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Abstract. We consider group-valued cocycles over a partially hyperbolic diffeo-
morphism which is accessible volume-preserving and center bunched. We study
cocycles with values in the group of invertible continuous linear operators on a Ba-
nach space. We describe properties of holonomies for fiber bunched cocycles and
establish their Hölder regularity. We also study cohomology of cocycles and its
connection with holonomies. We obtain a result on regularity of a measurable con-
jugacy, as well as a necessary and sufficient condition for existence of a contionuous
conjugacy between two cocycles.

1. Introduction

Cocycles and their cohomology play an important role in dynamics. For example,
they appear in the study of time changes for flows and group actions, existence and
smoothness of absolutely continuous invariant measures, existence and smoothness
of conjugacies between dynamical systems, rigidity in dynamical systems and group
actions. In this paper we consider cohomology of group-valued cocycles over partially
hyperbolic diffeomorphisms.

Definition 1.1. Let f be a diffeomorphism of a compact manifold M, let G be a
topological group equipped with a complete metric, and let A :M→ G be a continuous
function. The G-valued cocycle over f generated by A is the map

A : M× Z → G defined by

A(x, 0) = A0
x = eG, A(x, n) = An

x = A(fn−1x) ◦ · · · ◦ A(x) and

A(x,−n) = A−nx = (An
f−nx)

−1 = (A(f−nx))−1 ◦ · · · ◦ (A(f−1x))−1, n ∈ N.

If the tangent bundle ofM is trivial, TM =M×Rd, then the differential Df can
be viewed as a GL(d,R)-valued cocycle: Ax = Dfx and An

x = Dfnx . More generally,
one can consider the restriction of Df to a continuous invariant sub-bundle of TM,
for example stable, unstable, or center. In this paper we consider a more general
setting of cocycles with values in the group of invertible operators on a Banach space.

A natural equivalence relation for cocycles is defined as follows.
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Definition 1.2. Cocycles A and B are (measurably, continuously) cohomologous if
there exists a (measurable, continuous) function C :M→ G such that

(1.1) Ax = C(fx) ◦Bx ◦ C(x)−1 for all x ∈M,

equivalently, An
x = C(fnx) ◦Bn

x ◦ C(x)−1 for all n ∈ Z and x ∈M.

We refer to C as a conjugacy between A and B. It is also called a transfer map. For
the differential example above, C(x) can be viewed as a coordinate change on TxM.

In the context of cocycles over partially hyperbolic systems, two main cohomology
problems have been considered so far. One is finding sufficient conditions for existence
of a continuous conjugacy. The other is determining whether a measurable conjugacy
between two cocycles is necessarily continuous or more regular.

For Hölder continuous real-valued cocycles over systems with local accessibility,
the first problem was resolved in [KK], where conditions for existence of a conjugacy
were established in terms of su-cycle functionals. Recently, the study of real-valued
cocycles was advanced by A. Wilkinson in [W], where she weakened the assumption
from local accessibility to accessibility and obtained a positive solution for the second
problem. Previous results in this direction were established in [D] for smooth real-
valued cocycles over systems with rapid mixing.

For cocycles with values in non-commutative groups, studying cohomology is more
difficult. In all results so far, the cocycles satisfied additional assumptions related to
their growth, for example fiber bunching for linear cocycles. This property means that
noncoformality of the cocycle is dominated by the contraction/expansion of f in the
stable/unstable directions. Also, some conclusions in the non-commutative case are
different from those in the commutative case. For example, a measurable conjugacy
between two cocycles is not necessarily continuous, even when both cocycles are fiber
bunched [PW]. Theorem 4.2 gives the first result on continuity of a measurable
conjugacy for non-commutative cocycles over partially hyperbolic systems. We make
an additional assumption that one of the cocycles is uniformly quasiconformal. The
assumption is close to optimal and the theorem extends all similar results for cocycles
over hyperbolic diffeomorphisms [Sch, NP, PW, S].

We also obtain a necessary and sufficient condition for existence of a continuous
conjugacy between two cocycles in terms of their su-cycle weights. Previously, a
sufficient condition was obtained in [KN] for conjugacy to a constant cocycle over a
system with local accessibility. However, for non-commutative cocycles the general
problem cannot be reduced to the case when one cocycle is constant. We note that in
all our results partial hyperbolicity of the base system is pointwise and accessibility
is not assumed to be local. The fiber bunching for cocycles is assumed in pointwise
sense so, in particular, the results apply to the derivative cocycle along the center
direction of a strongly center bunched partially hyperbolic diffeomorphism.

Fiber bunching of a cocycle implies existence of so called stable and unstable
holonomies. Some of our results make a weaker assumption of existence of holonomies
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in place of fiber bunching. Holonomies are an important and convenient tool in the
study of cocycles. In Theorem 3.5 we establish Hölder continuity of holonomies, which
is a result of independent interest. We also obtain results on the relationship between
conjugacy and holonomies of cocycles, which turns out to be more complicated then
in the commutative case. For example, su-cycle weights may be non-trivial for a
cocycle continuously cohomologous to a constant one.

In Section 2 we give definitions of partially hyperbolic diffeomorphisms and Banach
cocycles. In Section 3 we discuss holonomies and state our result on their regularity.
In Section 4 we formulate our results on cohomology of cocycles, and in the last
section we give proofs of all the results.

2. Preliminaries

2.1. Partially hyperbolic diffeomorphisms. (See [BW] for more details.)
Let M be a compact connected smooth manifold. A diffeomorphism f of M is

said to be partially hyperbolic if there exist a nontrivial Df -invariant splitting of the
tangent bundle TM = Es⊕Ec⊕Eu, and a Riemannian metric onM for which one
can choose continuous positive functions ν < 1, ν̂ < 1, γ, γ̂ such that for any x ∈M
and unit vectors vs ∈ Es(x), vc ∈ Ec(x), and vu ∈ Eu(x)

(2.1) ‖Dfx(vs)‖ < ν(x) < γ(x) < ‖Dfx(vc)‖ < γ̂(x)−1 < ν̂(x)−1 < ‖Dfx(vu)‖.
We also choose continuous functions µ and µ̂ such that for all x in M
(2.2) µ(x) < ‖Dfx(vs)‖ if vx ∈ Es(x) and ‖Dfx(vu)‖ < µ̂(x)−1 if vu ∈ Eu(x).

The sub-bundles Es, Eu, and Ec are called, respectively, stable, unstable, and center.
Es and Eu are tangent to the stable and unstable foliations W s and W u respectively.

An su-path inM is a concatenation of finitely many subpaths which lie entirely in
a single leaf of W s or W u. A partially hyperbolic diffeomorphism f is called accessible
if any two points in M can be connected by an su-path.

We say that f is volume-preserving if it has an invariant probability measure m
in the measure class of a volume induced by a Riemannian metric. It is conjectured
that any essentially accessible f is ergodic with respect to such m. The conjecture
was proved in cite [BW] under the assumption that f is C2 and center bunched, or
that f is C1+ε, 0 < ε < 1, and strongly center bunched. The diffeomorphism f is
called center bunched if the functions ν, ν̂, γ, γ̂ can be chosen to satisfy

(2.3) ν < γγ̂ and ν̂ < γγ̂.

A C1+ε diffeomorphism f is called strongly center bunched if

(2.4) νθ < γγ̂ and ν̂θ < γγ̂,

for some θ ∈ (0, ε) satisfying the inequalities νγ−1 < µθ and ν̂γ̂−1 < µ̂θ. These
inequalities imply that Ec is θ-Hölder. Note that (γγ̂)−1 is an estimate of non-
conformality of Df |Ec .
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2.2. Banach cocycles. Let V be a Banach space, i.e. a vector space equipped with
a norm ‖.‖ such that V is complete with respect to the induced metric. We denote by
L(V ) the space of continuous linear operators from V to itself. Then L(V ) becomes
a Banach space when equipped with the operator norm

‖A‖ = sup {‖Av‖ : v ∈ V, ‖v‖ ≤ 1}, A ∈ L(V ).

We denote by GL(V ) the set of invertible elements in L(V ). The set GL(V ) is an
open subset of L(V ) and a group with respect to composition. We use the following
metric on GL(V ), with respect to which it is complete,

(2.5) d(A,B) = distGL(V )(A,B) = ‖A−B‖+ ‖A−1 −B−1‖.

We call a GL(V )-valued cocycle A a Banach cocycle. It is called β-Hölder if its
generator A : M → GL(V ) is Hölder continuous with exponent β with respect to
the metric d. We note that on any compact set S ⊂ GL(V ) the distance d(A,B) is
Lipschitz equivalent to ‖A−B‖ by Lemma 2.1 below. Therefore, sinceM is compact,
a cocycle A is β-Hölder if and only if

‖A(x)− A(y)‖ ≤ c dist(x, y)β for all x, y ∈M.

Lemma 2.1. Suppose that for a subset S ∈ GL(V ) there exists M such that ‖A‖ ≤M
and ‖A−1‖ ≤M for all A ∈ S. Then for all A,B ∈ S we have

M−1 ‖A−1B − Id ‖ ≤ ‖A−B‖ ≤ d(A,B) = d(A−1, B−1) ≤
≤ (M2 + 1) ‖A−B‖ ≤ M(M2 + 1) ‖A−1B − Id ‖.

Proof. The equality is clear from the definition of d, and the next inequality follows
from the estimate

‖A−1 −B−1‖ ≤ ‖A−1‖ · ‖B − A‖ · ‖B−1‖ ≤M2‖A−B‖.

The other inequalities are obtained similarly. �

Definition 2.2. A cocycle A over f is called β fiber bunched if it is β-Hölder and

(2.6) ‖A(x)‖ · ‖A(x)−1‖ · ν(x)β < 1 and ‖A(x)‖ · ‖A(x)−1‖ · ν̂(x)β < 1,

for all x in M, where ν and ν̂ are as in (2.1).

This means that nonconformality of A is dominated by the expansion/contractions
along unstable/stable foliations in the base. Note that the cocycle Df |Ec for a
strongly center bunched, (2.4), partially hyperbolic diffeomorphism is θ fiber bunched.

We can view the generator A as the automorphism of the trivial vector bundle
V =M×V given by A(x, v) = (fx,A(x)v), and An

x as a linear map between the fibers
Vx and Vfnx. We deal with the case of a trivial bundle for convenience. Our results
extend directly to linear cocycles defined more generally as bundle automorphisms,
see [KS] for a description of this setting.
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2.3. Standing assumptions. In this paper,
• M is a compact connected smooth manifold;

• f is an accessible partially hyperbolic diffeomorphism ofM that preserves a volume
m and is either C2 and center bunched, or C1+ε and strongly center bunched;

• A and B are GL(V )-valued continuous cocycles over f , where V is a Banach space.

3. Holonomies and their regularity

An important role in the study of cocycles is played by holonomies. They were
introduced by M. Viana in [V] for linear cocycles and further developed and used in
[ASV, KS]. For a fiber bunched linear cocycle A, a holonomy can be obtained as
a limit of the products (An

y )−1 ◦ An
x. Convergence and limits of such products have

been studied for various types of group-valued cocycles whose growth is slower than
the contraction/expansion in the base (see e.g. [NT, PW, dlLW]). It is related to
existence of strong stable/unstable manifolds for the extended system on the bundle.
We use the axiomatic definition of holonomies given in [V, ASV]. We note, however,
that the resulting object is, in general, non-unique, see discussion after Corollary 4.9.

Definition 3.1. A stable holonomy for a cocycle A is a continuous map
HA,s : (x, y) 7→ HA,s

x,y , where x ∈M and y ∈ W s(x), such that

(H1) HA,s
x,y is an element of GL(V ), viewed as a map from Vx to Vy;

(H2) HA,s
x,x = Id for every x ∈M and HA,s

y,z ◦HA,s
x,y = HA,s

x,z ;

(H3) HA,s
x,y = (An

y )−1 ◦HA,s
fnx,fny ◦An

x for all n ∈ N.

We say that a stable holonomy is β-Hölder (along the leaves of W s) if it satisfies the
following additional property: for any R > 0 there exists K such that

(H4) ‖HA,s
x,y − Id ‖ ≤ K distW s(x, y)β for any x ∈M and y ∈ W s

R(x).

Here distW s denotes the distance along a leaf of the stable foliation W s, and W s
R(x)

denotes the ball in W s(x) centered at x of radius R in this distance. By Lemma 2.1,
the left hand side of (H4) is equivalent to the GL(V ) distance d (HA,s

x,y , Id) on the

compact set {HA,s
x,y : x ∈M, y ∈ W s

R(x) }.
Fiber bunched cocycles have a canonical holonomy. The following result was proved

for finite dimensional Banach spaces V , but the arguments work for the general case
without any modifications.

Proposition 3.2 (Proposition 4.2 [KS], cf. Proposition 3.4 [ASV]).
Suppose that a cocycle A is β fiber bunched. Then for any x ∈M and y ∈ W s(x),

(3.1) HA,s
x,y

def
= lim

n→∞
(An

y )−1 ◦An
x

exists and satisfies (H1,2,3,4). The stable holonomy for A satisfying (H4) is unique.
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Remark 3.3. This proposition holds under a slightly weaker fiber bunching assump-
tion [S, Proposition 4.4]: there exist θ < 1 and L such that for all x ∈M, n ∈ N,

(3.2) ‖An
x‖ · ‖(An

x)−1‖ · (νnx )β < Lθn and ‖A−nx ‖ · ‖(A−nx )−1‖ · (ν̂−nx )β < Lθn,

where νnx , ν̂nx are defined as in (5.3). In fact, all results in this paper hold under this
version of fiber bunching assumption.

Definition 3.4. A stable holonomy for a cocycle A satisfying (3.1) is called standard.

By definition, the standard stable holonomy of A is unique, if it exists. By the
proposition, the only β-Hölder stable holonomy for a β fiber bunched cocycle is the
standard one. However, there are non-standard stable holonomies of lower regularity
even for a constant fiber bunched cocycle over an Anosov automorphism.

We use similar definitions for an unstable holonomy HA,u. As in Proposition 3.2,
any β fiber bunched cocycle A has the standard unstable holonomy obtained as

(3.3) HA,u
x, y = lim

n→∞

(
(A−ny )−1 ◦ (A−nx )

)
= lim

n→∞

(
An
f−ny ◦ (An

f−nx)
−1) , y ∈ W u(x),

It satisfies (H1,2,4,) above with y ∈ W u(x) and

(H3′) HA,u
x, y = (A−ny )−1 ◦HA,u

f−nx, f−ny ◦A
−n
x for all n ∈ N.

We establish global Hölder continuity of the stable holonomy for fiber bunched
cocycles. A similar result holds for the unstable holonomy.

Theorem 3.5. Suppose that a cocycle A is β fiber bunched. Then there exists α,
0 < α < β, such that the standard holonomy HA,s as in (3.1) is globally α-Hölder in
the following sense. For any R > 0 there exist δ > 0 and C > 0 so that

If y ∈ W s
R(x), y′′ ∈ W s

R(x′′), dist(x, x′′) < δ and dist(y, y′′) < δ, then

d(Hs
x,y, H

s
x′′,y′′) ≤ C max {dist(x, x′′)α, dist(y, y′′)α}.

The choice of the Hölder exponent α is explicit and is described in the beginning
of the proof. It depends on the system in the base and on the “relative degree of
non-conformality” of the cocycle A.

In the absence of fiber bunching, natural examples of cocycles with standard
holonomies are given by small perturbation of a constant GL(d,R)-valued cocycle.

Proposition 3.6. Let A be a constant GL(d,R)-valued cocycle generated by A. If
B : M→ GL(d,R) is Hölder continuous and is sufficiently C0 close to A, then the
cocycle generated by B has Hölder continuous standard holonomies.

4. Cohomology of cocycles

First we consider the question whether a measurable conjugacy between two cocy-
cles is continuous. For non-commutative cocycles, the answer is not always positive,
even when both cocycles are fiber bunched. Indeed, in [PW, Section 9], M. Pollicott
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and C. P. Walkden constructed an example of two smooth GL(2,R)-valued cocy-
cles over an Anosov toral automorphism that are measurably (with respect to the
Lebesgue measure), but not continuously cohomologous. The cocycles can be made
arbitrarily close to the identity and, in particular, fiber bunched. We establish con-
tinuity of a measurable conjugacy for fiber bunched cocycles under the assumption
that one of them is uniformly quasiconformal. The example above shows that this
assumption is close to optimal.

Definition 4.1. A cocycle B is called uniformly quasiconformal if there exists a
number K(B) such that the quasiconformal distortion satisfies

(4.1) KB(x, n)
def
= ‖Bn

x‖ · ‖(Bn
x)−1‖ ≤ K(B) for all x ∈M and n ∈ Z.

If KB(x, n) = 1 for all x and n, the cocycle is said to be conformal.

Clearly, Hölder continuous conformal cocycles are fiber bunched, and so are all
sufficiently high iterates of uniformly quasiconformal cocycles.

Theorem 4.2. Let A be a cocycle with a standard holonomy and let B be a uniformly
quasiconformal Hölder cocycle. Let m be the invariant volume for f , and let C be a
m-measurable conjugacy between A and B. Then C coincides on a set of full measure
with a continuous conjugacy that intertwines the standard holonomies of A and B.

For simplicity, when we speak of a holonomy for a cocycle A we mean a pair of a
stable holonomy and an unstable holonomy, HA = {HA,s,HA,u}. When we say that a
conjugacy intertwines HA and HB we mean mean that it intertwines both the stable
and the unstable holonomies as in the following definition.

Definition 4.3. Suppose that HA,s and HB,s are stable holonomies for cocycles A

and B. We say that a conjugacy C between A and B intertwines HA,s and HB,s if

(4.2) HA,s
x,y = C(y) ◦HB,s

x,y ◦ C(x)−1 for all x, y ∈M such that y ∈ W s(x).

Intertwining the standard holonomies of cocycles is an important property of a con-
jugacy C. It is clear from the proof that it implies continuity of C. Further, it can be
uses to study higher regularity of the conjugacy, see [NT] for non-commutative cocy-
cles over hyperbolic systems and [W] for real-valued cocycles over accessible partially
hyperbolic systems. In contrast to real-valued cocycles, however, even continuous
conjugacy between fiber bunched cocycles does not necessarily intertwine their stan-
dard holonomies.

Proposition 4.4. For any 0 < β′ < 1, there exist a smooth cocycle A and a constant
cocycle B over an Anosov automorphism of T2 that are fiber-bunched with β = 1 and
conjugate via a β′-Hölder function C, but neither C nor any other conjugacy between
A and B intertwines their standard holonomies.

The next proposition gives a general sufficient condition for intertwining.
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Proposition 4.5. Suppose that cocycles A and B are β fiber bunched. Then any
β-Hölder conjugacy C between them intertwines their standard holonomies.

It is clear from the proof that it suffices to assume β-Hölder continuity of C along
the stable/unstable leaves to obtain intertwining of the standard stable/unstable
holonomies respectively. Conversely, intertwining β-Hölder holonomies implies β-
Hölder continuity of C along the stable and unstable leaves. Then global Hölder
continuity of C follows for hyperbolic f . For a partially hyperbolic f , accessibility is
not known to imply global Hölder continuity of C, but a stronger assumption suffices.
The diffeomorphism f is called locally α-Hölder accessible if there exists a number
L = L(f) such that for all sufficiently close x, y ∈M there is an su-path

P = {x = x0, x1, . . . , xL = y} such that distW i(xi−1, xi) ≤ C dist(x, y)α

for i = 1, . . . , L. Here the distance between xi−1 and xi is measured along the corre-
sponding stable or unstable leaf W i. Such accessibility implies αβ-Hölder continuity
of C, see [KS, Corollary 3.7]. The usual accessibility implies that an su-path can be
chosen with L and the distances distW i(xi−1, xi) uniformly bounded. If, in addition,
the points xi can be chosen to depend Hölder continuously on x and y, then Theorem
3.5 can be used to obtain global Hölder continuity of C.

Now we consider the problem of finding sufficient conditions for existence of a
continuous conjugacy between two cocycles. Suppose that HA,s and HA,u are stable
and unstable holonomies for a cocycle A. Let P = {x0, x1, . . . , xk−1, xk} be an su-path
in M. We define the weight of P as

HA,P
x0,xk

= Hx0,xk−1
◦ · · · ◦Hx1,x2 ◦Hx0,x1 ,

where Hxi,xi+1
= H

s/u
xi,xi+1 if xi+1 ∈ W s/u(xi). An su-cycle is an su-path in M with

x0 = xk, and we refer to the corresponding HA,P
x0

as the cycle weight. In case of

real-valued cocycles, HA,P
x0

is also referred to as the cycle functional.

The following properties are easy to verify.

Proposition 4.6. Let HA and HB be holonomies for cocycles A and B and let C be
a continuous conjugacy between A and B which intertwines these holonomies. Then

(i) C conjugates the cycle weights of these holonomies, i.e.

HA,P
x = C(x) ◦ HB,P

x ◦ C(x)−1 for every su-cycle P = Px.

(ii) More generally, for any x, y ∈M and any su-path Px,y from x to y,

HA,P
x,y = C(y) ◦ HB,P

x,y ◦ C(x)−1 and hence C(y) = HA,P
x,y ◦ C(x) ◦ (HB,P

x,y )−1.

(iii) C is uniquely determined by its value at any point.

The next theorem gives a sufficient condition for existence of a continuous con-
jugacy intertwining holonomies. By the previous proposition, this condition is also
necessary.
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Theorem 4.7. Let A and B be cocycles with holonomies HA and HB. Suppose that
there exist x0 ∈M and Cx0 ∈ GL(V ) such that

(i) HA,P
x0

= Cx0 ◦ HB,P
x0
◦ C−1x0 for every su-cycle Px0, and

(ii) Ax0 = Cfx0 ◦ Bx0 ◦ C−1x0 , where Cfx0 = HA,P
x0,fx0

◦ Cx0 ◦ (HB,P
x0,fx0

)−1 for some
su-path Px0,fx0 from x0 to fx0.

Then there exists a continuous conjugacy C between A and B with C(x0) = Cx0 that
intertwines HA and HB.

We note that due to the first assumption, Cfx0 in (ii) does not depend on the choice
of a path Px0,fx0 . If x0 is a fixed point for f then, considering the trivial path from x0
to fx0 = x0, we see that condition (ii) becomes Ax0 = Cx0 ◦Bx0 ◦C−1x0 , and we obtain
the following corollary. Thus, in this case (i) can be viewed as a sufficient condition
for extending a conjugacy from a given value at a fixed point.

Corollary 4.8. Let A and B be cocycles with holonomies HA and HB. Suppose that
there exist a fixed point x0 and Cx0 ∈ GL(V ) such that Ax0 = Cx0 ◦ Bx0 ◦ C−1x0 and

HA,P
x0

= Cx0 ◦ HB,P
x0
◦ C−1x0 for every su-cycle Px0. Then there exists a continuous

conjugacy C between A and B with C(x0) = Cx0 that intertwines HA and HB.

Now we apply Theorem 4.7 to the question when a cocycle A is cohomologous to a
constant cocycle. Clearly, for a constant cocycle B the standard holonomy is trivial,
HB
x,y = Id. Thus HB,P = Id for every su-cycle P and hence (i) becomes HA,P

x0
= Id.

Condition (ii) can be rewritten as Bx0 = C−1x0 ◦(HA,P
x0,fx0

)−1 ◦Ax0 ◦Cx0 and so it defines
a constant cocycle B uniquely for any choice of Cx0 . Thus we obtain the first part of
the following corollary. It was established in [KN] for systems with local accessibility
and for the standard holonomy of a cocycle satisfying a certain bunching assumption.

Corollary 4.9. If a cocycle A has a holonomy HA satisfying

(4.3) HA,P
x0

= Id for very su-cycle Px0 based at some point x0 ∈M,

then there exists a continuous conjugacy between A and a constant cocycle B that
intertwines HA and the standard holonomy HB = Id for B. Existence of such a
holonomy HA is a necessary condition for A to be cohomologous to a constant cocycle.

The second part of the corollary follows from Proposition 4.6 and the following
observation: for any holonomy HB

x,y and any continuous conjugacy C between A and

B, the formula C(y)◦HB
x,y ◦C(x)−1 defines a holonomy for A. We note, however, that

having the standard holonomy satisfy (4.3) is not a necessary condition for existence
of a continuous conjugacy to a constant cocycle. Indeed, the cocycle A in Proposition
4.4 is cohomologous to the constant cocycle B via a continuous C, but no conjugacy
intertwines their standard holonomies. This together with Corollary 4.9 implies that
(4.3) does not hold for the standard holonomy of A. Also, the standard holonomy of
A is mapped by C to a non-standard holonomy for B for which (4.3) does not hold.
In particular, holonomes for A and B are non-unique.
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5. Proofs

5.1. Proof of Theorem 3.5. Since the cocycle A is fiber bunched and since by (2.1)
0 < ν(x) < γ(x), we can fix θ < 1 sufficiently close to 1 so that for all x ∈M,

(5.1) ‖Ax‖ · ‖A−1x ‖ · ν(x)β ≤ θ, ‖Ax‖ · ‖A−1x ‖ · ν̂(x)β ≤ θ, and (ν(x)/γ(x))β < θ.

Since µ̂ < 1 from (2.2) we can choose α, 0 < α ≤ β, sufficiently close to 0 so that

(5.2) θ < (µ̂(x)ν(x))α for all x ∈M.

By iterating points x, y, x′′, y′′ forward and using invariance of the holonomies (H3),
we can assume without loss of generality that y ∈ W s

δ0
(x), y′′ ∈ W s

δ0
(x′′) for some

sufficiently small δ0 > 0. We denote Ecu = Ec⊕Eu and let Σx be the exponential of
the ball of radius C1δ centered at x in Ecu(x). Since Ecu is transversal to Es, we can
fix C1 > 0 such that if δ is sufficiently small then for any x ∈M, Σx is a submanifold
transversal to W s and for any x′′ with dist(x, x′′) < δ there is a unique intersection
point x′ = Σx ∩W s(x′′). If δ is sufficiently small then the distances dist(x, x′) and
dist(x′, x′′) are at most C2dist(x, x′′), for some constant C2 > 0 independent of points
x, y, x′′, y′′, and also for each z ∈ Σx the tangent space TzΣx is close to Ecu(z).
Similarly, we define Σy and y′. By taking δ < δ0 sufficiently small we can also ensure
that x′, y, y′ ∈ B2δ0(x) and y′ ∈ W s

2δ0
(x′).

First we iterate the points x, x′, y, y′ and estimate the distances between their
trajectories in the next lemma. The setting and arguments here are similar to ones
in a direct proof of Hölder continuity of stable holonomies for a partially hyperbolic
system, cf. [W, Proposition 5.2]. We denote xk = fkx, and

(5.3) νk(x) = ν(fk−1x) · · · ν(fx) ν(x) = ν(xk−1) · · · ν(x1) ν(x0).

We will use similar notations for x′, y, and y′ as well as for the functions ν̂, µ̂, and
γ. We choose n so that dist(x, x′) ≈ νn(x) µ̂n(x). More precisely, we take n to be the
largest integer satisfying the first inequality in

(5.4) dist(x, x′) ≤ νn(x) µ̂n(x) ≤ C ′dist(x, x′)

This implies the second inequality with some constant C ′ independent of x, x′.

Lemma 5.1. Let n be chosen according to (5.4). Then there exists M such that

(a) distW s(xn, yn) ≤Mνn(x) and distW s(x′n, y
′
n) ≤Mνn(x);

(b) dist(xk, x
′
k) ≤ νn(x) µ̂n−k(xk) and dist(yk, y

′
k) ≤Mνn(x)γn−k(xk)

−1

for 0 ≤ k ≤ n.

Proof. By continuity of the functions ν, µ̂, and γ from (2.1) and (2.2), there exists
0 < r < 1 such for any point p ∈ M the value at p gives the corresponding estimate
for any q ∈ Br(x). It will be clear from the estimates that by taking δ0 and δ small
enough, which forces n to be large enough, we can ensure that x′k, yk, y

′
k ∈ Br(xk) for
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each 0 ≤ k ≤ n. The first part of (b) follows since µ̂−1 bounds above the maximal
expansion of f :

dist(xk, x
′
k) ≤ dist(x, x′) µ̂k(x)−1 ≤ νn(x) µ̂n(x) µ̂k(x)−1 = νn(x) µ̂n−k(xk).

Since y ∈ W s
δ0

(x) and y′ ∈ W s
2δ0

(x′) we obtain

distW s(xn, yn) ≤ δ0 νn(x) and distW s(x′n, y
′
n) ≤ 2δ0 νn(x).

Choosing M = 3δ0 + 1 we obtain part (a) and the estimate

dist(yn, y
′
n) ≤ dist(xn, x

′
n) + dist(xn, yn) + dist(x′n, y

′
n) ≤M νn(x).

Since γ is less than the strongest contraction along Ecu, we obtain the second part
of (b):

dist(yk, y
′
k) ≤ dist(yn, y

′
n)γn−k(xk)

−1 ≤M νn(x)γn−k(xk)
−1

for k = 0, 1, . . . , n. For this we note that the transversals Σx and Σy are chosen
close to Ecu and that their forward iterates fk(Σx) and fk(Σy) will remain close to
Ecu. �

Now we estimate the holonomies. For simplicity, in this proof we use H for the
standard stable holonomy HA,s. Our goal is to show that

(5.5) ‖Hx′,y′ ◦H−1x,y − Id‖ ≤ C14dist(x, x′)α.

Note that all relevant holonomies between points x, x′, x′′, y, y′, y′′ lie in a compact
subset of GL(V ). Thus, once (5.5) is established, Lemma 2.1 implies a Hölder esti-
mate for d(Hx,y, Hx′,y′) similar to (5.5). Also, since H−1x′′,y′ ◦Hx′,y′ = Hx′,x′′ , (H4) and
the estimate dist(x′, x′′) ≤ C2dist(x, x′′) give a β-Hölder estimate for d(Hx′,y′ , Hx′′,y′).
Similarly, dist(y′, y′′) ≤ C2dist(y, y′′) gives a β-Hölder estimate for d(Hx′′,y′ , Hx′′,y′′).
We conclude that (5.5) yields the desired α-Hölder estimate for d(Hx,y, Hx′′,y′′) and
proves the theorem. To prove (5.5) we write

(5.6)

Hx′,y′ ◦H−1x,y =
(
(An

y′)
−1 ◦Hx′n,y

′
n
◦An

x′

)
◦
(
(An

y )−1 ◦Hxn,yn ◦An
x

)−1
=

= (An
y′)
−1 ◦Hx′n,y

′
n
◦
(
An
x′ ◦ (An

x)−1
)
◦ (Hxn,yn)−1 ◦An

y =

= (An
y′)
−1 ◦ (Id + ∆1) ◦ (Id + ∆2) ◦ (Id + ∆3) ◦An

y ,

where

∆1 = Hx′n,y
′
n
− Id, ∆2 = An

x′ ◦ (An
x)−1 − Id, ∆3 = Hyn,xn − Id.

By (H4) and Lemma 5.1(a) we have

‖∆1‖ = ‖Hx′n,y
′
n
− Id‖ ≤ KdistW s(x′n, y

′
n)β ≤ KMβνn(x)β,

and similarly ‖∆3‖ ≤ KMβνn(x)β. Also, by Lemma 5.2 below we have

‖∆2‖ = ‖An
x′ ◦ (An

x)−1 − Id‖ ≤ C7νn(x)β.
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Therefore, from (5.6) we obtain

(5.7) ‖Hx′,y′ ◦H−1x,y − Id‖ ≤ ‖(An
y′)
−1 ◦An

y − Id‖+ ‖(An
y′)
−1‖ · ‖An

y‖ · C12νn(x)β.

Equation (5.7) and Lemma 5.4 imply that

‖Hx′,y′ ◦H−1x,y − Id‖ ≤ C11θ
n + C9 θ

nνn(x)−βC12 νn(x)β ≤ C13θ
n,

and by the choices of α and n, (5.2) and (5.4), we conclude that

‖Hx′,y′ ◦H−1x,y − Id‖ ≤ C13θ
n ≤ C13 (µ̂n(x)νn(x))α ≤ C13 (C ′dist(x, x′))α.

This completes the proof of the theorem modulo Lemmas 5.1, 5.2, and 5.4.

Lemma 5.2. ‖An
x′ ◦ (An

x)−1 − Id ‖ ≤ C7νn(x)β.

Proof. We rewrite An
x′ ◦ (An

x)−1 as follows

(5.8)

An
x′ ◦ (An

x)−1 = An−1
x′1
◦Ax′0

◦ (Ax0)
−1 ◦ (An−1

x1
)−1 =

= An−1
x′1
◦ (Id + r0) ◦ (An−1

x1
)−1 =

= An−1
x′1
◦ (An−1

x1
)−1 + An−1

x′1
◦ r0 ◦ (An−1

x1
)−1 = · · · =

= Id +
n∑
i=1

An−i
x′i
◦ ri−1 ◦ (An−i

xi
)−1, where ri = Id− (Ax′i

)−1 ◦Axi .

First we estimate ‖ri‖ using boundedness of ‖(Ax′i
)−1‖ and Lemma 5.1 (b):

(5.9)
‖ri‖ = ‖Id− (Ax′i

)−1 ◦Axi‖ ≤ ‖(Ax′i
)−1‖ · ‖Ax′i

−Axi‖

≤ C3 · dist(xi, x
′
i)
β ≤ C3 (νn(x) µ̂n−i(xi))

β .

Next we estimate ‖An−i
x′i
‖ · ‖(An−i

xi
)−1‖. Using Hölder continuity of A we obtain

‖Ax′k
‖

‖Axk‖
=
‖Axk + Ax′k

−Axk‖
‖Axk‖

≤ 1 +
‖Ax′k

−Axk‖
‖Axk‖

≤ 1 + C4 dist(xk, x
′
k)
β.

Hence we obtain using (5.1) that

‖An−i
x′i
‖ ‖(An−i

xi
)−1‖ ≤

n−1∏
k=i

‖Ax′k
‖ ·

n−1∏
k=i

‖(Axk)−1‖ ≤
n−1∏
k=i

‖Axk‖ ‖(Axk)−1‖ ·
n−1∏
k=i

‖Ax′k
‖

‖Axk‖

≤
n−1∏
k=i

θ ν̂(xk)
−β ·

n−1∏
k=i

(
1 + C4 (dist(xk, x

′
k))

β
)
≤

≤ θn−iν̂n−i(xi)
−β ·

n−1∏
k=i

(
1 + C4 (νn(x)µ̂n−k(xk))

β
)
≤ C5 θ

n−iν̂n−i(xi)
−β,

as the product is uniformly bounded in n and i since ν, µ̂ < 1. In particular,

(5.10) ‖An
x′‖ · ‖(An

x)−1‖ ≤ C5 θ
n ν̂n(x)−β.
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Now using (5.8) and (5.9) we conclude that

‖An
x′ ◦ (An

x)−1 − Id ‖ ≤
n∑
i=1

‖An−i
x′i
◦ ri−1 ◦ (An−i

xi
)−1‖ ≤

≤
n∑
i=1

C3 νn(x)βµ̂n−i+1(xi−1)
β · C5 θ

n−iν̂n−i(xi)
−β ≤

≤ C6 νn(x)β
n∑
i=1

θn−i (ν̂n−i(xi)
−1µ̂n−i(xi))

β ≤ C7 νn(x)β

since θ < 1 and µ̂ < ν̂. This completes the proof of Lemma 5.2. �

Lemma 5.3. There exists C8 such that if w ∈ W s
r (z) then for any k ∈ N

‖Ak
w ‖ ≤ C8‖Ak

z ‖ and ‖(Ak
w)−1‖ ≤ C8‖(Ak

z)
−1‖.

Proof. From (H3) we have that Ak
w = Hfkz,fkw ◦ Ak

z ◦ H−1z,w and obtain the first in-

equality since the norms of Hz,w and H−1z,w are bounded uniformly in z ∈ M and
w ∈ W s

r (z) by compactness. The second one is established similarly. �

Lemma 5.4. ‖An
x′‖ · ‖(An

x)−1‖ ≤ C9θ
nνn(x)−β and ‖(An

y′)
−1 ◦An

y − Id‖ ≤ C11θ
n.

Proof. First we claim that ‖Ai
x′‖ · ‖(Ai

x)
−1‖ ≤ C5θ

iνi(x)−β for 0 ≤ i ≤ n. This is
obtained in the same way as (5.10) using the first inequality in (5.1) instead of the
second one. Applying the previous lemma we also obtain

‖(Ai
y′)
−1‖ ≤ C8‖(Ak

x′)
−1‖ and ‖Ai

y‖ ≤ C8‖Ai
x‖

for all i ∈ N. We conclude that for each 0 ≤ i ≤ n,

‖(Ai
y′)
−1‖ · ‖Ai

y ‖ ≤ C9 θ
i νi(x)−β

giving, in particular, the first inequality in the lemma.
Similarly to (5.8) and (5.9) we obtain using Lemma 5.1 (b) that

(An
y′)
−1 ◦An

y = Id +
n−1∑
i=0

(Ai
y′)
−1 ◦ ri ◦Ai

y, where ri = Id− (Ay′i
)−1 ◦Ayi

satisfy ‖ri‖ = ‖(Ay′i
)−1 ◦Ayi − Id‖ ≤ C3 dist(yi, y

′
i)
β ≤MC3νn(x)βγn−i(xi)

−β.

Using that ν(x)β(γ(x)βθ)−1 < 1 by (5.1), we conclude that

‖(An
y′)
−1 ◦An

y − Id‖ ≤
n−1∑
i=0

‖(Ai
y′)
−1‖ · ‖Ai

y‖ · ‖ri‖ ≤

≤MC3C9

n−1∑
i=0

θiνi(x)−βνn(x)βγn−i(xi)
−β ≤ C10θ

n

n−1∑
i=0

θi−nνn−i(xi)
βγn−i(xi)

−β ≤ C11θ
n.

�
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5.2. Proof of Proposition 3.6. Let ρ1 < · · · < ρl be the distinct moduli of the
eigenvalues of the matrix A. Let Rd = E1 ⊕ · · · ⊕ El be the corresponding splitting
into direct sums of the generalized eigenspaces, and let Ai = A|Ei

. Then for any
ε > 0 there exists Kε such that

K−1ε (ρi − ε)n ≤ ‖An
i v‖ ≤ Kε(ρi + ε)n for any unit vector v ∈ Ei.

Then any sufficiently C0 small Hölder continuous perturbation B of A has a Hölder
continuous invariant splitting with similar estimates for the corresponding restrictions
Bi. It follows that Bi’s are close to conformal and satisfy the weaker fiber bunching
condition (3.2). Hence by Remark 3.3 Bi’s have standard holonomies, which combine
into the standard holonomy for B. We note, however, that the Hölder exponent of
the splitting and of the resulting holonomy may be lower than that of B.

5.3. Proof of Theorem 4.2. Let HA be the standard holonomies for A, which exist
by the assumption. Since B is uniformly quasiconformal, it satisfies the weaker fiber
bunching condition (3.2). Thus, by Remark 3.3, B has standard holonomies, which
we denote by HB.

Our main goal is to show that C intertwines the holonomies of A and B on a set
of full measure. More precisely, for the stable holonomies we will show that there
exists a subset Y of M with m(Y ) = 1 such that (4.2) holds for all x, y ∈ Y such
that y ∈ W s(x). A similar statement holds for the unstable holonomies.

By the assumption, there is a set of full measure Y1 ⊂M such that for all x ∈ Y1,
Ax = C(fx)◦Bx◦C(x)−1. Since the function C is m-measurable, by Lusin’s theorem
there exists a compact set S ⊂ M with m(S) > 1/2 such that C is uniformly
continuous on S. It follows that ‖C‖ and ‖C−1‖ are bounded on S. Let Y2 be the set
of points inM for which the frequency of visiting S equals m(S) > 1/2. By Birkhoff
ergodic theorem, m(Y2) = 1.

Let Y = Y1 ∩ Y2. Clearly, m(Y ) = 1 and we can assume that the sets Y1, Y2, Y are
f -invariant. Suppose that x, y ∈ Y and y ∈ W s

R(x) for some fixed radius R. Then

(5.11)

(An
y )−1 ◦An

x =
(
C(fny) ◦Bn

y ◦ C(y)−1
)−1 ◦ C(fnx) ◦Bn

x ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦ C(fny)−1 ◦ C(fnx) ◦Bn

x ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦ (Id + ∆n) ◦Bn

v ◦ C(x)−1 =

= C(y) ◦ (Bn
y )−1 ◦Bn

x ◦ C(x)−1 + C(y) ◦ (Bn
y )−1 ◦∆n ◦Bn

x ◦ C(x)−1.

We will show that the second term in the last line tends to 0 along a subsequence.
First we estimate the norm of ∆n.

(5.12) ‖∆n‖ = ‖C(fny)−1 ◦ C(fnx)− Id‖ ≤ ‖C(fny)−1‖ · ‖C(fnx)− C(fny)‖.

Since x, y ∈ Y2 ⊂ Y , there exists a sequence {ni} such that fnix, fniy ∈ S for all
i. Since y ∈ W s

R(x), dist(fnix, fniy) → 0 and hence ‖C(fnix) − C(fniy)‖ → 0 by
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uniform continuity of C on S. As ‖C−1‖ is uniformly bounded on Y , (5.12) implies

‖∆ni
‖ → 0 as i→∞

Using Lemma 5.3 and quasiconformality of B we also obtain that

(5.13) ‖(Bn
y )−1‖ · ‖Bn

x‖ ≤ ‖(Bn
y )−1‖ · C8‖Bn

y‖ ≤ C8K(B)

for all x ∈M and y ∈ W s
R(x). Now it follows that

‖C(y) ◦ (Bni
y )−1 ◦∆ni

◦Bni
x ◦ C(x)−1‖ → 0 as i→∞.

Since the holonomies HA,s and HB,s are standard, i.e. satisfy (3.1), passing to the
limit in (5.11) along the sequence ni yields

(5.14) HA,s
x,y = C(y) ◦HB,s

x,y ◦ C(x)−1 for all x, y ∈ Y such that y ∈ W s
R(x).

We conclude that C intertwines the holonomies HA and HB on a set of full measure.
It follows that C(y) = HA,s

x,y ◦C(x) ◦ (HB,s
x,y )−1 and, by continuity of holonomies, we

conclude that C is so called essentially s-continuous in the sense of [ASV]. Similarly,
C is essentially u-continuous. By the assumption on the base system (f is center
bunched and accessible), [ASV, Theorem E] implies that C coincides on a set of full
measure with a continuous function C̃. It follows that C̃ is a conjugacy between A

and B and, by (5.14), intertwines HA and HB.

5.4. Proof of Proposition 4.5. As in the proof of Theorem 4.2 we obtain (5.11).
Since C is β-Hölder, for any x ∈M and y ∈ W s

R(x)

‖∆n‖ ≤ ‖C(fny)−1‖ · ‖C(fnx)− C(fny)‖
≤ K1dist(fnx, fny)β ≤ K2 νn(x)βdist(x, y)β.

Using fiber bunching of B we choose θ < 1 as in (5.1), and by Lemma 5.3 we obtain

‖(Bn
y )−1 ◦∆n ◦Bn

x‖ ≤ ‖(Bn
y )−1‖ · ‖Bn

x‖ · ‖∆n‖
≤ C8‖(Bn

x)−1‖ · ‖Bn
x‖ ·K2 νn(x)βdist(x, y)β ≤ K3 θ

n dist(x, y)β.

It follows that the second term in last line of (5.11) tends to 0 as n → ∞ for every
x ∈M and y ∈ W s

R(x). Passing to the limit in (5.11) we conclude that C intertwines
the standard holonomies of A and B.

5.5. Proof of Proposition 4.4. We use the construction described in [KN, Theorem
5.5.3] which was based on an example by R. de la Llave [dlL]. Let f be an Anosov
automorphism of T2 with eigenvalues λ > 1 and λ−1. We fix a number r, where
β′ < r < 1, and set µ = λr. We consider smooth GL(2,R)-valued cocycles over f

B =

[
µ 0
0 1

]
and A(x) =

[
µ φ(x)
0 1

]
Since µ < λ, the cocycle B is fiber bunched with β = 1. We take φ sufficiently
small, so that A is sufficiently C0 close to B and hence it is also fiber bunched with
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β = 1. Hence both A and B have standard stable and unstable holonomies which are
Lipschitz along the leaves of the corresponding foliation, i.e. satisfy (H4) with β = 1.

By Theorem 5.5.3 in [KN], for any ε > 0 there exists φ(x) such that A and B are
cohomologous via a Cr−ε conjugacy C, but not by a Cr+ε conjugacy. We take ε such
that β′ < r−ε and r + ε < 1 so that C is β′ Hölder, but there is no Lipchitz conjugacy
between A and B. Then no conjugacy C̃ can intertwine the standard holonomies of A
and B. Indeed, otherwise C̃ would be Lipschitz along the stable and unstable leaves
of f , since so are the standard holonomies, and hence would be Lipschitz on T2.

In this example, the low regularity of C is due to the low regularity of the unique
invariant expanding sub-bundle V for A, which has to be mapped by C to the first
coordinate line. In fact, C and V are smooth along the stable leaves of f , and C
intertwines the standard stable holonomies of A and B, but not the unstable ones.

5.6. Proof of Theorem 4.7. In the proof we will use x in place of x0 to simplify
notations. We define C(x) = Cx, and then for every y ∈M we define

C(y) = HA,P
x,y ◦ C(x) ◦ (HB,P

x,y )−1,

where Px,y is an su-path from x to y. Note that C 7→ HA,P
x,y ◦C◦(HB,P

x,y )−1 defines a map
from the group GL(V ) of operators on the fiber at x to the one on the fiber at y, and
that a concatenation of paths corresponds to the composition of the maps. Therefore,
it is easy to check that the assumption (i) implies that C(y) is independent of the
su-path P and hence is well-defined. In particular, it follows that for any y, z ∈ M
and any su-path Py,z from y to z

(5.15) C(z) = HA,P
y,z ◦ C(y) ◦ (HB,P

y,z )−1.

Hence continuity of holonomies implies that the function C is continuous along the
stable and unstable foliations of f . Since f is accessible, this implies continuity of C
on M.

It remains to show that C satisfies the cohomological equation. Consider any
y ∈M and fix an su-path P = Px,y from x to y. Then fP is an su-path from fx to
fy. By property (H3) of holonomies we obtain using (5.15) with z = fy and y = fx
that

C(fy) = HA,fP
fx,fy ◦ C(fx) ◦ (HB,fP

fx,fy)
−1 =

= Ay ◦ HA,P
x,y ◦A−1x ◦ C(fx) ◦Bx ◦ (HB,P

x,y )−1 ◦B−1y .

By assumption (ii) and (5.15),

C(fy) = Ay ◦ HA,P
x,y ◦ C(x) ◦ (HB,P

x,y )−1 ◦B−1y = Ay ◦ C(y) ◦B−1y ,

and we conclude that C is a conjugacy.
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