easiest way to prove this
is to assume the opposite. Then the partition into complete fibres of W is measurable with
respect to the joining measure and hence so are its projections onto the factors. This is a
contradiction since, for the factors, the conditional measures are Lebesgue measures and
the partitions are not measurable.

Alternatively, one can take an Anosov element b for which W is unstable. Then we
can split the whole unstable foliation of b as W+

b = F ⊕ G, where G contains W and
the invariant subfoliations corresponding to the first factor of all other Lyapunov foliations
which are unstable for b. If the conditional measures onW were atomic we could show, as
in Section 4.3, that the conditional measures on G are also atomic. Then we could apply
Lemma 4.9 to conclude that the entropy of b with respect to the joining measure is less
than the entropy of b in the second factor, which is impossible.
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Step 4.2: Algebraicity of Lyapunov conditionals. Since we already know that there are no
negatively proportional Lyapunov exponents for the product action we can use (a simpler
version of) the argument in the proof of Lemma 4.1 to verify the assumption of Lemma 4.2.
Then we can apply Lemmas 4.2, 4.3 and 4.4 to describe the conditional measures µWx for
the foliation W . We obtain that for µ-a.e. x, µWx is a Haar measure on an affine subspace
Sx of the leaf W(x). We have just proved that the conditional measures on W are not
atomic. Since dim Sx is an invariant function and the joining measure is ergodic we
conclude that for µ-a.e. x, µWx is Haar on an affine subspace Sx with dim Sx = l ≥ 1.
We can now apply Lemma 4.5. We conclude that the joining measure decomposes as
µTm = (1/N)(µ1 + · · · + µN). Each µi , i = 1, . . . , N , is invariant under the restriction
of α to a certain finite index subgroup $ ⊂ Zk . Each µi is also invariant under the group
of translations in the direction of a rational torus Ti ⊂ Tm. The tori Ti , i = 1, . . . , N , have
the same dimension and are invariant under α($). Let us consider T1.

Step 4.3: Equality with the dimension of factors and rational conjugacy. We claim that
dimT1 = m1 = m2. If dimT1 > m1 then the intersection of T with each factor has a
positive dimension. Since the action in the factors is strongly irreducible we see that T1

must contain each factor, i.e. T1 = Tm. Thus the invariance with respect to translations in
the direction of T1 implies that µ1 is Lebesgue on Tm. Since the dimensions of the tori Ti
are the same we conclude that all measures µi , i = 1, . . . , N are Lebesgue. This implies
thatµTm is Lebesgue on Tm which contradicts the assumption that the joining is not trivial.
Thus we have proved that dim T1 ≤ m1. On the other hand, since the projections of T1 onto
the factors are rational subtori invariant under α($) their dimensions must be either zero or
m1 by strong irreducibility. Since dimT1 is positive we conclude that dimT1 = m1 = m2.

The rational subtorus T1 lifts to a rational subspace in Rm of dimensionm1 = m2 which
is invariant for the restriction of the action α1 × α2 to $. Hence this subspace is a graph of
a conjugacy over Q between actions α1 and α2 restricted to $.

Step 4.4: The structure of joinings. The existence of T1 also produces an algebraic factor
on a torus of dimension m1 = m2 for the restriction of (α1 × α2, µTm) to $. We note
that the conditional measures of µ1 along the fibres are Haar. Let us denote this factor by
α3. It is easy to see that α3 is algebraically isomorphic to finite factors for the restrictions
of α1 and α2 to $. Thus α3 is also strongly irreducible and a TNS action of Zk . Hence
the invariant measure for α3 either is Lebesgue or has zero entropy with respect to all
elements of the action α3. We note that the former case implies that the joining was trivial.
We conclude that µ1 is an extension of a zero-entropy measure in this algebraic factor with
Haar measures in fibres. The other measures µi have the same structure since the actions
(α1 × α2|$,µi), i = 1, . . . , N are algebraically isomorphic.

This competes the proof of Theorem 3.1. ✷

5. Open problems and comments
5.1. Actions by toral automorphisms. As we mentioned earlier the natural problem of
describing all joinings, even self-joinings, is very difficult since it includes the description
of all invariant measures for the actions. However, there are several natural extensions of
the results of the present paper which look more feasible.
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The rigidity of isomorphisms, centralizers and factors holds for a rather broad
class of actions by toral automorphisms satisfying the following ‘genuine higher-rank’
assumption [4].

(R): The action α contains a group, isomorphic to Z2, which consists of ergodic
automorphisms.

Naturally, Zk actions satisfying condition (R) may be reducible and in fact may have
factors which reduce to actions of rank lower than k, but still greater than one. The most
general ‘rigidity of joinings’ conjecture which avoids description of all joinings may be
formulated as follows.

CONJECTURE 5.1. If two Zk actions by toral automorphisms satisfying condition (R)
have a non-trivial joining then there are subgroups of the finite index in Zk whose actions
have algebraically isomorphic factors which reduce to Zl actions satisfying condition (R)
for some l, 2 ≤ l ≤ k.

In the irreducible case the only algebraic factors are those with finite fibres.
Furthermore, it is possible that no reduction to a subgroup of finite index would be
necessary. Thus for irreducible actions the rigidity of the joining conjecture takes the
following form.

CONJECTURE 5.2. If two irreducible Zk actions by toral automorphisms satisfying
condition (R) have a non-trivial joining then they are isomorphic over Q, or, equivalently,
each is algebraically isomorphic to a finite factor of the other.

There are three difficulties on the way from our Theorem 3.1 to the proof of
Conjecture 5.2:
(1) the presence of zero exponents;
(2) the presence of negatively proportional exponents; and
(3) the possibility of irreducible but not strongly irreducible actions.

Allowing zero exponents and keeping the rest of the assumptions of Theorem 3.1 allows
the part of the proof that gives the equality of multiplicities of the non-zero Lyapunov
exponents to be carried out. The equality of multiplicities of the zero exponent does not
follow.

The TNS condition, which does not hold if some non-zero exponents are negatively
proportional, is used to check the ergodicity assumption in Lemma 4.2. While this
condition looks technical it is central for initiating the whole machinery of conditional
measures. The hope here is that for special invariant measures of products which
correspond to joinings this assumption or some substitute could be derived.

5.2. Other algebraic actions of higher-rank Abelian groups. Actions by toral
automorphisms form only one of several classes of actions of Zk and Rk , k ≥ 2, which
exhibit various rigidity phenomena. These phenomena extend, on the one hand, to certain
classes of Anosov and partially hyperbolic homogeneous and affine actions on coset and
double coset spaces of Lie groups (see e.g. [8]); and, on the other hand, to actions by
automorphisms of compact Abelian groups which are more general than the torus [10].
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A natural question is to ask about the existence of non-trivial joinings among actions in
these classes as well as between actions from different classes. The techniques of this
paper can be adapted and extended to obtain various results in these directions although
our current understanding of the situation is far from definitive. These questions will be
treated in a subsequent paper.
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