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ABSTRACT. In this paper, we study Hölder-continuous linear cocycles over

transitive Anosov diffeomorphisms. Under various conditions of relative pin-

ching we establish properties including existence and continuity of measur-

able invariant subbundles and conformal structures. We use these results to

obtain criteria for cocycles to be isometric or conformal in terms of their pe-

riodic data. We show that if the return maps at the periodic points are, in a

sense, conformal or isometric then so is the cocycle itself with respect to a

Hölder-continuous Riemannian metric.

1. INTRODUCTION

Linear cocycles over a dynamical system f : M →M appear naturally in var-

ious areas of dynamics and applications. Examples include derivative cocycles

as well as stochastic processes and random matrices. A linear cocycle over f

is an automorphism F of a vector bundle E over M that projects to f . In the

case of a trivial vector bundle M ×R
d , any linear cocycle can be identified with

a matrix-valued function A : M →GL(d ,R) via F (x, v) = ( f (x), A(x)v).

In this paper we take f to be a transitive Anosov diffeomorphism of a com-

pact manifold M . However, our techniques can be applied to hyperbolic sets

and some symbolic dynamical systems. We consider a finite-dimensional vec-

tor bundle P : E →M and a Hölder-continuous linear cocycle F : E → E over f

(see Section 3 for definitions). One of the primary examples of such cocycles

comes from the differential D f or its restriction to a Hölder-continuous invari-

ant subbundle of T M . Such cocycles play a crucial role in smooth dynamics of

hyperbolic systems.

We establish several properties of Hölder-continuous linear cocycles under

various conditions of relative pinching. These properties, which include exis-

tence and continuity of measurable invariant subbundles and conformal struc-

tures, are of independent interest and we formulate them in the next section.

As the main applications we obtain conditions on F at the periodic points of f
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which guarantee that the cocycle is conformal or isometric. Our first theorem

establishes a general criterion, and Theorem 1.3 below gives a stronger result

specific to bundles with 2-dimensional fibers. We note that the assumptions of

the theorems are independent of the choice of a continuous Riemannian met-

ric on E .

THEOREM 1.1. Let F : E → E be a Hölder-continuous linear cocycle over a transi-

tive C 2 Anosov diffeomorphism f . Suppose that there exists a constant Cper such

that for each periodic point p, the quasiconformal distortion satisfies

KF (p,n) := ‖F n
p ‖ ·

∥

∥(F n
p )−1

∥

∥≤Cper

whenever f n p = p. Then, F is conformal with respect to a Hölder-continuous

Riemannian metric on E . Moreover, if there exists a constant C ′
per such that for

each periodic point p

max
{

‖F n
p ‖,

∥

∥(F n
p )−1

∥

∥

}

≤C ′
per

whenever f n p = p, then F is an isometry with respect to a Hölder-continuous

Riemannian metric on E .

For a cocycle on a trivial bundle M ×R
d given by A : M → GL(d ,R), the

theorem implies cohomology to a cocycle with values in the conformal or or-

thogonal subgroup. This means that there exists a Hölder-continuous function

C : M → GL(d ,R) such that B(x) = C−1( f (x))A(x)C (x) is in the corresponding

subgroup for all x ∈M . The matrix C (x) can be obtained as the unique positive

square root of the symmetric positive-definite matrix that defines the Riemann-

ian metric at x.

Continuous reduction to orthogonal or conformal cocycles is useful, in par-

ticular, since cocycles with values in compact groups are relatively well under-

stood. Some definitive results on cohomology of such cocycles were obtained

in [15, 17, 18, 21]. These results can be easily extended to cocycles with values

in the conformal group. However, the question of existence of such a reduction

is highly nontrivial. Even under the much stronger assumption that ‖F n
x ‖ are

uniformly bounded for all x ∈M and n ∈Z, the question remained open since

it was formulated in [21]. Under assumptions on periodic data only, no reduc-

tion was known until recent progress in [6] even for the simplest case when

F n
p = Id for all periodic points.

Theorem 1.1 can be compared to recent results by de la Llave and Windsor

[14, Theorems 6.3, 6.8] who obtained similar conclusions for the cocycle given

by the restriction of the derivative of an Anosov map to a Hölder-continuous

invariant subbundle of T M . The main difference is that our theorem does not

have any extra assumptions on growth or pinching of the cocycle which are

present in [14] and in most other results in the theory of noncommutative co-

cycles.

Conformality arises naturally in connection with smooth rigidity for Anosov

systems [22, 9, 24, 11, 20, 7], in particular, some of our results are motivated

by the study of derivative cocycles in [8]. It is well known that a C 1 small

perturbation g of an Anosov diffeomorphism f is conjugate to f by a Hölder
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homeomorphism h. If h is C 1 then D f n
p and Dg n

hp
are conjugate by Dhp for

any periodic point p. Therefore the conjugacy of D f n
p and Dg n

hp
gives a nec-

essary condition for h to be C 1. This condition is sufficient for systems with

one-dimensional stable and unstable distributions, but not in higher dimen-

sions [11]. The question of sufficiency of this condition is often referred to as

local rigidity. Knowing that D f and Dg are conformal on the stable/unstable

distribution, or on a smaller invariant distribution, helps bootstrap regularity

of h along the corresponding foliation. Thus, given certain conformality of f

one would like to obtain similar conformality of g . This motivates the question

whether a cocycle is conformal given that the return maps F n
p at the periodic

points are conjugate to conformal maps. This question is also natural from

the point of view of cohomology of cocycles. The following proposition shows,

however, that the answer is negative in dimension higher than two.

PROPOSITION 1.2. Let f : M →M be an Anosov diffeomorphism and E =M ×
R

d , d ≥ 3. For any ǫ> 0, there exists a Lipschitz continuous linear cocycle F : E →
E , which is ǫ-close to the identity, such that for all periodic points p ∈ M the

return maps F n
p : Ep → Ep are conjugate to orthogonal maps, but F is not con-

formal with respect to any continuous Riemannian metric on E .

We note that, for a given p, having a uniform bound on ‖F n
p ‖ · ‖(F n

p )−1‖ for

all periods n is equivalent to each of the following three statements: F n
p is di-

agonalizable over C with its eigenvalues equal in modulus; F n
p is conjugate to

a conformal linear map; there exists an inner product on Ep with respect to

which F n
p is conformal. In fact, the periodic assumption in the first part of The-

orem 1.1 is equivalent to having such inner products for all periodic points uni-

formly bounded. In the context of local rigidity, additional assumptions were

made to ensure such boundedness, for example that all return maps F n
p are

scalar multiples of the identity [11, 7, 12]. Our next result for two-dimensional

bundles does not require any extra assumptions. It can be applied, in particu-

lar, to the study of local rigidity without restrictive assumptions on the structure

of D f n
p .

THEOREM 1.3. Suppose F : E → E is a Hölder-continuous linear cocycle over a

transitive C 2 Anosov diffeomorphism f and the fibers of E are two-dimensional.

If for each periodic point p ∈M , the return map F n
p : Ep → Ep is diagonalizable

over C and its eigenvalues are equal in modulus, then F is conformal with re-

spect to a Hölder-continuous Riemannian metric on E .

Moreover, if for each periodic point p ∈ M , the return map F n
p : Ep → Ep is

diagonalizable over C and its eigenvalues are of modulus 1, then F is isometric

with respect to a Hölder-continuous Riemannian metric on E .

The proof of this result overcomes essential difficulties and substantially dif-

fers from the proof of Theorem 1.1. We use Zimmer’s Amenable Reduction The-

orem to recast the problem as one of continuity of measurable invariant con-

formal structures and of measurable invariant subbundles. We note that such
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results on continuity of measurable invariant objects are rare beyond the case

of group-valued functions with compact or abelian range.

In the next section we formulate our main technical results. In Section 3,

we briefly introduce the main notions used in this paper. The proofs of all the

results are given in Section 4.

2. PROPERTIES OF COCYCLES

In this section we formulate our main technical results, which are of inde-

pendent interest. We consider various conditions of relative pinching and es-

tablish properties of cocycles including existence and continuity of measurable

invariant subbundles and conformal structures.

STANDING ASSUMPTIONS. In the statements below, f is a transitive C 2 Anosov

diffeomorphism of a compact manifold M , P : E → M is a finite-dimensional

Hölder-continuous vector bundle over M , and F : E → E is a Hölder-continuous

linear cocycle over f with Hölder exponent β (see Section 3 for definitions).

In the first proposition we obtain uniform relative pinching of the cocycle

from asymptotic data at the periodic points. We denote by λ+(F, p) and λ−(F, p)

the largest and smallest Lyapunov exponents of F at p, and by λ+(F,µ) and

λ−(F,µ) the largest and smallest Lyapunov exponents of an ergodic invariant

measure µ (see equations (3.3) and (3.4)).

PROPOSITION 2.1. Suppose there exists γ ≥ 0 such that λ+(F, p)−λ−(F, p) ≤ γ

for every f -periodic point p ∈ M . Then, λ+(F,µ)−λ−(F,µ) ≤ γ for any ergodic

invariant measure µ for f .

Moreover, for any ǫ> 0 there exists Cǫ such that

(2.1) KF (x,n) := ‖F n
x ‖ ·

∥

∥(F n
x )−1

∥

∥≤Cǫe(γ+ǫ)|n|

for all x ∈M and n ∈Z.

We can apply this proposition to the case when at each periodic point p

there is only one Lyapunov exponent, i.e., all eigenvalues of F n
p : Ep → Ep are

of the same modulus. In this case we see that for any ergodic invariant mea-

sure for f , the cocycle F has only one Lyapunov exponent and (2.1) is satisfied

with γ= 0.

In the proposition below, κ is the exponent in the Anosov condition (3.1)

for f , and β is a Hölder exponent for F in (3.2). We show that under suffi-

cient pinching, the iterates of the cocycle at the points on the same local sta-

ble manifold W s
loc

remain close. The same holds for the inverse map and the

points on the same local unstable manifold W u
loc

. To consider the compositions

(F n
x )−1 ◦F n

y and (F−n
x )−1 ◦F−n

y we identify Ex and Ey for y close to x using local

coordinates. This identification is Hölder.

PROPOSITION 2.2. Suppose that for some 0 < ǫ < (κβ)/3, there exists Cǫ such

that

KF (x,n) ≤Cǫeǫ|n| for all x ∈M and n ∈Z.
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Then, there exist C > 0 and δ0 > 0 such that the following statements hold for

any δ< δ0 and n ∈N.

(a) For any x ∈M and y ∈W s
loc

(x) with dist(x, y) ≤ δ, we have
∥

∥(F n
x )−1 ◦F n

y − Id
∥

∥≤Cδβ.

(b) For any x ∈M and y ∈W u
loc

(x) with dist(x, y) ≤ δ, we have
∥

∥(F−n
x )−1 ◦F−n

y − Id
∥

∥≤Cδβ.

Next we establish continuity of measurable invariant conformal structures

and subbundles. In our statements, we consider ergodic f -invariant measures

on M with full support and local product structure. Examples include the mea-

sure of maximal entropy, and more generally Gibbs (equilibrium) measures of

Hölder-continuous potentials. A measure µ has local product structure if it is

locally equivalent to the product of its conditional measures on the local stable

and unstable manifolds.

PROPOSITION 2.3. Suppose that F satisfies the conclusion of Proposition 2.2,

and µ is an ergodic f -invariant measure on M with full support and local prod-

uct structure. Then any F -invariant measurable conformal structure on E de-

fined µ almost everywhere is Hölder-continuous with exponent β.

It is not known in general whether any measurable invariant conformal struc-

ture is continuous. Some results were established when the conformal struc-

ture is bounded [20] or belongs to Lp for sufficiently large p [13].

Combining Propositions 2.1, 2.2, and 2.3 we see that if at each periodic point

there is only one Lyapunov exponent, or if the largest and the smallest expo-

nents are sufficiently close, then any F -invariant measurable conformal struc-

ture on E is Hölder-continuous.

We recall that a cocycle F is said to be uniformly quasiconformal if the qua-

siconformal distortion KF (x,n) is uniformly bounded for all x ∈ M and n ∈ Z,

see Section 3.5 for details. In the next proposition we apply observations made

by D. Sullivan [22] and P. Tukia [23] for quasiconformal group actions to our

case. We state this result in greater generality than our standing assumptions.

We note that the converse statement is also true.

PROPOSITION 2.4. Let f be a diffeomorphism of a compact manifold M and let

F : E → E be a continuous linear cocycle over f . If F is uniformly quasiconfor-

mal, then it preserves a bounded measurable conformal structure τ on E .

Under our standing assumptions, Proposition 2.3 implies that τ is Hölder-

continuous. We can normalize it by a Hölder-continuous function on M to

obtain a Riemannian metric with respect to which F is conformal, which yields

the following corollary.

COROLLARY 2.5. If F is uniformly quasiconformal then it preserves a Hölder-

continuous conformal structure on E , equivalently, F is conformal with respect

to a Hölder-continuous Riemannian metric on E .
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The above corollary, together with Propositions 2.1 and 2.2, enable us to

prove Theorem 1.1.

Now we address continuity of measurable invariant subbundles. Note that

the assumptions in the next proposition are stronger than those in Proposition

2.3. However, they are satisfied if at each periodic point there is only one Lya-

punov exponent.

PROPOSITION 2.6. Suppose that for any ǫ> 0, there exists Cǫ such that

KF (x,n) ≤Cǫeǫ|n| for all x ∈M and n ∈Z.

Then, any measurable F -invariant subbundle in E defined almost everywhere

with respect to a measure with local product structure and full support is Hölder-

continuous.

Combining Propositions 2.3 and 2.6 with Zimmer’s Amenable Reduction The-

orem we obtain the following description of cocycles with slowly growing qua-

siconformal distortion. We use it in the proof of Theorem 1.3.

PROPOSITION 2.7. Suppose that for any ǫ> 0, there exists Cǫ such that

KF (x,n) ≤Cǫeǫ|n| for all x ∈M and n ∈Z.

Then, either F preserves a Hölder-continuous conformal structure on E , or F pre-

serves a Hölder-continuous proper nontrivial subbundle E
′ of E and a Hölder-

continuous conformal structure on E
′.

Note that the alternatives are not mutually exclusive. If E
′ is one-dimensional

then having a conformal structure on it becomes trivial.

3. PRELIMINARIES

In this section, we briefly introduce the main notions used in this paper.

3.1. Anosov diffeomorphisms. Let f be a diffeomorphism of a compact Rie-

mannian manifold M . It is said to be Anosov if there exists a decomposition of

the tangent bundle T M into two invariant continuous subbundles E s and E u ,

and there exists constants C > 0, κ> 0 such that for all n ∈N,

(3.1) Ce−κn‖v‖ ≥
{

‖d f n(v)‖ for all v ∈ E s ,

‖d f −n(v)‖ for all v ∈ E u .

The distributions E s and E u are called stable and unstable. These distributions

are tangential to the foliations W s and W u respectively. The local stable and

unstable leaves W s
loc

(x) and W u
loc

(x) are the connected components of x in the

intersection of W s(x) and W u(x) with a small ball around x.
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3.2. Hölder-continuous vector bundles. Let M be a compact smooth mani-

fold. We consider a finite-dimensional Hölder-continuous vector bundle P : E →
M over M . By this we mean that there exists an open cover {Ui } of M and

a system of local coordinates φi : P−1(Ui ) → Ui ×R
d such that the coordinate

changes

φ j ◦φ−1
i : (Ui ∩U j )×R

d → (Ui ∩U j )×R
d

(x, v) 7→
(

x,Lx (v)
)

are homeomorphisms with linear automorphisms Lx depending in a Hölder-

continuous way on x. That is, there exist C , β> 0 such that

‖Lx −Ly‖ ≤C dist(x, y)β

for all i , j and all x, y ∈Ui ∩U j .

We will sometimes identify the fibers at nearby points using the local coordi-

nates. We equip E with a background Hölder-continuous Riemannian metric,

i.e., a family of inner products on the fibers Ex depending Hölder-continuously

on x.

3.3. Linear cocycles and Lyapunov exponents. Let f be a diffeomorphism of a

compact smooth manifold M and P : E → M be a finite-dimensional Hölder-

continuous vector bundle over M . A Hölder-continuous linear cocycle over f

is a homeomorphism F : E → E such that P ◦F = f ◦P and Fx : Ex → E f (x) is a

linear isomorphism which depends Hölder-continuously on x, i.e., there exist

C , β> 0 such that for all nearby x, y ∈M ,

(3.2) ‖Fx −Fy‖+
∥

∥F−1
x −F−1

y

∥

∥≤C dist(x, y)β.

Here Fx and Fy are viewed as matrices using local coordinates. Note that the

second term on the left is not necessary for a continuous F . Indeed, F−1
x is then

automatically continuous in x and bounded on M , so we can estimate
∥

∥F−1
x −F−1

y

∥

∥=
∥

∥F−1
x (Fy −Fx )F−1

y

∥

∥≤C ′‖Fx −Fy‖.

We consider the standard notion of Lyapunov exponents for such a cocycle

F (see [3, Section 2.3] for more details). We emphasize that the Lyapunov ex-

ponents of F are defined for vectors in the linear spaces Ex . Note that for any

measure µ on M the vector bundle E is trivial on a set of full measure. By

Oseledets’s Multiplicative Ergodic Theorem the Lyapunov exponents of F , as

well as Lyapunov decomposition of E , are defined almost everywhere for every

ergodic f -invariant measure µ on M . In particular, they are defined at every

periodic point. We are primarily interested in the largest and the smallest Lya-

punov exponents of µ which can be defined, respectively, as follows:

λ+(F,µ) =λ+(F, x) = lim
n→∞

1

n
log‖F n

x ‖ for µ-almost every x ∈M ,(3.3)

λ−(F,µ) =λ−(F, x) = lim
n→∞

1

n
log

∥

∥(F n
x )−1

∥

∥

−1
for µ-almost every x ∈M ,(3.4)

where F n
x = F f n−1x ◦ · · · ◦F f (x) ◦Fx .
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3.4. Conformal structures. A conformal structure on R
d , d ≥ 2, is a class of

proportional inner products. The space C
d of conformal structures on R

d iden-

tifies with the space of real symmetric positive-definite d ×d matrices with de-

terminant 1, which is isomorphic to SL(d ,R)/SO(d ,R). The group GL(d ,R) acts

transitively on C
d via

X [C ] =
(

det X T X
)−1/d

X T C X , where X ∈GL(d ,R) and C ∈C
d .

It is known that C
d becomes a Riemannian symmetric space of nonpositive

curvature when equipped with a certain GL(d ,R)-invariant metric. The dis-

tance to the identity in this metric is given by

dist(Id, C ) =
(
p

d/2
)(

(logλ1)2 +·· ·+ (logλd )2
)1/2

,

where λ1, . . . ,λd are the eigenvalues of C (see [23, p.327] for more details and

[16, p.27] for the formula). The distance between two structures C1 and C2 can

be computed as dist(C1,C2) = dist(Id, X [C2]), where X [C1] = Id.

It is easy to check the following relation between this metric and the operator

norm

(3.5)
(
p

d/8
)

log
(

‖C‖ ·‖C−1‖
)

≤ dist(Id, C ) ≤ (d/2)max
{

log‖C‖, log‖C−1‖
}

.

We also note that ‖C−1‖ ≤ ‖C‖d−1. Thus, a subset of C
d is bounded with re-

spect to this distance if and only if it is bounded with respect to the opera-

tor norm. We also note that on any bounded subset of C
d this distance is bi-

Lipschitz equivalent to the distance induced by the operator norm on matrices.

Let E be a Hölder-continuous vector bundle over a compact manifold M . A

conformal structure on Ex is a class of proportional inner products on Ex . Us-

ing the background Riemannian metric on E , we can identify an inner product

with a symmetric linear operator with determinant 1 as before. For each x ∈M ,

we denote the space of conformal structures on Ex by C (x). Thus we obtain a

bundle C over M whose fiber over x is C (x). We equip the fibers of C with

the Riemannian metric defined above. A continuous (Hölder-continuous, mea-

surable) section of C is called a continuous (Hölder-continuous, measurable)

conformal structure on E . A measurable conformal structure τ on E is said to

be bounded if the distance between τ(x) and τ0(x) is uniformly bounded on M

for a continuous conformal structure τ0 on E .

Now, let f be a diffeomorphism of M and F : E → E be a linear cocycle over

f . Then F induces a natural pullback action F∗ on conformal structures as fol-

lows. For a conformal structure τ( f (x)) ∈C ( f (x)), viewed as the linear operator

on E f (x), F∗
x (τ( f (x))) ∈C (x) is given by

(3.6) F∗
x

(

τ( f (x))
)

=
(

det
(

(Fx )T ◦Fx

))−1/n
(Fx )T ◦τ( f (x))◦Fx ,

where (Fx )T : E f (x) → Ex denotes the conjugate operator of Fx . We note that

F∗
x : C f (x) →Cx is an isometry between the fibers C ( f (x)) and C (x).

We say that a conformal structure τ is F -invariant if F∗(τ) = τ.
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3.5. Uniform quasiconformality. Let f be a diffeomorphism of a compact man-

ifold M and F : E → E be a linear cocycle over f . For x ∈ M and n ∈ Z the

quasiconformal distortion of F is defined by

KF (x,n) :=
max

{

‖F n
x (v)‖ : v ∈ Ex , ‖v‖ = 1

}

min
{

‖F n
x (v)‖ : v ∈ Ex , ‖v‖ = 1

} = ‖F n
x ‖ ·

∥

∥(F n
x )−1

∥

∥.

We say that F is uniformly quasiconformal if KF (x,n) is uniformly bounded for

all x ∈ M and n ∈ Z. If KF (x,n) = 1 for all x and n, then F is said to be confor-

mal.

Clearly, F is conformal with respect to a Riemannian metric on E if and only

if it preserves the conformal structure associated with this metric. We note that

the notion of uniform quasiconformality does not depend on the choice of a

continuous metric. So if F preserves a continuous conformal structure on E

then F is uniformly quasiconformal on E with respect to any continuous met-

ric on E . Corollary 2.5 shows that the converse is also true if f is a transitive

Anosov diffeomorphism.

4. PROOFS

4.1. Proof of Proposition 2.1. To show that λ+(µ)−λ−(µ) ≤ γ for any ergodic

invariant measure µ for f , we apply the following theorem.

THEOREM 4.1 ([6, Theorem 1.4]). Let f be a homeomorphism of a compact met-

ric space X satisfying the closing property, let F be a Hölder-continuous GL(d ,R)

cocycle over f , and let µ be an ergodic invariant measure for f . Then the Lya-

punov exponents λ1 ≤ ·· · ≤ λd (listed with multiplicities) of F with respect to µ

can be approximated by the Lyapunov exponents of F at periodic points. More

precisely, for any ǫ> 0 there exists a periodic point p ∈ X for which the Lyapunov

exponents λ
(p)
1 ≤ ·· · ≤λ

(p)

d
of F satisfy |λi −λ

(p)

i
| < ǫ for i = 1, . . . ,d.

As stated in the remark after this theorem, it holds for any Hölder-continuous

linear cocycle F . Also, a transitive Anosov diffeomorphism satisfies the closing

property. Thus we can apply the theorem in our context and immediately ob-

tain the desired result for µ.

Now we prove the estimate for the quasiconformal distortion KF (x,n) using

the following result.

PROPOSITION 4.2 ([19, Proposition 3.4]). Let f : M →M be a continuous map

of a compact metric space. Let an : M → R, n ≥ 0 be a sequence of continuous

functions such that

(4.1) an+k (x) ≤ an

(

f k (x)
)

+ak (x) for every x ∈M , n, k ≥ 0,

and such that there is a sequence of continuous functions bn , n ≥ 0, satisfying

(4.2) an(x) ≤ an

(

f k (x)
)

+ak (x)+bk

(

f n(x)
)

for every x ∈M , n, k ≥ 0.

If infn

(

1
n

∫

M
an dµ

)

< 0 for every ergodic f -invariant measure, then there is N ≥
0 such that aN (x) < 0 for every x ∈M .
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To simplify the notations, we write K (x,n) for KF (x,n). For a given ǫ> 0 we

apply Proposition 4.2 to

an(x) = logK (x,n)− (γ+ǫ)n and bn(x) = logK (x,n)+ (γ+ǫ)n.

It is easy to see from the definition of the quasiconformal distortion that

K (x,n +k) ≤ K (x,k) ·K
(

f k (x),n
)

and K (x,n +k) ≥ K (x,n) ·
[

K
(

f n(x),k
)]−1

for every x ∈M and n,k ≥ 0. It follows that an+k (x) ≤ an( f k (x))+ak (x), i.e., the

functions an satisfy (4.1), and an+k (x) ≥ an(x)−bk ( f n(x)). Hence

an(x) ≤ an+k (x)+bk

(

f n(x)
)

≤ an

(

f k (x)
)

+ak (x)+bk

(

f n(x)
)

and we obtain (4.2).

Let µ be an ergodic f -invariant measure. We note that since an satisfy (4.1),

the Subadditive Ergodic Theorem implies that

inf
n

1

n

∫

M

an dµ= lim
n→∞

1

n
an(x) for µ almost all x ∈M .

Using the definitions of K (x,n), λ+(F,µ) and λ−(F,µ), we obtain that for µ al-

most all x

lim
n→∞

logK (x,n)

n
= lim

n→∞
1

n
log(‖F n

x ‖ ·‖(F n
x )−1‖)

= lim
n→∞

1

n
log‖F n

x ‖− lim
n→∞

1

n
log‖(F n

x )−1‖−1

=λ+(F,µ)−λ−(F,µ)

≤ γ.

Hence, limn→∞
1
n

an(x) ≤−ǫ< 0 for µ almost all x ∈M .

Thus, all assumptions of Proposition 4.2 are satisfied. Hence for any ǫ > 0

there exists Nǫ such that aNǫ
(x) < 0, i.e., K (x, Nǫ) ≤ e(γ+ǫ)Nǫ for all x ∈ M . For

any n > 0, we write n = mNǫ+ r , 0 ≤ r < Nǫ, and estimate

K (x,n) ≤ K (x,r ) ·K ( f r (x), Nǫ) ·K ( f r+Nǫx, Nǫ) · · ·K ( f r+(m−1)Nǫx, Nǫ)

≤ K (x,r ) ·e(γ+ǫ)mNǫ

≤Cǫe(γ+ǫ)n ,

where Cǫ = maxK (x,r ) with the maximum taken over all x ∈M and 1 ≤ r < Nǫ.

Since K (x,n) = K ( f n x,−n) we obtain K (x,n) ≤ Cǫe(γ+ǫ)|n| for all x in M and n

in Z.

4.2. Proof of Proposition 2.2. First consider the case when y ∈ W s
loc

(x). Since

at least one of the points x and y is nonperiodic, we assume that x is. We write
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xi = f i (x) and yi = f i (y) for i = 0,1, . . . ,n. We have

(F n
x )−1 ◦F n

y = (F n−1
x )−1 ◦

(

(Fxn−1
)−1 ◦Fyn−1

)

◦F n−1
y

= (F n−1
x )−1 ◦ (Id+rn−1)◦F n−1

y

= (F n−1
x )−1 ◦F n−1

y + (F n−1
x )−1 ◦ rn−1 ◦F n−1

y

= ·· · = Id+
n−1
∑

i=0

(F i
x )−1 ◦ ri ◦F i

y ,

where (Fxi
)−1 ◦Fyi

= Id+ri . We estimate

(4.3)
∥

∥Id−(F n
x )−1 ◦F n

y

∥

∥≤
n−1
∑

i=0

∥

∥(F i
x )−1

∥

∥ · ‖ri‖ ·‖F i
y‖.

Since F is Hölder-continuous with exponent β, we have

‖ri‖ =
∥

∥(Fxi
)−1 ◦Fyi

− Id
∥

∥≤
∥

∥(Fxi
)−1

∥

∥ · ‖Fyi
−Fxi

‖ ≤C0 dist(xi , yi )β.

Since y ∈W s
loc

(x), for κ as in (3.1) we obtain

(4.4) ‖ri‖ ≤C0

(

C1 dist(x, y)e−κi
)β ≤C0

(

C1δe−κi
)β ≤C2δ

βe−κβi .

Lemma 4.4 below shows that

(4.5)
∥

∥(F i
x )−1

∥

∥ · ‖F i
y‖ ≤C3e3iǫ for i = 0, . . . ,n −1.

Combining (4.3), (4.4), and (4.5), we obtain

∥

∥Id−(F n
x )−1 ◦F n

y

∥

∥≤
n−1
∑

i=0

(

C2δ
βe−κβi

)(

C3e3iǫ
)

≤C2C3δ
β

n−1
∑

i=0

(

e3ǫ−κβ)i ≤Cδβ,

since 3ǫ−κβ< 0. This completes the proof for the case of y ∈W s(x).

To prove (b), we observe that F−1 satisfies the assumptions of the proposi-

tion. Indeed, KF−1 (x,n) = ‖(F−n
x )‖ · ‖(F−n

x )−1‖ = KF (x,n). Thus we can apply (a)

to F−1, which yields (b).

It remains to prove estimate (4.5). To do this, we construct special metrics

on E f k x along the orbit of a nonperiodic point x ∈ M . We denote xk = f k (x),

k ∈Z.

LEMMA 4.3. Let f be a diffeomorphism of a compact manifold M , E be a con-

tinuous vector bundle over M , and F be a continuous linear cocycle over f . Sup-

pose that for some ǫ> 0 there exists Cǫ such that KF (x,n) ≤Cǫeǫ|n| for all x ∈M

and n ∈ Z. Then for any nonperiodic point x ∈ M , there exist metrics ‖ · ‖xk
on

Exk
, k ∈Z, such that

(4.6)
max

{

‖F n
xk

(v)‖xk+n
: v ∈ Exk

, ‖v‖xk
= 1

}

min
{

‖F n
xk

(v)‖xk+n
: v ∈ Exk

, ‖v‖xk
= 1

} ≤ e3|n|ǫ for all k,n ∈Z.

Moreover, there exists a constant Mǫ such that ‖v‖ ≤ ‖v‖xk
≤ Mǫ‖v‖ for all k ∈Z

and v ∈ Exk
, where ‖ ·‖ is a given continuous metric on E .
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Proof. We choose a unit vector u ∈ Ex and set uk = F k
x (u)/‖F k

x (u)‖ ∈ Exk
. For a

vector v ∈ Exk
we define

‖v‖2
xk

=
∞
∑

m=−∞

‖F m
xk

(v)‖2

‖F m
xk

(uk )‖2 ·e3|m|ǫ .

By the assumption on KF , ‖F m
xk

( v
‖v‖ )‖·‖F m

xk
(uk )‖−1 ≤Cǫe |m|ǫ and hence the terms

of this series are bounded by C 2
ǫ e−|m|ǫ‖v‖2. This implies that the series con-

verges and ‖v‖2
f k x

≤ M 2
ǫ ‖v‖2, where M 2

ǫ = C 2
ǫ

∑∞
n=−∞ e−|m|ǫ. Clearly, ‖v‖2

xk
is at

least the term with m = 0, and thus ‖v‖xk
≥ ‖v‖.

We note that it suffices to prove the estimate for n = 1, then it automatically

follows for all n. We observe that uk+1 is a unit vector parallel to Fxk
(uk ), and

hence uk+1 = Fxk
(uk )/‖Fxk

(uk )‖. For any vector v ∈ Exk
we estimate

‖Fxk
(v)‖2

xk+1
=

∞
∑

m=−∞

‖F m
xk+1

(Fxk
(v))‖2

‖F m
xk+1

(uk+1)‖2 ·e3|m|ǫ

=
∞
∑

m=−∞

‖F m
xk+1

(Fxk
(v))‖2 · ‖Fxk

(uk )‖2

‖F m
xk+1

(Fxk
(uk ))‖2 ·e3|m|ǫ

=
∞
∑

m=−∞

‖F m+1
xk

(v)‖2 · ‖Fxk
(uk )‖2

‖F m+1
xk

(uk )‖2 ·e3|m|ǫ

= ‖Fxk
(uk )‖2

∞
∑

j=−∞

‖F
j
xk

(v)‖2

‖F
j
xk

(uk )‖2 ·e3| j−1|ǫ

≤ ‖Fxk
(uk )‖2

∞
∑

j=−∞

‖F
j
xk

(v)‖2 ·e3ǫ

‖F
j
xk

(uk )‖2 ·e3| j |ǫ

≤ ‖Fxk
(uk )‖2 · ‖v‖2

xk
·e3ǫ.

Here we used the estimate | j | − 1 ≤ | j − 1|. Similarly, using | j − 1| ≤ | j | + 1, we

obtain ‖Fxk
(v)‖2

xk+1
≥ ‖Fxk

(uk )‖2 · ‖v‖2
xk
·e−3ǫ. Thus, for any vector v ∈ Exk

e−(3/2)ǫ · ‖Fxk
(uk )‖ ·‖v‖xk

≤ ‖Fxk
(v)‖xk+1

≤ e(3/2)ǫ · ‖Fxk
(uk )‖ ·‖v‖xk

.

It follows that for any two vectors v, w ∈ Exk
with ‖v‖xk

= ‖w‖xk
= 1

e−3ǫ‖Fxk
(v)‖xk+1

≤ ‖Fxk
(w)‖xk+1

≤ e3ǫ‖Fxk
(v)‖xk+1

.

Hence, e−3ǫ ≤ ‖Fxk
(w)‖xk+1

/‖Fxk
(v)‖xk+1

≤ e3ǫ.

LEMMA 4.4. For i = 0, . . . ,n −1, ‖(F i
x )−1‖ ·‖F i

y‖ ≤C3e3iǫ.

Proof. Consider the metrics ‖ · ‖xk
on Exk

, k = 0, . . . , i , given by Lemma 4.3. We

denote by ‖Fxk
‖k the norm of the operator F from (Exk

, ‖·‖xk
) to (Exk+1

, ‖·‖xk+1
)

and we denote by ‖(Fxk
)−1‖k the norm of the corresponding inverse operator.

Since ‖v‖ ≤ ‖v‖xk
≤ Mǫ‖v‖ for any v ∈ Exk

, it is easy to see that (1/Mǫ)‖Fxk
‖ ≤
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‖Fxk
‖k ≤ Mǫ‖Fxk

‖. Using Hölder-continuity of F in the metric ‖ ·‖, we obtain

‖Fxk
‖k

‖Fyk
‖k

≤ 1+
∣

∣‖Fxk
‖k −‖Fyk

‖k

∣

∣

‖Fyk
‖k

≤ 1+
‖Fxk

−Fyk
‖k

‖Fyk
‖k

≤ 1+
M 2

ǫ ‖Fxk
−Fyk

‖
‖Fyk

‖

≤ 1+
M 2

ǫ c1

(

dist(xk , yk )
)β

minz ‖Fz‖
= 1+ c2

(

dist(xk , yk )
)β

.

For n = 1, inequality (4.6) gives ‖Fxk
‖k · ‖(Fxk

)−1‖k ≤ e3ǫ, and we estimate

‖(F i
x )−1‖i · ‖F i

y‖i

≤ ‖(Fx )−1‖0 · ‖(Fx1
)−1‖1 · · ·‖(Fxi−1

)−1‖i−1 · ‖Fy‖0 · ‖Fy1
‖1 · · ·‖Fyi−1

‖i−1

≤
‖Fy‖0

‖Fx‖0
e3ǫ ·

‖Fy1
‖1

‖Fx1
‖1

e3ǫ · · ·
‖Fyi−1

‖i−1

‖Fxi−1
‖i−1

e3ǫ

≤ e3iǫ
i−1
∏

k=0

(

1+ c2

(

dist(xk , yk )
)β

)

≤ e3iǫ
i−1
∏

k=0

(

1+ c2

(

C1δe−κk
)β

)

≤ e3iǫ
i−1
∏

k=0

(

1+ c3e−βκk
)

≤ c4e3iǫ.

It follows that ‖(F i
x )−1‖ ·‖F i

y‖ ≤ M 2
ǫ c4e3iǫ =C3e3iǫ.

This completes the proof of Proposition 2.2.

4.3. Proof of Proposition 2.3. We identify the spaces of conformal structures

at nearby points by identifying the fibers of E with R
d using local coordinates.

We use the distance between conformal structures described in Section 3.4. Let

τ be an invariant µ-measurable conformal structure on E .

First we estimate the distance between the values of τ at x and at a nearby

point y ∈W s
loc

(x). Let xn = f n(x), yn = f n(y), and let Dx := (F n
x )∗ be the isome-

try from C ( f n x) to C (x) induced by F n
x (see (3.6)). Since the conformal struc-

ture τ is invariant, τ(x) = Dx (τ(xn)) and τ(y) = D y (τ(yn)). Using this and the
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fact that D y is an isometry, we obtain

dist(τ(x), τ(y)) = dist
(

Dx (τ(xn)), D y (τ(yn))
)

≤ dist
(

Dx (τ(xn)), D y (τ(xn))
)

+dist
(

D y (τ(xn)), D y (τ(yn))
)

= dist
(

τ(xn),
(

(Dx )−1 ◦D y

)

(τ(xn))
)

+dist(τ(xn), τ(yn)).

To estimate dist
(

τ(xn), ((Dx )−1 ◦D y )(τ(xn))
)

, we use the following lemma.

LEMMA 4.5. Let σ be a conformal structure on R
d and let A be a linear transfor-

mation of R
d sufficiently close to identity. Then,

dist
(

σ, A∗(σ)
)

≤ k(σ)‖A− Id‖,

where k(σ) is bounded on compact sets in C
d . More precisely, if σ is given by a

matrix C , then k(σ) ≤ 3d‖C−1‖ ·‖C‖ for any A with ‖A− Id‖ ≤
(

6‖C−1‖ ·‖C‖
)−1

.

Proof. We write A = Id+R. Recall that the matrix C corresponding to σ is sym-

metric and positive-definite with determinant 1. Thus there exists an orthogo-

nal matrix Q such that QT CQ is a diagonal matrix whose diagonal entries are

the eigenvalues λi > 0 of C . Let X be the product of Q and the diagonal matrix

with entries 1/
√

λi . Then X has determinant 1 and X [C ] = X T C X = Id. Now

we estimate

dist
(

σ, A∗(σ)
)

= dist(C , A[C ]) = dist(Id, X [A[C ]])

= dist
(

Id, X T AT C AX
)

= dist
(

Id, X T (Id+RT )C (Id+R)X
)

= dist(Id, Id+B),

where

B = X T C R X +X T RT C X +X T RT C R X .

Since ‖R‖ ≤ 1, we observe that ‖B‖ ≤ 3‖X ‖2 · ‖C‖ · ‖R‖. Also, ‖X ‖2 ≤ ‖C−1‖, as

follows from the construction of X . Therefore, ‖B‖ ≤ 3‖C−1‖ · ‖C‖ · ‖R‖. Since

‖R‖ ≤ (6‖C−1‖ · ‖C‖)−1, it follows that ‖B‖ ≤ 1/2. Hence, ‖(Id+B)−1‖ ≤ 1+2‖B‖.

Using (3.5), we estimate

dist
(

σ, A∗(σ)
)

= dist(Id, Id+B) ≤ (d/2) log
(

max
{

‖ Id+B‖,
∥

∥(Id+B)−1
∥

∥

})

≤ (d/2) log(1+2‖B‖)

≤ d‖B‖

≤ 3d‖C−1‖ ·‖C‖ ·‖R‖.

Since the conformal structure τ is µ-measurable, by Lusin’s Theorem there

exists a compact set S ⊂M with µ(S) > 1/2 on which τ is uniformly continuous

and bounded.

We now show that for xn in S the term dist
(

τ(xn), ((Dx )−1 ◦ D y )(τ(xn))
)

is

Hölder in dist(x, y). For this, we observe that the map (Dx )−1◦D y is induced by

(F n
x )−1 ◦F n

y , and ‖(F n
x )−1 ◦F n

y − Id‖ ≤ k dist(x, y)β by the assumption. We apply
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Lemma 4.5 to σ= τ(xn) and A = (F n
x )−1 ◦F n

y . Since the conformal structure τ is

bounded on S, so are ‖C−1‖ and ‖C‖. We obtain that

dist
(

τ(xn), ((Dx )−1 ◦D y )(τ(xn))
)

≤ kτ(xn)
∥

∥(F n
x )−1 ◦F n

y − Id
∥

∥≤ k1 dist(x, y)β,

where the constant k1 depends on the set S. We conclude that if xn is in S, then

dist(τ(x), τ(y)) ≤ dist(τ(xn), τ(yn))+k1 dist(x, y)β.

Let G be the set of points in M for which the frequency of visiting S equals

µ(S) > 1/2. By Birkhoff Ergodic Theorem µ(G) = 1. If both x and y are in

G , then there exists a sequence {ni } such that xni
∈ S and yni

∈ S. Since y ∈
W s

loc
(x), dist(xni

, yni
) → 0 and hence dist(τ(xni

),τ(yni
)) → 0 by continuity of τ

on S. Thus, we obtain

dist(τ(x), τ(y)) ≤ k s dist(x, y)β.

By a similar argument, we have dist(τ(x),τ(z)) ≤ ku dist(x, z)β for x, z ∈ G with

z ∈W u
loc

(x).

Consider a small open set in M with a product structure. For µ almost all lo-

cal stable leaves, the set of points of G on the leaf has full conditional measure.

Consider points x, y ∈ G lying on two such local stable leaves. We denote by

Hx,y be the unstable holonomy map between W s
loc

(x) and W s
loc

(y). Since µ has

local product structure, the holonomy maps are absolutely continuous with re-

spect to the conditional measures. Hence there exists a point z ∈ W s
loc

(x)∩G

close to x such that Hx,y (z) is also in G . By the above argument, we have

dist(τ(x), τ(z)) ≤ k s dist(x, z)β,

dist(τ(z), τ(Hx,y (z))) ≤ ku dist(z, Hx,y (z))β,

dist(τ(Hx,y (z)), τ(y)) ≤ k s dist(Hx,y (z), y)β.

Since the points x, y , and z are close, it is clear from the local product structure

that

dist(x, z)β+dist(z, Hx,y (z))β+dist(Hx,y (z), y)β ≤ k5 dist(x, y)β.

Hence, we obtain dist(τ(x),τ(y)) ≤ k6 dist(x, y)β for all x and y in a set of full

measure G̃ ⊂G . We can assume that G̃ is invariant by considering
⋂∞

n=−∞ f n(G̃).

Since µ has full support, the set G̃ is dense in M . Hence we can extend τ from

G̃ and obtain an invariant Hölder-continuous conformal structure τ on M .

4.4. Proof of Proposition 2.4. Let τ0 be a continuous conformal structure on

E . We denote by τ0(x) the conformal structure on Ex , x ∈ M . We consider the

set

S(x) :=
{

(F n
x )∗

(

τ0( f n x)
)

: n ∈Z
}

in C (x), the space of conformal structures on Ex . Here, F∗ is the pullback ac-

tion given by (3.6). Since F is uniformly quasiconformal, the sets S(x) have

uniformly bounded diameters. Since the space C (x) has nonpositive curva-

ture, for every x there exists a uniquely determined ball of the smallest radius

containing S(x). We denote its center by τ(x).
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It follows from the construction that the conformal structure τ is F -invariant

and its distance from τ0 is bounded. We also note that for any k ≥ 0, the

set Sk (x) :=
{

(F n
x )∗(τ0( f n x)) : |n| ≤ k

}

depends continuously on x in Hausdorff

distance, and so does the center τk (x) of the smallest ball containing Sk (x).

Since Sk (x) → S(x) as k →∞ for any x, the conformal structure τ is the point-

wise limit of continuous conformal structures τk (x). Hence, τ is Borel measur-

able.

4.5. Proof of Proposition 2.6. We consider a fiber bundle G over M whose

fiber over x is the Grassman manifold Gx of all k-dimensional subspaces in Ex .

The map Fx : Ex → E f (x) induces a natural map F̃x : Gx → G f (x). Thus we ob-

tain a cocycle F̃ : G → G over f : M → M given by F̃ (x,ξ) = ( f (x), F̃x (ξ)) where

ξ ∈ Gx . Since the linear cocycle F and the bundle E are Hölder-continuous,

both F̃ and F̃−1 are Hölder-continuous and distC 1 (F̃x , F̃y ) ≤ k dist(x, y)β for all

x, y ∈M . Such F̃ is said to be in Cβ( f ,G ).

LEMMA 4.6. There exists C > 0 such that for any x ∈ M , subspaces ξ, η ∈ Gx ,

n ∈Z, and ǫ> 0, we have

dist
(

F̃ n
x (ξ), F̃ n

x (η)
)

≤C ·KF (x,n) ·dist(ξ, η) ≤C ·Cǫeǫ|n| ·dist(ξ, η).

Proof. Let w and v be two unit vectors in Ex . We denote D = F n
x . Using the

formula 2〈Dw,Dv〉 = ‖Dw‖2 +‖Dv‖2 −‖Dw −Dv‖2 for the inner product, we

obtain
[

2sin

(

∠(Dw,Dv)

2

)]2

= 2
(

1−cos∠(Dw,Dv)
)

= 2−
2〈Dw,Dv〉
‖Dw‖ ·‖Dv‖

=
2‖Dw‖ ·‖Dv‖−‖Dw‖2 −‖Dv‖2 +‖Dw −Dv‖2

‖Dw‖ ·‖Dv‖

=
‖Dw −Dv‖2 − (‖Dw‖−‖Dv‖)2

‖Dw‖ ·‖Dv‖

≤
‖D‖2 · ‖w − v‖2

‖Dw‖ ·‖Dv‖
≤ KF (x,n)2 · ‖w − v‖2.

Suppose that the angle between the unit vectors w and v is sufficiently small

so that it remains small when multiplied by KF (x,n). Then we obtain that the

angle ∠(Dw,Dv) is also small and

∠(Dw,Dv) ≤C0 ·KF (x,n) ·∠(w, v)

If the right-hand side is large the estimate is trivial, thus for any subspaces ξ, η ∈
Gx we have

dist
(

F̃ n
x (ξ), F̃ n

x (η)
)

≤C ·KF (x,n) ·dist(ξ, η),
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where the distance between two subspaces is the maximal angle. We note that

the maximal angle distance is Lipschitz equivalent to any smooth Riemann-

ian metric on the Grassman manifold, and thus we have the estimate in any

smooth metric on G .

The case of n < 0 can be considered similarly.

The lemma implies that the expansion/contraction in the fiber is arbitrarily

slow and, in particular, slower than the expansion/contraction of the hyper-

bolic system in the base. Hence the cocycle F̃ is dominated in the sense of [1,

Definition 4.1]. This notion is similar to the notion of domination or bunching

for partially hyperbolic systems, the difference is that in our context F̃ is not a

diffeomorphism, only the maps F̃x are.

Dominated cocycles have Hölder-continuous strong (un)stable foliations.

These subfoliate the weak (un)stable leaves, which are preimages of (un)stable

leaves in the base. The strong stable foliation gives rise to an s-holonomy for F̃ ,

an invariant family of maps between the fibers over the same stable leaf in the

base. These facts are conveniently summarized in the following proposition,

whose Lipschitz version appeared in [2, Proposition 4.1]. We will refer only to

part (3), which in our setting can be easily obtained from Proposition 2.2 and

its proof. Indeed, the desired holonomy H s
x,y is induced on the Grassmannians

by limn→∞(F n
x )−1 ◦F n

y .

PROPOSITION 4.7 ([1, Proposition 4.2]). If the cocycle F̃ ∈Cβ( f ,G ) is dominated

then there exists a unique partition W
s = {W s(x,ξ) : (x,ξ) ∈G } of the fiber bundle

G such that

1. every W
s(x,ξ) is a β-Hölder graph over W s(x), with Hölder constant uni-

form on x;

2. F̃ (W s(x,ξ)) ⊂W
s(F̃ (x,ξ)) for all (x,ξ) ∈G ;

3. the family of maps H s
x,y : Gx → Gy defined for y ∈ W s(x) by (y, H s

x,y (ξ)) ∈
W

s(x,ξ) is an s-holonomy for F̃ .

Moreover, there is a dual statement for strong unstable leaves.

Let µ be a measure on M with local product structure and full support. A µ-

measurable F -invariant subbundle in E gives rise to a measurable F̃ -invariant

section φ : M → G . We denote by m the lift of µ to the graph Φ of φ, i.e., for a

set X ⊂G , m(X ) =µ(π(X ∩Φ)), where π : G →M is the projection. Alternatively,

m can be defined by specifying that for µ-almost every x in M the conditional

measure mx in the fiber Gx is the atomic measure at φ(x). Since µ is f -invariant

and Φ is F̃ -invariant, the measure m is F̃ -invariant.

Lemma 4.6 implies that Lyapunov exponent of F̃ along the fiber is zero at

every ξ ∈ G , in particular the exponent of m along the fiber is zero. This to-

gether with the existence of s- and u-holonomies for F̃ allows us to apply [2,

Theorem C] to the measure m and conclude that there exists a system of con-

ditional measures m̃x on Gx for m which are holonomy invariant and vary con-

tinuously on x in suppµ=M . Since the systems of conditional measures {mx }
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and {m̃x } coincide on a set X of full µ measure, we see that m̃x = mx is the

atomic measure at φ(x) for all x ∈ X . Since X is dense we obtain that m̃x is

atomic for all x ∈M . Indeed, by compactness of G , for any x ∈M we can take

a sequence X ∋ xi → x such that φ(xi ) converge to some ξ ∈ Gx . This implies

that m̃xi
= mxi

converge to the atomic measure at ξ, which therefore coincides

with m̃x by continuity of the family {m̃x }. Denoting φ̃(x) = suppm̃x for x ∈M ,

we obtain a continuous section φ̃ which coincides with φ on X . Since φ̃ is in-

variant under s- and u-holonomies we conclude that it is β-Hölder. This yields

that the invariant measurable subbundle in E coincides µ-almost everywhere

with a Hölder-continuous one.

4.6. Proof of Proposition 2.7. We use the following particular case of Zimmer’s

Amenable Reduction Theorem, see [4, Corollary 1.8] and [3, Theorem 3.5.9].

ZIMMER’S AMENABLE REDUCTION THEOREM. Let f be an ergodic transforma-

tion of a measure space (X ,µ) and let F : X →GL(d ,R) be a measurable function.

Then, there exists a measurable function C : X → GL(d ,R) such that the func-

tion G(x) = C−1( f (x))F (x)C (x) takes values in a maximal amenable subgroup

of GL(d ,R).

It is known that any maximal amenable subgroup of GL(d ,R) is conjugate to

a group of block-triangular matrices of the form












A1 ∗ . . . ∗

0 A2
. . .

...
...

. . .
. . . ∗

0 . . . 0 Ar













where each diagonal block Ai is a scalar multiple of a di ×di orthogonal matrix

and d1 +·· ·+dr = d .

COROLLARY 4.8. Let f be a diffeomorphism of a smooth compact manifold M

preserving an ergodic measure µ and let F : E → E be a measurable linear cocycle

over f . Then, F preserves a measurable conformal structure either on E or on a

measurable invariant proper nontrivial subbundle of E .

Proof. We recall that E can be trivialized on a set of full µ-measure [3, Proposi-

tion 2.1.2], so we measurably identify E with M ×R
d and view F as a function

M →GL(d ,R). Thus can we apply the Amenable Reduction Theorem to F and

obtain a measurable coordinate change function C : M → GL(d ,R) such that

Gx =C−1( f (x))Fx C (x) is of the above form for µ-almost all x ∈M . If r = 1 and

d1 = d , we obtain that Gx is a scalar multiple of a d ×d orthogonal matrix. This

implies that F is conformal with respect to the pull back by C−1 of the stan-

dard conformal structure on R
d . This gives a measurable invariant conformal

structure for F on E . If r > 1, then the last block Ar acts conformally on a dr -

dimensional invariant subspace for G . Again pulling back by C−1 we obtain a

measurable invariant subbundle with conformal structure for F .
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Now suppose that that the system satisfies the assumptions of Proposition

2.7. We apply Corollary 4.8 with µ being the measure of maximal entropy for f .

If we have a measurable invariant conformal structure on E then it is Hölder-

continuous by Proposition 2.3. If we have a measurable invariant subbundle

E
′ then it is Hölder-continuous by Proposition 2.6. The restriction of F to E

′

is a Hölder-continuous cocycle which also satisfies the same pinching assump-

tion as F . Hence the invariant measurable conformal structure on E
′ is again

Hölder-continuous by Proposition 2.3.

4.7. Proof of Theorem 1.1. By Proposition 2.1, the assumption of the theorem

implies that (2.1) is satisfied with γ = 0. Hence the conclusions of Proposition

2.2 hold, which has the following implication for quasiconformal distortion.

LEMMA 4.9. Let A and B be two linear transformations of R
d . Suppose that

either ‖A−1B − Id‖ ≤ r or ‖AB−1 − Id‖ ≤ r , where r < 1. Then,

1− r

1+ r
≤

K (A)

K (B)
≤

1+ r

1− r
,

where K (A) and K (B) are quasiconformal distortions of A and B, respectively.

Proof. We recall that K (A) = K (A−1) and K (A1 A2) ≤ K (A1)K (A2). Suppose that

‖A−1B − Id‖ ≤ r . Denoting A−1B − Id = R and multiplying by A, we have B =
A(Id+R). Since for any unit vector v , 1− r ≤ ‖(Id+R)v‖ ≤ 1+ r , we obtain

K (B) ≤ K (A)K (Id+R) ≤ K (A) · (1+ r )/(1− r ).

Multiplying by B−1, we have A−1 = (Id+R)B−1 and hence

K (A) = K (A−1) ≤ K (Id+R)K (B−1) ≤ (1+ r )/(1− r ) ·K (B).

The case of ‖AB−1 − Id‖ ≤ r is similar.

Now we will show that F is uniformly quasiconformal using a dense orbit

argument. Since f is transitive, there exists a point z ∈ M with dense orbit

O = { f k z : k ∈ Z}. We will show that the quasiconformal distortion KF (z,k) is

uniformly bounded in k ∈Z. Since O is dense and KF (x,k) is continuous on M

for each k, this implies that KF (x,k) is uniformly bounded in x ∈ X and k ∈Z.

We consider any two points of O with dist( f k1 z, f k2 z) < δ0, where δ0 is suf-

ficiently small to apply the Anosov Closing Lemma [10, Theorem 6.4.15]. We

assume that k1 < k2 and denote x = f k1 z and n = k2 −k1, so δ = dist(x, f n x) <
δ0. By the Anosov Closing Lemma, there exists p ∈ X with f n p = p such that

dist( f i x, f i p) ≤ cδ for i = 0, . . . ,n.

Let y be a point in W s
loc

(p)∩W u
loc

(x). Then by Proposition 2.2,
∥

∥(F n
p )−1 ◦F n

y − Id
∥

∥≤Cδβ and
∥

∥(F−n
y )−1 ◦F−n

x − Id
∥

∥≤Cδβ.

Hence by Lemma 4.9,

KF (y,n)

KF (p,n)
≤

1+Cδβ

1−Cδβ
≤ 2 and

KF (x,n)

KF (y,n)
≤ 2,

if δ0 is sufficiently small. Thus, KF (x,n) ≤ 4KF (p,n) ≤ 4Cper.
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We take m > 0 such that the set { f j (z) : | j | ≤ m} is δ0-dense in M . Let Km =
max{KF (z, j ) : | j | ≤ m}. Then for any k > m, there exists j with | j | ≤ m such that

dist( f k (z), f j (z)) ≤ δ0. Hence,

KF (z,k) ≤ KF (z, j ) ·KF

(

f j (z), k − j
)

≤ Km ·4Cper.

The case of k <−m is considered similarly. Thus, KF (z,k) is uniformly bounded

and hence so is KF (x,k) for all x ∈M and k ∈Z.

Thus, F is uniformly quasiconformal on E . It follows from Corollary 2.5 that

there exists a Hölder-continuous metric on E with respect to which F is con-

formal.

Now we prove the second part of the theorem. We observe that KF (p,n) =
‖F n

p ‖ · ‖(F n
p )−1‖ ≤ (C ′

per)2 and hence F is conformal with respect to a Hölder-

continuous Riemannian metric g on E . This means that there exists a positive

Hölder-continuous function a(x) such that for each x ∈M and each v ∈ Ex

‖Fx (v)‖g ( f (x)) = a(x) · ‖v‖g (x).

It remains to renormalize the metric g . For a positive function ϕ(x), we con-

sider a new metric g̃ (x) = g (x)/ϕ(x). Then we have

ϕ( f (x)) · ‖Fx (v)‖g̃ ( f (x)) = a(x)ϕ(x) · ‖v‖g̃ (x).

Thus, we need to find a Hölder-continuous function ϕ(x) such that ϕ( f (x)) =
a(x)ϕ(x), i.e.,

(4.7) a(x) =ϕ( f (x))/ϕ(x) for all x ∈M .

Let p be a periodic point of period n. Then, a(p)a( f p) · · ·a( f n−1p) = ‖F n
p ‖g (p).

If ‖F n
p ‖g (p) > 1, then

‖F mn‖g (p) =
∥

∥F n
p

∥

∥

m
g (p) →∞ as m →∞.

If ‖F n
p ‖g (p) < 1, then

∥

∥(F mn)−1
∥

∥

g (p) =
∥

∥(F n
p )−1

∥

∥

m
g (p) =

∥

∥F n
p

∥

∥

−m
g (p) →∞ as m →∞.

Either case contradicts the assumption of Theorem 1.1. Therefore, we must

have a(p)a( f p) · · ·a( f n−1p) = 1 for any periodic point p. Now, the Livšic The-

orem [10, Theorem 19.2.1] implies that equation (4.7) has a Hölder-continuous

solution ϕ(x), and F is an isometry with respect to the Hölder-continuous met-

ric g̃ .

4.8. Proof of Theorem 1.3. By Proposition 2.1, the assumption on the periodic

data implies that (2.1) is satisfied with γ = 0. Now Proposition 2.7 yields that

F preserves either a Hölder-continuous one-dimensional subbundle in E or a

Hölder-continuous invariant conformal structure on E .

Suppose that there is a continuous invariant one-dimensional subbundle.

Hence for any point p and any n with f n p = p we obtain an invariant line for

F n
p : Ep → Ep . This implies that the eigenvalues of F n

p are real. Hence, by the

assumption of the theorem, they are either λ, λ or λ, −λ. If F is orientation-

preserving, the former is always the case. It follows that F n
p = λ · Id since it
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is diagonalizable, and hence KF (p,n) = 1. For such F we can apply Theorem

1.1 and obtain a Hölder-continuous metric on E with respect to which F is

conformal.

If E is not orientable, we can pass to a double cover. If F is orientation-

reversing, we can consider cocycle F 2 over f 2. Thus we can always obtain an

orientation-preserving cocycle F ′ which by the above is conformal. This im-

plies uniform quasiconformality of the original cocycle F . Now Corollary 2.5

yields conformality of F .

We conclude that F is conformal with respect to a Hölder-continuous met-

ric on E . The second part can be establishes in the same way as in the proof

Theorem 1.1. Indeed, the assumption implies that for any periodic point p the

map F n
p is conjugate to an orthogonal matrix and hence there exists a constant

C (p) such that max{‖F n
p ‖,‖(F n

p )−1‖} ≤C (p) for any period n of p.

4.9. Proof of Proposition 1.2. The idea of the example was suggested to us by

M. Guysinsky and is similar to his example in [5]. We recall that since the tan-

gent bundle is trivial, a cocycle F : E → E is defined by a function A : M →
GL(d ,R) via F (x, v) = ( f (x), A(x)v). First we construct an example for d = 3.

Let S be a closed, and hence compact, f -invariant set in M that does not

contain any periodic points (such sets always exist for Anosov systems and can

be constructed using symbolic dynamics). Let α : M →R be given by

α(x) = dist(x,S) ·ǫ/(2diamM ).

Then α is Lipschitz, α(x) = 0 for all x ∈ S, and 0 <α(x) ≤ ǫ/2 for all x ∉ S. We set

A(x) =





cos α̃(x) −sinα̃(x) ǫ

sin α̃(x) cos α̃(x) 0

0 0 1





where α̃ is a modification of the function α constructed below. For a point

p ∈M and n ∈N, we denote

A(p,n) = A( f n−1p) · · · A( f p) · A(p),

α̃(p,n) = α̃( f n−1p)+·· ·+ α̃( f p)+ α̃(p).

Then we have

A(p,n) =





cos α̃(p,n) −sinα̃(p,n) ∗
sin α̃(p,n) cos α̃(p,n) ∗

0 0 1





Let p be a periodic point and let n be its minimal period. Since the eigenvalues

of A(p,n) are of modulus 1, it is conjugate to an orthogonal matrix if and only

if it is diagonalizable over C. For A(p,n) to be diagonalizable, it suffices to have

three different eigenvalues, which is equivalent to α̃(p,n) 6=πk. The function α

does not necessarily satisfy this condition at every periodic point, so we modify

it inductively to obtain a function α̃ that does.

Since there are countably many periodic orbits for f , we can order them

{O1,O2, . . . }. Let α0 = α and suppose that αm−1 is defined. If αm−1(p,nm) 6=

JOURNAL OF MODERN DYNAMICS VOLUME 4, NO. 3 (2010), 419–441



440 BORIS KALININ AND VICTORIA SADOVSKAYA

πk, where p ∈ Om and nm is the minimal period of p, we set αm = αm−1. If

αm−1(p,nm) = πk, we modify αm−1 in a small neighborhood of Om to obtain

αm . Let

δm = (1/2)dist
(

Om , (O1 ∪·· ·∪Om−1 ∪S)
)

.

We change αm−1 in the δm-neighborhood of Om so that the new function αm

is Lipschitz on M , αm(p,nm) 6= πk, and the Lipschitz norm of αm−1 −αm is

less than ǫ/(4m2). Clearly αm = αm−1 on S and on O1, . . . ,Om−1. We define

α̃(x) = limm→∞αm(x). It follows from the construction that α̃(x) is Lipschitz,

α̃(x) = 0 on S, and α̃(p,n) 6= πk for any periodic point p of a minimal period

n. Thus, the matrix A(p,n) has three different eigenvalues: e i α̃(p,n), e−i α̃(p,n), 1.

Hence, A(p,n) is diagonalizable. We also note that since max|α(x)−α̃(x)| ≤ ǫ/2,

we have max|α̃(x)| ≤ ǫ, and thus A(x) is ǫ-close to the identity.

Now we show that the cocycle F is not uniformly quasiconformal. Let x be a

point in S. Then x is nonperiodic and α̃( f n x) = 0 for every n. Hence,

A(x) =





1 0 ǫ

0 1 0

0 0 1



 and A(x,n) =





1 0 nǫ

0 1 0

0 0 1



 .

The quasiconformal distortion of F is not uniformly bounded along the orbit

of x, since for the first coordinate vector ‖F n
x v1‖ = ‖A(x,n)v1‖ →∞, while for

the second coordinate vector ‖F n
x v2‖ = ‖A(x,n)v2‖ = 1. It follows that F cannot

be conformal with respect to any continuous Riemannian metric on E .

This example can be extended to any dimension d ≥ 4 by considering

F (x, v) = ( f (x), Ã(x)v) with Ã(x) =
(

A(x) 0

0 Idd−3

)

where Idd−3 is the (d −3)× (d −3) identity matrix.
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