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ON THE CLASSIFICATION OF CARTAN ACTIONS

Boris Kalinin and Ralf Spatzier

Abstract. We study higher-rank Cartan actions on compact manifolds
preserving an ergodic measure with full support. In particular, we classify
actions by R

k with k ≥ 3 whose one-parameter groups act transitively as
well as nondegenerate totally nonsymplectic Z

k-actions for k ≥ 3.

1 Introduction

The classification of Anosov systems is a deep and central problem in dy-
namics. For single diffeomorphisms, a long outstanding conjecture asserts
that they are all topologically conjugate to automorphisms of tori, nilman-
ifolds and their finite factors. Little progress has been made since Franks,
Manning, and Newhouse proved this for Anosov diffeomorphisms on tori
and nilmanifolds, and for codimension one Anosov diffeomorphisms on ar-
bitrary compact manifolds [Fr], [M], [N]. There is no analogue to this
conjecture for flows. Geodesic flows of closed manifolds of negative curva-
ture are always Anosov. There are many non-algebraic examples of such
manifolds such as the ones constructed by Gromov and Thurston [GrT].
Moreover, various examples of Anosov flows not even topologically conju-
gate to geodesic flows have been constructed by Franks and Williams [FrW]
and Handel and Thurston [HT]. Recently, Benoist found a new source for
Anosov flows via geodesic flows of Hilbert metrics on compact quotients of
convex sets in projective space [B]. For single Anosov diffeomorphisms and
flows one can easily change the derivative at periodic points. Thus topolog-
ical conjugacies are rarely smooth. As Farrell and Jones have constructed
Anosov diffeomorphisms on exotic tori, one cannot even hope for smooth
classification of the underlying manifold structure [FJ].
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The situation is quite different for higher-rank Anosov actions, i.e. ac-
tions of higher-rank abelian groups such that at least one element acts
normally hyperbolically to the orbit foliation. The simplest examples of
such actions arise from products of Anosov diffeomorphisms or flows. More
interestingly, there are Z

k-actions on tori and nilmanifolds by automor-
phisms, and Anosov R

k-actions on homogeneous spaces G/Λ by left trans-
lations, and more generally on bi-quotients. These form the class of alge-
braic actions. Many of these are not products. The irreducible higher-rank
algebraic actions enjoy very strong rigidity properties such as scarcity of
invariant measures and cocycle rigidity (see surveys in [Li], [NiT]).

Intriguingly, the only known examples of higher-rank Anosov actions are
either algebraic or are reducible, i.e. some finite cover admits an Anosov flow
or diffeomorphism as a factor. By work of Palis and Yoccoz, the centralizer
of a generic Anosov diffeomorphism f on a torus consists just of the powers
fn of f [PY]. A. Katok and the second author showed that C1-small per-
turbations of higher-rank algebraic Anosov actions with semisimple linear
parts are smoothly conjugate to the original action [KS3]. This followed ear-
lier work by Katok and Lewis for the special case of a maximal commuting
set of toral automorphisms [KL1]. Katok and Lewis also showed a global
rigidity result for suitable higher-rank actions on tori [KL2]. Recently Dam-
janovic and Katok generalized local rigidity to partially hyperbolic actions
on tori using KAM arguments [DK]. Rodriguez Hertz classified abelian
actions with an Anosov element for the 3-torus under additional conditions
on the action on homology. These are all smoothly conjugate to a linear
action by automorphisms [R]. All of these results motivate the following
conjecture:

Conjecture 1.1. All irreducible higher-rank Z
k and R

k Anosov actions on
any compact manifold have finite covers smoothly conjugate to an algebraic
action.

While this conjecture remains wide open in this generality, we will prove
strong classification results for the subclass of Cartan actions in this paper.
Cartan actions are Anosov actions such that the maximal non-trivial in-
tersections of stable manifolds of distinct elements are one-dimensional.
This paper and part of its approach was motivated by similar results
by E. Goetze and the second author for Cartan actions by higher-rank
semisimple groups and their lattices [GS].

Our main technical result is the following theorem. We call a one-
parameter subgroup of a Lyapunov hyperplane in R

k generic if it is not
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contained in any other Lyapunov hyperplane. Call an R
k Cartan action

totally Cartan if the set of Anosov elements is dense in R
k.

Theorem 1.2. Let α be a totally Cartan action of R
k, k ≥ 2, on a

compact smooth manifold M preserving an ergodic probability measure
µ with full support. Suppose that every Lyapunov hyperplane contains a
generic one-parameter subgroup with a dense orbit. Then there exists a
Hölder continuous Riemannian metric g on M such that for any a ∈ R

k

and any Lyapunov exponent χ
∥
∥a∗(v)

∥
∥ = eχ(a)‖v‖ for any v ∈ Eχ .

We use this theorem to get the following classification of R
k Cartan

actions.

Theorem 1.3. Let α be a C∞ totally Cartan action of R
k, k ≥ 3, on

a compact smooth connected manifold M preserving an R
k-ergodic prob-

ability measure µ with full support. Suppose that every one-parameter
subgroup of R

k has a dense orbit. Then α is C∞ conjugate to an almost
algebraic action, i.e. the lift of the action to some finite cover of M is C∞

conjugate to an R
k-action by left translations on a homogeneous space G/Λ

for some Lie group G and cocompact lattice Λ.

The major difficulty in this work is the construction of a Hölder met-
ric on the various Lyapunov foliations which is expanded and contracted
precisely according to a linear functional. The proof requires a new idea of
construction. This is closely linked to cohomology triviality for cocycles.
Indeed, Proposition 3.1 says precisely that the restriction of the derivative
cocycle in a Lyapunov direction is Hölder cohomologous to a linear func-
tional. Cohomology triviality has been established for general cocycles for
homogeneous actions [KS1], [KNT], [NiT]. Nothing however seems to be
known for general actions. Our approach here is specific to the derivative
cocycle, and draws on the proof of the Livsic’ theorem. Let us comment
that in [GS], Goetze and the second author used topological super-rigidity
techniques to trivialize the derivative cocycle for actions of semi-simple
groups. These techniques are not available for abelian Anosov actions. We
also note that our results may provide another approach to the main results
of [GS].

Finally, we will apply a technical variation Theorem 5.1 of our Theo-
rem 1.3 to classify certain Z

k Cartan actions. Call a Cartan action totally
nonsymplectic or TNS if no two nonzero Lyapunov exponents are nega-
tively proportional. Further call an Anosov action non-degenerate if the
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intersection of two Lyapunov hyperplanes is never contained in a third
Lyapunov hyperplane.

Corollary 1.4. Let α be a C∞ nondegenerate TNS Cartan action of Z
k,

k ≥ 3, on a compact smooth manifold M such that each non-trivial element
is an Anosov diffeomorphism. Suppose also that one of the diffeomorphisms
is transitive. Then a finite cover of α is C∞ conjugate to a Z

k action by
automorphisms of a torus.

In this corollary, the requirement that the action is TNS Cartan is
equivalent to the requirement that all Lyapunov exponents are simple and
there are no proportional Lyapunov exponents.

The second author would like to thank E. Goetze for numerous discus-
sions related to this problem which yielded partial results and suggested
part of the approach in this paper.

2 Basic Structures

2.1 Anosov actions. Let us recall the definitions and basic properties
of Anosov actions.

Definition 2.1. Let α be a locally faithful action of R
k by smooth diffeo-

morphisms on a compact manifold M . Call an element a ∈ R
k Anosov or

normally hyperbolic for α if there exist real constants λ > 0, C > 0, and a
continuous α-invariant splitting of the tangent bundle

TM = Eu
a ⊕ E0 ⊕ Es

a

such that E0 is the tangent distribution of the R
k-orbits, and for all p ∈ M ,

for all v ∈ Es
a(p) (v ∈ Eu

a (p) respectively) and n > 0 (n < 0 respectively)
the differential a∗ : TM → TM satisfies

∥
∥an

∗ (v)
∥
∥ ≤ Ce−λ|n|‖v‖ .

Hirsch, Pugh and Shub introduced the notion of a diffeomorphism acting
normally hyperbolically with respect to an invariant foliation. Our Anosov
elements are precisely the elements in R

k which act normally hyperbolically
with respect to the orbit foliation of R

k [HiPS]. By [HiPS], we can define
stable and unstable distributions Es

a and Eu
a for any Anosov element a ∈ R

k.
These are Hölder distributions and integrate in the usual fashion to stable
and unstable foliations which we will denote by Ws

a and Wu
a . These are

Hölder foliations with C∞-leaves. (cf. [HiPS] for all this).
The set of Anosov elements A in R

k is always an open subset of R
k. In

fact, by the structural stability theorem for normally hyperbolic maps by
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Hirsch, Pugh and Shub a map C1-close to a normally hyperbolic map is
again normally hyperbolic for a suitable foliation [HiPS]. For an element
in R

k close to an Anosov element, this suitable foliation is forced to be the
orbit foliation of the action.

Definition 2.2. Call α an Anosov action if some element a ∈ R
k is

Anosov. Furthermore call α totally Anosov if the set of Anosov elements
A is dense in R

k.

It is not known if all Anosov actions are totally Anosov. We will make
the standing assumption that all our actions are totally Anosov and pre-
serve a probability measure with full support unless otherwise specified.

2.2 Lyapunov theory. Recall that for any diffeomorphism φ of a com-
pact manifold M preserving an ergodic probability measure µ, there are
finitely many numbers χi and a measurable splitting of the tangent TM =
⊕

Ei such that the forward and backward Lyapunov exponents of v ∈ Ei

are exactly χi. This is the Lyapunov decomposition of TM for φ.
Now consider an R

k action α on a compact manifold M by diffeomor-
phisms preserving an ergodic probability measure µ. Then we can refine
the Lyapunov decompositions of the individual elements a ∈ R

k to a joint
invariant splitting.

Proposition 2.3. There are finitely many linear functionals χ on R
k,

a set of full measure P and a measurable splitting of the tangent bundle
TM =

⊕
Eχ over P, invariant under α, such that for all a ∈ R

k and
v ∈ Eχ, the Lyapunov exponent of v is χ(a), i.e.

lim
n→±∞

1
n log

∥
∥an

∗ (v)
∥
∥ = χ(a)

where ‖ .. ‖ is any continuous norm on TM .

We call
⊕

Eχ the Lyapunov splitting and the nonzero linear functionals
χ the Lyapunov exponents or weights of α. We will call the hyperplanes
ker χ the Lyapunov hyperplanes or Weyl chamber walls, and the connected
components of R

k − ∪χ ker χ the Weyl chambers of α.
Define the coarse Lyapunov space Eχ = ⊕Eλ, where the sum ranges over

all positive multiples λ = c χ of χ. We will also denote Eχ by EH where H
is the half space of R

k on which χ is negative. Call such a half space H a
Lyapunov half space. Note that H is determined by the hyperplane ker χ
and an orientation of this hyperplane, i.e. a choice of one of the two half
spaces ker χ bounds. In our case, the orientation is given by which of the two
half spaces χ is negative on. Then we obtain a measurable decomposition
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TM = ⊕EH where H ranges over all Lyapunov half spaces. Note that for
an R-action we just retrieve the stable and unstable distributions.

2.3 Coarse Lyapunov foliations. In this section we consider a totally
Anosov R

k-action α preserving an ergodic probability measure µ with full
support. We show that the coarse Lyapunov splitting given by µ can be
extended to a Hölder splitting of TM consisting of distributions tangent to
foliations which we will call the coarse Lyapunov foliations. We also show
that the Lyapunov hyperplanes, Weyl chambers, and the coarse Lyapunov
foliations agree for all invariant measures.

First we observe that for each Anosov element a ∈ R
k we have Es

a =
⊕

χ(a)<0 Eχ and Eu
a =

⊕

χ(a)>0 Eχ at any point of the set of full measure
where the Lyapunov splitting is defined. Note that the following proposition
applies to actions more general than totally Anosov.
Proposition 2.4. Let α be an Anosov R

k-action on a compact smooth
manifold M preserving an ergodic probability measure µ. Suppose that
every Weyl chamber defined by µ contains an Anosov element. Then for
each Lyapunov half space H the distribution

⋂

a∈A∩H

Es
a

is Hölder continuous on the support of µ and µ-a.e. coincides with the coarse
Lyapunov space EH . If suppµ = M then EH extends to a Hölder continu-
ous distribution on M tangent to the Hölder foliation WH :=

⋂

a∈A∩H Ws
a

with C∞ leaves.

Proof. For a Lyapunov half space H let LH =
⋂

a∈A∩H Es
a. This defines a

distribution on all of M , possibly discontinuous and of varying dimension.
By ergodicity and invariance of the Lyapunov splitting under α, there is
a set P of full measure where the Lyapunov splitting is defined and the
dimensions of the Lyapunov distributions are constant. We will show that
LH = EH on P, and that LH is continuous on the support of µ, suppµ.
Since LH is the intersection of Hölder foliations, it follows easily that LH

is Hölder. Hence if suppµ = M , the distribution LH is Hölder continuous
on M and tangent to the corresponding foliation WH . Since foliations Ws

a

have C∞ leaves so does WH .
Let us first show that LH = EH on the set P of full measure. Let p ∈ P.

First note that EH(p) ⊂ LH(p) since, by definition, EH is contained in every
Es

a(p) of the intersection. To prove the reverse inclusion, suppose that for
some v ∈ TpM , v ∈ LH(p) and v /∈ EH(p). Using the coarse Lyapunov
splitting TpM =

⊕
EHi(p) we decompose v =

∑
vi. Then vi 	= 0 for some
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Hi different from H. Since every Weyl chamber contains an Anosov element
there exists a ∈ A ∩ H ∩ (−Hi). This implies that vi ∈ EHi(p) ⊂ Eu

a (p)
which contradicts the fact that v ∈ LH ⊂ Es

a(p).
Now we will show the continuity of LH on suppµ. Since LH = EH

on P, the dimensions of all distributions LH are constant on P. It follows
easily that these distributions are continuous on P and form the direct sum
⊕

LH of dimension (dimM − k) over P, where the summation is over all
Lyapunov half spaces.

Now consider a point q ∈ suppµ and a sequence of points pn ∈ P
converging to q. For each Lyapunov half space H let RH be some limit
point of LH(pn) in the Grassman bundle of subspaces of dimension dimLH .
To prove the continuity it suffices to show that RH = LH(q) for each H.
The continuity of distributions Es

a implies that RH ⊂ LH(q) for all H.
To prove the reverse inclusion first notice that the sum

∑
LH(q) is con-

tained in Es
b ⊕Eu

b for any Anosov element b. In particular dim
∑

LH(q) ≤
n−k. Now suppose that for some H the dimension of LH(q) is greater than
that of RH . Then the sum

∑
LH(q) is no longer direct. Thus for some

H the intersection LH(q) ∩ L is nontrivial for L =
∑

LH′(q), where the
sum is not assumed to be direct and the summation is over all Lyapunov
half spaces H ′ different from H. We can choose two Anosov elements a
and b such that H is the only Lyapunov half space that contains both a
and b. This can be done as follows. Restrict the action to a generic 2-plane
P which intersects all Lyapunov hyperplanes in distinct lines. Then for
each of the two half lines of ∂H ∩ P there is exactly one Weyl chamber in
H whose intersection with P borders the half line. Now we can take one
Anosov element from each of these two Weyl chambers.

Let E1 = Es
a(q) ∩ L and E2 = Eu

a (q) ∩ L. Note that by definition any
space LH′(q) is contained either in Es

a(q) or in Es−a(q) = Eu
a (q). Hence

both E1 and E2 are sums of subspaces LH′ for various H ′. It follows that
L = E1 ⊕ E2. Also note that E1 ⊂ Eu

b (q). Indeed, if some LH′ ⊂ E1 then
LH′ ⊂ Es

a(q) and hence a ∈ H ′. If H ′ is different from H then, by the
choice of elements a and b, we must have b /∈ H ′ and thus LH′ ⊂ Eu

b (q).
Let v be a nonzero vector in the nontrivial intersection LH(q) ∩ L.

We write v = v1 + v2, with v1 ∈ E1, v2 ∈ E2, and iterate v by na.
Since v ∈ LH(q) ⊂ Es

a(q) and v1 ∈ E1 ⊂ Es
a(q) we see that (na)v → 0

and (na)v1 → 0. Since v2 ∈ E2 ⊂ Eu
a (q) we conclude that v2 = 0 and

v = v1. Since v ∈ LH(q) ⊂ Es
b (q) and v1 ∈ E1 ⊂ Eu

b (q) we conclude that
v = v1 = 0. This shows that RH = LH(q) for each H and completes the
proof of the proposition. �
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Lemma 2.5. The set A of Anosov elements for α is the union of the Weyl
chambers in R

k.

Proof. Suppose that a, b ∈ A belong to the same Weyl chamber C. Since
Es

a =
⊕

χ(a)<0 Eχ, we get Es
a = Es

b . By commutativity, the stable dis-
tributions of Anosov elements are invariant under α. Let c = t a + s b
where s, t > 0 are real numbers. If v ∈ Es

a(p) for p ∈ M , then the
derivative cn∗ = (ns b)∗ ◦ (nt a)∗ contracts v exponentially fast as (nt a)∗
does and (nt a)∗(v) ∈ Es

b ((nt a)(p)). We conclude that Es
c is defined and

Es
c = Es

a = Es
b . Similarly, Eu

c = Eu
a = Eu

b and hence c is Anosov. Thus the
intersection of A with C is an open and dense convex cone in C. Therefore
C ⊂ A. Clearly, no element on a Weyl chamber wall can be in A. �

The elements of R
k which belong to the union of the Weyl chambers

are called regular. All other elements of R
k are called singular. A singular

element is called generic if it belongs to only one Lyapunov hyperplane.
For a singular element a ∈ R

k we can define its neutral, stable, and
unstable distributions as

E0
a = TO ⊕

⊕

χ(a)=0

Eχ Es
a =

⊕

χ(a)<0

Eχ Eu
a =

⊕

χ(a)>0

Eχ.

Lemma 2.6. The distributions E0
a, Es

a, Eu
a are Hölder continuous. Es

a

and Eu
a integrate to Hölder continuous foliations Ws

a and Wu
a with smooth

leaves. Es
a is uniformly contracted and Eu

a is uniformly expanded by a.

Proof. The Hölder continuity of the distributions follows immediately from
Proposition 2.4. To show the integrability we note that Es

a =
⋂

Es
b and

Eu
a =

⋂
Eu

b , where the intersection is taken over all Anosov elements b close
to a. Indeed, if b is close enough to a, the signs of χ(b) and χ(a) are the
same for any Lyapunov exponent χ with χ(a) 	= 0. This shows that Es

a is
contained in every Es

b and thus in the intersection. For the reverse inclusion
we note that for every nonzero Lyapunov exponent χ with χ(a) = 0 we can
choose an Anosov element b close to a such that χ(b) > 0. The uniform
contraction and expansion can be obtained as in the proof of Lemma 2.5
since a can be represented as a positive combination of the nearby Anosov
elements. �

Remark 2.7. In contrast to the individual distributions Eχ, E0
a is not

necessarily integrable. Moreover, we do not assume any uniform estimates
on the possible expansion or contraction of E0

a by a, so a is not necessarily
a partially hyperbolic element in the usual sense.
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Now we will show that the structures of Lyapunov hyperplanes and
Weyl chambers agree for all invariant measures. Note that this does not
entail that the Lyapunov functionals are the same. Indeed, they need not
be as the case of products of Anosov flows easily shows.

Proposition 2.8. Suppose that the Lyapunov splitting and the Lyapunov
exponents exist at a point p. Then the Lyapunov hyperplanes and Weyl
chambers defined by these exponents coincide with the Lyapunov hyper-
planes and Weyl chambers defined by the exponents of the ergodic invariant
measure with full support. Moreover, the coarse Lyapunov splitting of TpM
defined by the exponents at p coincides with the Hölder continuous coarse
Lyapunov splitting defined in Proposition 2.4.

Proof. It suffices to show that for any Lyapunov half space H defined by
the ergodic invariant measure with full support and for any v ∈ EH(p)
the Lyapunov exponent χ(· , v) : R

k → R has kernel ∂H and is negative
on H. Suppose that this is not the case. Then there exists b ∈ H such
that χ(b, v) > 0. Since the Anosov elements are dense in R

k we may
choose b to be Anosov, i.e. b ∈ A ∩ H. Then by the definition of EH ,
v ∈ EH =

⋂

a∈A∩H Es
a ⊂ Es

b . But for v ∈ Es
b , χ(b, v) > 0 is impossible. �

We immediately get that the Lyapunov half spaces on P are consistent
with those at all the periodic points.

Corollary 2.9. The Lyapunov hyperplanes, Weyl chambers, and coarse
Lyapunov splitting for any compact orbit of the action coincide with the
Lyapunov hyperplanes, Weyl chambers, and coarse Lyapunov splitting de-
fined by the ergodic invariant measure with full support.

2.4 Cartan actions. Here we define Cartan actions which are closely
related to Hurder’s trellised actions [Hu1,2].

Definition 2.10. Call a (totally) Anosov action of R
k a (totally) Cartan

if all coarse Lyapunov foliations are one-dimensional.

Totally Cartan actions satisfy the following properties tantamount to
being a trellised action. First, let us call two foliations pairwise transverse
if their tangent spaces intersect trivially. This is different from the standard
notion in differential topology which also requires the sum of the tangent
spaces to span the tangent space of the manifold.

Consider a totally Cartan action of R
k on M . Then the coarse Lyapunov

foliations {Wi} form a collection of one-dimensional, pairwise-transverse
foliations such that
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1. The tangent distributions have internal direct sum TW1⊕· · ·⊕TWr⊕
TO ∼= TM , where TO is the distribution tangent to the R

k orbits;
2. For each x ∈ M the leaf Wi(x) of Wi through x is a C∞ immersed

submanifold of M ;
3. The C∞ immersions Wi(x) → M depend uniformly Hölder continu-

ously on the basepoint x in the C∞ topology on immersions, and
4. Each Wi is invariant under every a ∈ R

k.

3 Proof of Theorem 1.2

It is clearly sufficient to show the existence of such a metric for each coarse
Lyapunov distribution. After that, the desired metric on M can be obtained
using these metrics and the natural metric on the orbit distribution, by
requiring that the coarse Lyapunov distributions and the orbit distribution
are pairwise orthogonal. The metric on the orbit distribution can be defined
as follows. For v ∈ TxO define ||v|| = ||b||

R
k , where b ∈ R

k is such that
v = d

dt((tb)x). Thus the theorem reduces to the following proposition.
Proposition 3.1. Let χ be a Lyapunov exponent, H be its negative
Lyapunov half space, and E = EH be the corresponding one-dimensional
coarse Lyapunov distribution. Under the assumptions of Theorem 1.2 there
exists a Hölder continuous Riemannian metric on E for which

∥
∥a∗(v)

∥
∥ = eχ(a)‖v‖

for any a ∈ R
k and v ∈ E.

Proof. Let W = WH be the coarse Lyapunov foliation of the coarse Lya-
punov distribution E. Denote by E′ and W ′ the (possibly trivial) coarse
Lyapunov distribution and the coarse Lyapunov foliation corresponding to
the Lyapunov half space −H.

Notation. In sections 3 and 4 for any element b ∈ R
k we denote

by DE
x b the restriction of its derivative at x ∈ M to E(x). We fix some

background Riemannian metric g0 and denote the norm of DE
x b with respect

to g0 by dE
x b = ‖Dxb(v)‖bx · ‖v‖−1

x , where v ∈ Ex and ‖ . ‖x is the norm
given by g0 at x.

By the assumption there exist an element a0 ∈ ∂H not contained in
any other Lyapunov hyperplane and a point x∗ such that the orbit O∗ :=
{(ta0)x∗} is dense. We define a new metric g∗ on E over O∗ by taking
the background metric g0 on Ex∗ and propagating it along this dense orbit
by the derivative DE

x∗(ta0). By the construction, the derivative DE
x (ta0) is

isometric with respect to g∗ for any t and any x ∈ O∗.
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The main part of the proof is to show that the metric g∗ is Hölder
continuous on O∗ and thus extends to a Hölder continuous Riemannian
metric g on the whole distribution E. Clearly, such g is also preserved by
DE

x (ta0) for any t and any x ∈ M . For any other element b ∈ R
k consider

the metric b∗g. By commutativity, this metric is again preserved by ta0

for any t. Since E is one-dimensional and O∗ is dense, it is easy to see
that, up to constant scaling, there is only one metric invariant under ta0.
Hence b∗g = c · g on M , where c is a constant. Clearly, the logarithm of
this constant gives the Lyapunov exponent for b of any v ∈ E and hence
c = eχ(b). To complete the proof of the proposition we will now show that
g∗ is Hölder continuous on O∗.

To prove that g∗ is Hölder continuous on O∗ we need to show that for
any point x ∈ O∗ which returns close to itself under an element a = ta0 the
norm dE

x a defined above is Hölder close to 1. The specific Hölder exponent
depends on the Hölder exponents of certain invariant foliations. Let α0 > 0
be such that all coarse Lyapunov distributions are Hölder continuous with
exponent α0, and let α = min{α0, 1/2}. We will show that for any positive
β < α/(1 + α) there exists a positive constant ε∗ such that

|dE
x a−1| < dist(x, ax)β for any x ∈ O∗ and a with dist(x, ax) < ε∗ . (1)

To show this we will use special closing arguments given in Proposi-
tions 4.1 and 4.2. They establish the existence of a nearby point which
returns under a to the same leaf of O ⊕W ′.

Fix any positive β < α/(1 + α). Then 1−β > 1/(1 + α). Fix a positive
γ smaller than 1 − β but greater than 1/(1 + α). From this we obtain

αγ > α/(1 + α) > β . (2)

For such β and γ, Proposition 4.1 gives a positive constant ε0. We
choose ε∗ > 0 such that ε∗ < ε0 and εγ

∗ < ε1, where ε1 is a positive
constant given by Proposition 4.2.

Consider x0 ∈ O∗ and a = ta0 with ε = dist(x0, ax0) < ε∗. It suffices to
assume that the return time t is positive and large enough. Suppose that
the inequality (1) does not hold for x0. We will use Propositions 4.1 and
4.2 to obtain an estimate for dE

x0
a which contradicts this assumption if ε∗

satisfies the inequality (9). This will imply that with such ε∗ the inequality
(1) holds for any x ∈ O∗ and a = ta0 with dist(x, ax) < ε∗.

If the inequality (1) does not hold for x0, by taking inverses we may
assume without loss of generality that dE

x0
a < 1 − dist(x0, ax0)β. Thus

we can use Proposition 4.1 to obtain the corresponding point x1. Since



Vol. 17, 2007 ON THE CLASSIFICATION OF CARTAN ACTIONS 479

dist(x1, ax1) < εγ
∗ < ε1 by the choice of ε∗, we can use Proposition 4.2 to

obtain the corresponding point x2 and δ ∈ R
k for which (a+δ)x2 ∈ W ′(x2).

Denote b = a+ δ. Take an Anosov element c such that Ws
c = Ws

a ⊕W ′.
Let y = lim(tnc)x2 be an accumulation point of c-orbit of x2. Since
bx2 ∈ W ′(x2) and c contracts W ′ we obtain y = lim(tnc)(bx2). Then
by = lim b((tnc)x2) = lim(tnc)(bx2) = y and thus y is a fixed point for b.

We will now show that dE
y b is close to 1. Since b − a = δ is small, we

may assume that b does not belong to any Lyapunov hyperplane different
from ∂H. Hence either b is Anosov or b belongs to ∂H. In the latter
case, since by = y we immediately obtain dE

y b = 1. Indeed, suppose for
example that dE

y b = λ > 1. Arbitrarily close to b there are Anosov ele-
ments for which E is contained in the stable distribution. For any such
element c and for n sufficiently large so that −nc expands E we can es-
timate dE

y (n(b − c)) = dE
y (−nc) · dE

y (nb) ≥ λn, but this is impossible if the
element b − c is sufficiently close to 0 ∈ R

k. If, on the other hand, b is
Anosov we can conclude that the orbit R

kb is compact (cf. [Q]). Hence
the Lyapunov splitting and Lyapunov exponents are defined at all points
of this compact orbit. We denote by χ̃ the Lyapunov exponent of vectors
in E on this compact orbit. Note that while χ̃ may not coincide with χ, by
Proposition 2.8 their kernels are the same: ker χ̃ = ∂H. Since y is fixed by
b, χ̃(b) = log(dE

y b). Since a ∈ ker χ̃ = ∂H, we obtain
∣
∣χ̃(b)

∣
∣ =

∣
∣χ̃(a) + χ̃(δ)

∣
∣ =

∣
∣χ̃(δ)

∣
∣ < C1‖δ‖ < C2ε

γ where ε = dist(x0, ax0) .

Thus we conclude that
|dE

y b − 1| < C3ε
γ . (3)

We will now show that dE
x0

a is Hölder close to dE
y b using the following

estimates. First we get from parts (1) and (2) of Proposition 4.1 together
with Lemma 4.3 that

|dE
x0

a − dE
x1

a| < C4ε
αγ . (4)

Next combine parts (1) and (2) of Proposition 4.2 together with the analog
of Lemma 4.3 for Wu

a0
.

|dE
x1

a − dE
x2

a| < C5ε
αγ . (5)

Now apply part (5) of Proposition 4.2 with b − a = δ.
|dE

x2
a − dE

x2
b| < C6ε

γ . (6)
Finally, we show that

|dE
x2

b − dE
y b| < C7ε

γ . (7)
This can be seen as follows. By commutativity b = (−tnc) ◦ b ◦ (tnc), so for
any iterate (tnc)x2 we have

dE
x2

b = dE
b(tnc)x2

(−tnc) · dE
(tnc)x2

b · dE
x2

(tnc) .
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The middle term on the right side tends to dE
y b, while the ratio of the other

two terms is Hölder close to 1. The latter follows from a standard argument
in the proof of Livsic’ theorem since dE

x c is Hölder continuous and the orbits
of x2 and bx2 under c are exponentially close.

We conclude that equations (3), (4), (5), (6), (7) imply
|dE

x0
a − 1| < C8ε

αγ . (8)
However, by equation (2), αγ > β. Thus, possibly after decreasing ε∗

further to satisfy
C8ε

αγ
∗ < εβ

∗ , (9)
we obtain that the inequality (8) contradicts the assumption that the in-
equality (1) does not hold for x0. Hence we conclude that with this ε∗
equation (1) holds for any x ∈ O∗.

This establishes the desired Hölder estimate for the constructed metric
and thus completes the proof of Proposition 3.1 and Theorem 1.2. �

4 Closing Lemmas

In this section we fix a coarse Lyapunov subspace H and a singular element
a0 ∈ ∂H which is generic, i.e. is not contained in any other Lyapunov hy-
perplane. Hence the neutral distribution of a0 is EH ⊕E(−H), where E(−H)

is trivial if there is no Lyapunov exponent positive on H. We will use the
notation E = EH , E′ = E(−H), Es = Es

a0
, and Eu = Eu

a0
. We assume that

the corresponding distributions W, W ′, Ws, and Wu are Hölder continuous
with exponent α0 > 0, and denote α = min{α0, 1/2}.

The propositions below can be compared to the Anosov closing lemma
for Anosov flows. The main differences are the following. The neutral dis-
tribution E⊕E′ of a0 is not integrable in general, this forces us to consider
W and W ′ separately. The holonomies under consideration are only Hölder
continuous, this forces us to use a topological fixed point argument rather
than the contracting mapping theorem. Proposition 4.2 can be formulated
and proved in the context of a single partially-hyperbolic diffeomorphism
a0 to become a relatively standard version of the closing lemma for diffeo-
morphisms normally hyperbolic to an invariant foliation (cf. [HiPS]). We
formulate it in the specific form that we need with the Lipschitz estimates
absent in [HiPS]. The main novelty is in Proposition 4.1 where we uti-
lize the weak contraction in the neutral foliation W. This is substantially
higher rank, since the proof relies on the nonstationary linearization along
the leaves of W used in Lemma 4.3. The existence of this nonstationary
linearization is provided by an element in R

k which uniformly contracts W.
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Proposition 4.1. For any positive β < α/(1 + α) and positive γ <
1 − β there exists ε0 > 0 such that for any x0 ∈ M and t > 1 with
ε = dist(x0, (ta0)x0) < ε0 and ||DE

x0
(ta0)|| < 1 − εβ there exists a point

x1 ∈ M such that

(1) dist(x0, x1) < εγ ;
(2) x1 ∈ (Ws ⊕W)(x0);
(3) dist((ta0)x0, (ta0)x1) < εγ ;
(4) (ta0)x1 ∈ (O ⊕Wu ⊕W ′)(x1);
(5) dist(x1, (ta0)x1) < εγ .

Proposition 4.2. There exist positive constants ε1 and C such that
for any x1 ∈ M and t > 1 with (ta0)x1 ∈ (O ⊕ Wu ⊕ W ′)(x1) and ε =
dist(x1, (ta0)x1) < ε1, there exist a point x2 ∈ M , δ ∈ R

k, such that

(1) dist(x1, x2) < Cε;
(2) x2 ∈ Wu(x1);
(3) dist((ta0)x1, (ta0)x2) < Cε;
(4) (ta0 + δ)x2 ∈ W ′(x2);
(5) ‖δ‖ < Cε.

Below we give a proof of Proposition 4.1. Proposition 4.2 can be proved
similarly, its proof would avoid the main difficulty caused by the neutral
direction W and yield the Lipschitz estimates.
Proof. Recall that β < α/(1+α) implies 1−β > 1/(1+α). Since it is clearly
sufficient to consider only γ which are close to 1 − β, we may assume that
γ > 1/(1+α). From this we obtain that γ > 1−α and αγ > α/(1+α) > β.
We summarize the inequalities; we have

0 < β <
α

1 + α
< αγ < α ≤ 1

2
≤ 1 − α < γ < 1 − β < 1 . (10)

We introduce the following notation: a = ta0, y0 = ax0, and F =
Ws⊕W. By assumption ε = dist(x0, y0) < ε0. Consider balls B1 ⊂ Ws(x0)
and B2 ⊂ W(x0) of radius k1ε

γ centered at x0. For w1 ∈ B1 and w2 ∈ B2

we denote by [w1, w2] the unique local intersection of W(w1) and Ws(w2) in
F = Ws⊕W. We define a rectangle P = {[w1, w2] : w1 ∈ B1, w2 ∈ B2} ⊂ F (x0).
Since the minimal angle between the leaves of foliations W and Ws is
bounded away from 0, the constant k1 can be chosen so small that P is
contained in a ball of radius εγ centered at x0. Denote f = a|P : P → F (y0)
and let h : f(P ) → F (x0) be the holonomy map of the foliation
O ⊕Wu ⊕W ′. We will show that for small enough ε0 we can ensure that
h(f(P )) ⊂ P . Since P is homeomorphic to a ball, this implies the existence
of a fixed point x1 for h◦f which satisfies the conclusions of the proposition.
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We fix a Riemannian metric on M and the induced metric on Tx0M .
We identify a neighborhood of x0 in M with Tx0M using local coordinates
for which the differential at the base point is identity, and the leaf F (x0)
identifies with its tangent space. By abuse of notation we will write F
for the flat leaf F (x0) and F ′ for the leaf F (y0). We denote by Pr the
orthogonal projection from F ′ to F .

First we give an estimate of the distance between the leaves F and F ′.
For a point x ∈ F let x′ ∈ F ′ be such that x = Pr(x′). Denote by d(x) the
distance between x ∈ F and the corresponding x′ ∈ F ′. Let d0 = d(x0).
Since the tangent distribution of the foliation F is Hölder with exponent α,
the maximal angle between F and Tx′F ′ is at most K2d(x)α. Hence the
function d satisfies inequality |grad d(x)| ≤ K2d(x)α. We conclude that d is
bounded by the solution of y′ = K2y

α with the initial condition y(0) = d0,

d(x) ≤ (

d1−α
0 + (1 − α)K2 dist(x, x0)

)1/(1−α)
.

We observe that d0 is of order ε = dist(x0, y0). Recall that P is con-
tained in a ball of radius εγ centered at x0, and that εγ < ε1−α by (10).
Thus the first term in the sum dominates for small ε and hence the max-
imum of d on P is bounded by K3ε for some constant K3. We conclude
that

dist
(

P, f(P )
)

= max dist(x, x′) ≤ K3ε . (11)

Now we estimate how the holonomy h from F ′ to F deviates from the
orthogonal projection Pr. Since the minimal angle between the leaves of
foliations F and O ⊕ Wu ⊕ W ′ is bounded away from 0, there exists a
constant K4 such that for any x′ ∈ f(P ) we can estimate
∆(x′) := dist

(

h(x′),Pr(x′)
)

= dist
(

h(x′), x)
) ≤ K4 dist(x, x′) ≤ K4K3ε .

(12)
Now we will study f(P ) and its projection Pr(f(P )) to F . Our goal is

to show that Pr(f(P )) ⊂ P and that the distance form Pr(f(P )) to the
relative boundary ∂P of P in F is greater than the upper bound we just
obtained for the distance ∆ between the holonomy h and the projection
Pr. This will imply that h(f(P )) ⊂ P and complete the proof.

We first estimate the derivatives of a = ta0 on P . Recall that a0 con-
tracts Ws. We may assume that the return time t has to be large for the
return under a to be ε-close. Hence we may assume that the norm of the
derivative of a restricted to Es is bounded above by 1/4 on P ,

‖DEs

x a‖ < 1
4 for any x ∈ P . (13)

Now we will estimate the derivative DE
x a in E direction using the fol-

lowing lemma.
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Lemma 4.3. The dependence of the derivative DE
y (ta0) on y is Lipschitz

continuous along W and Hölder continuous along Ws
a0

with exponent α and
constants independent of y and t.

Proof. To show the Lipschitz continuity along one-dimensional leaves of W
we use nonstationary linearization of the action. For an element b ∈ R

k

which contracts W the following lemma from [KL2] gives the nonstationary
linearization of b along W.
Lemma 4.4. If a diffeomorphism b of a manifold M contracts an invari-
ant one-dimensional foliation W, then there exists a unique family of C∞

diffeomorphisms hx : W(x) → TxW, x ∈ M , such that

(i) hbx ◦ b = Dxb ◦ hx;
(ii) hx(x) = 0 and Dxhx is the identity map;
(iii) hx depends continuously on x in C∞ topology.

Since a = ta0 commutes with b, the same family linearizes a and we
obtain

a|W(x)(y) = (h−1
ax ◦ DE

x a ◦ hx)(y) : W(x) → W(ax) .

Since the second derivatives of hx are uniformly bounded, the first deriva-
tives vary Lipschitz continuously. This implies that DE

y a varies Lipschitz
continuously along W(x) in a small neighborhood of an arbitrary point x.

Now we show the Hölder continuity along Ws. Since a0 exponen-
tially contracts Ws

a0
, the orbits under t0a of any two nearby points y1

and y2 ∈ Ws
a0

(y1) are exponentially close. The derivative cocycle in the
direction of E is a Hölder cocycle. Hence the standard argument from the
proof of Livsic’ theorem shows that DE

y1
(ta0) is Hölder close to DE

y2
(ta0)

with exponent α and a uniform constant. �
By the assumption, ‖DE

x0
a‖ < 1 − εβ . Since P is contained in a ball of

radius εγ , using Lemma 4.3 and the fact that β < αγ we obtain
‖DE

x a‖ < 1 − εβ

2 for any x ∈ P (14)
provided that ε0 is small enough.

Now we study how f(P ) projects to F and estimate the distance form
Pr(f(P )) to the boundary ∂P . Recall that B2 is just an interval in W(x0)
centered at x0 of length 2k1ε

γ . Using estimates similar to (11) we obtain
dist

(

B2,Pr(f(B2))
) ≤ dist

(

B2, f(B2)
) ≤ K3ε . (15)

The rectangle P is the union of horizontal layers Bx = B1 × {x} =
{[w1, x]b : w1 ∈ B1} ⊂ Ws(x) for x ∈ B2. Let us fix x ∈ B2 and the corre-
sponding Bx. Using (13) we obtain that f(Bx) is contained in a ball of ra-
dius 1

3k1ε
γ centered at y = f(x) in Ws(y). By (15), dist(Pr(y), B2) ≤ K3ε.
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Hence it is easy to see that the projection of this ball to P is at least k5 εγ

away from the vertical part ∂B1 ×B2 of the boundary ∂P . Thus we obtain
dist

(

Pr(f(Bx)), ∂B1 × B2

) ≥ k5ε
γ . (16)

Now we will estimate the distance from Pr(f(Bx)) to Bx1 = B1×{x1}⊂∂P ,
where x1 is one of the endpoints of the interval B2. We denote z =
Pr(y), and z0 = Pr(y0). The derivative estimate (14) above implies that
dist(y0, y) ≤ k1ε

γ
(

1 − 1
2εβ

)

, hence after projecting we have dist(z0, z) ≤
k1ε

γ
(

1−1
2εβ

)

. Since dist(x0, y0)≤ε by assumption, we obtain dist(x0, z0)≤ε.
Hence dist(x0, z) ≤ ε + k1ε

γ
(

1 − 1
2εβ

)

and

dist(z, x1) ≥ dist(x0, x1) − dist(x0, z) ≥ k1ε
γ −

(

ε + k1ε
γ − 1

2k1ε
γεβ

)

≥ 1
2k1ε

γεβ − ε ≥ 1
3k1ε

γ+β

since γ + β < 1, provided that ε < ε0 is small enough. By (15), z is K3ε
close to the interval B2 ⊂ W(x0). Since the angles between W and Ws are
bounded away from zero, it is easy to see that

dist(z,Bx1) ≥ k6ε
γ+β .

We will now complete the estimate of the distance between Pr(f(Bx))
and Bx1. Note that f(Bx) and Bx1 lie on two nearby leaves of the foliation
Ws and the distance from any point in Pr(f(Bx)) to any point Bx1 is at
most of order εγ . By Hölder continuity of the corresponding distribution
we see that the angles between tangent spaces to f(Bx) and Bx1 differ no
more than K7(εγ)α. Hence, after projecting, the angles between tangent
spaces to Pr(f(Bx)) and Bx1 also differ no more than K7(εγ)α. Thus, the
distance from a point on Pr(f(Bx)) to Bx1 , as a function of this point,
cannot change by more than

K7(εγ)α · (2k1ε
γ) = 2k1K7ε

γ+αγ .

Since αγ > β we obtain
dist(Pr((f(Bx)), Bx1) ≥ k6ε

γ+β − 2k1K7ε
γ+αγ ≥ k8ε

γ+β

provided that ε < ε0 is small enough. Combining this with (16) we conclude
that

dist
(

Pr(f(Bx)), ∂P
) ≥ max{k5 εγ , k8ε

γ+β
}

.

Since x ∈ B2 was arbitrary we conclude that
dist

(

Pr(f(P )), ∂P
) ≥ k9ε

γ+β .

Since γ+β < 1 we see this distance is larger than that the estimate (12)
for the deviation of the holonomy from the projection, provided that ε < ε0

is small enough. This shows that h(f(P )) ⊂ P and proves the existence of
a fixed point which satisfies the conclusions of Proposition 4.1. �
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5 Classification of R
k-Actions

In this section we will prove the following generalization of Theorem 1.3.
We will use this stronger technical version to prove Corollary 1.4 in the
next section. Given two Lyapunov hyperplanes Hi and Hj with Hj 	= ±Hi,
we denote by Eij the smallest direct sum of coarse Lyapunov distributions
which is integrable and contains EHi and EHj . We denote the foliation
tangent to Eij by Wij

Theorem 5.1. Let α be a C∞ totally Cartan action of R
k, k ≥ 3, on a

compact smooth connected manifold M preserving an ergodic probability
measure µ with full support. Suppose that every Lyapunov hyperplane
contains a generic one-parameter subgroup with a dense orbit. Assume
further that for any two Lyapunov half spaces Hi and Hj 	= ±Hi there is
an element a ∈ ∂Hi ∩ ∂Hj and a point x ∈ M for which the closure of
the a-orbit contains the whole leaf Wij(x). Then α is C∞ conjugate to an
almost algebraic action.

Proof. First we note that Theorem 1.2 provides us with a Hölder continuous
Riemannian metric g on M such that for any a ∈ R

k and any Lyapunov
exponent χ

‖a∗(v)‖ = eχ(a)‖v‖ for any v ∈ Eχ .

The next step is to show that this metric g and the coarse Lyapunov
splitting are C∞. For this we will use Theorem 2.4 from [GS]. Our assump-
tions on the one-dimensionality of the coarse Lyapunov foliations and the
existence of the metric g given by Theorem 1.2 guarantee that the assump-
tions of Theorem 2.4 are satisfied with the exception of the assumptions
of invariant volume and ergodicity of one-parameter subgroups. We note
however that the proof goes through verbatim under the weaker assumption
of preservation of an ergodic invariant measure with full support. Further-
more, ergodicity of one-parameter subgroups is used only to guarantee that
for certain one-parameter subgroups in the Lyapunov hyperplanes there are
points x whose orbits accumulate on the whole leaves Wij(x). The last as-
sumption of Theorem 5.1 is precisely what is required in the proof. Thus
we obtain that the metric g and the coarse Lyapunov splitting are C∞.
Now we can complete the proof of Theorem 5.1 as follows.

Passing to a finite cover of M if necessary, we may assume for any
coarse Lyapunov direction Eχ that there are nowhere vanishing vector-
fields tangent to Eχ. Consider all the vectorfields Vχ pointing in the var-
ious one-dimensional Lyapunov foliations Wχ of length 1 with respect to
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the metric g as well as the generating fields of the R
k-action. Then all vec-

torfields Vχ are smooth and are expanded or contracted uniformly by eχ(a)

for a ∈ R
k. Hence the Lie bracket of two such fields [Vχ, Vξ] is expanded

by e(χ+ξ)(a), and hence is a constant multiple of Vχ+ξ if the latter exists.
Otherwise [Vχ, Vξ] = 0. Since the R

k-action normalizes the Vχ, the Vχ to-
gether with the generating fields of the R

k-action span a finite dimensional
Lie algebra g. Let G be the corresponding simply connected Lie group with
Lie algebra g. Since the Vχ are globally defined and bounded with respect
to an ambient Riemannian metric, G acts on M . By the construction this
action is locally simply transitive and thus transitive as M is connected.
Hence M is a homogeneous space G/Γ for a lattice Γ in G. Moreover, the
R

k-action embeds into the left action of G by construction. �

6 Proof of Corollary 1.4

To prove Corollary 1.4 we will apply Theorem 5.1 to the suspension α′ of
the Z

k action α. By the assumption Z
k contains an element a which is a

transitive Anosov diffeomorphism. It is well known that such an element
has a unique measure µ of maximal entropy. In fact, transitive Anosov
diffeomorphisms are topologically mixing [KH, Cor. 18.3.5] and thus have
the specification property [KH, Th. 18.3.9]. For the latter, [KH, Th. 20.1.3]
proves existence and uniqueness of the measure of maximal entropy. Fi-
nally, it has full support due to the estimate from below of the measure of
a dynamical ball [KH, Lem. 20.1.1]. By uniqueness, µ is also α-invariant.
Indeed, for any b ∈ Z

k by commutativity b∗µ is also a-invariant and has the
same entropy. Hence µ lifts to an α′-invariant measure µ′ on the suspension
manifold M ′. Clearly µ′ is ergodic with respect to α′ and has full support
on M ′.

We will now verify that the suspensions of nondegenerate TNS Cartan
Z

k actions satisfy the assumptions of Theorem 5.1. First we notice the easy
Lemma 6.1. The suspension action of a Z

k action all of whose non-trivial
elements act by Anosov diffeomorphisms is totally Anosov.

Proof. If a ∈ Z
k is an Anosov diffeomorphisms then any non-trivial element

on the line R · a is an Anosov element for the suspension action. Since all
non-trivial elements of the original action are assumed to be Anosov it is
clear that R · Z

k forms a dense set in R
k. �

Next we will verify the two hypotheses on transitivity of Theorem 5.1
adapting an argument of [KS2]. First we check the transitivity assumption
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that every Lyapunov hyperplane contains a generic one-parameter subgroup
with a dense orbit.
Lemma 6.2. For every Lyapunov hyperplane ∂H almost every element in
∂H is transitive.

Proof. Fix a Lyapunov half-space H. Pick a generic element a ∈ ∂H and
an Anosov element c ∈ (−H) so close to a as to preserve the signs of all
Lyapunov exponents nonzero on a. In particular we get Ws

a = Ws
c . We can

take element c to be a time-t map of an Anosov element b which fixes the
fibers of the suspension and induces an Anosov diffeomorphism on them.
Note that this Anosov diffeomorphism is transitive. Indeed, it preserves
a finite measure of full support. Thus the nonwandering set is the whole
manifold. It is well known that this implies topological transitivity [KH,
Cor. 18.3.5]. As above, such an element has a unique measure ν of maximal
entropy which is also α-invariant and lifts to an α′-invariant measure ν ′

with full support on the suspension manifold M ′. We will use measure ν ′

for the rest of the proof.
Birkhoff averages with respect to a of any continuous function are con-

stant on the leaves of Ws
a. Since such averages generate the algebra of

a-invariant functions we conclude that the partition ξa into ergodic com-
ponents of a is coarser than the measurable hull ξ(Ws

a) of the foliation
Ws

a which coincides with the Pinsker algebra π(c) ([LY, Th.B]). Thus we
conclude

ξa ≤ ξ(Ws
a) = ξ(Ws

c ) = π(c) .

This shows the partition ξ∂H into ergodic components of ∂H is coarser
than ξ(Ws

c ) = π(c). Since the Pinsker algebra of b with respect to ν on M
is trivial, the Pinsker algebra of c (with respect to ν ′) is coarser than the
partition into the fibers of the suspension. Hence so is ξ∂H , the partition
into the ergodic components of ∂H. Hence we can project ξ∂H along the
fibers of the suspension to the factor. The factor is T

k with the standard
R

k action by translations. Since every element of Z
k is Anosov, no element

in Z
k can belong to a Lyapunov hyperplane. Thus ∂H contains no element

in Z
k and hence ∂H action on T

k is uniquely ergodic. This implies that
the projection of ξ∂H to T

k is trivial, and hence so is ξ∂H itself. This
establishes the ergodicity of ∂H with respect to ν ′. It is general that if
an abelian group acts ergodically then so does a.e. element in the group.
Hence we get transitivity of almost every element. �

Now we verify the second transitivity assumption of Theorem 5.1. Con-
sider two (negative) Lyapunov half spaces Hi and Hj 	= ±Hi and denote
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by Wi and Wj the corresponding coarse Lyapunov foliations. By non-
degeneracy, we can choose an element a ∈ ∂Hi ∩ ∂Hj which does not
belong to any other Lyapunov hyperplane. Then we can take an Anosov
element c in −(Hi∩Hj) so close to a as to preserve the signs of all Lyapunov
exponents nonzero on a. By the choice of a, any Lyapunov exponent zero
on a has either ∂Hi or ∂Hj as the kernel. Since the action is TNS, such an
exponent must be negative on either Hi or Hj, and hence is positive on c.
Thus Eu

c = Eu
a ⊕ Ei ⊕ Ej and Ws

c = Ws
a. Therefore, as in the proof of the

previous lemma, we get the following inequalities
ξa ≤ ξ(Ws

a) = ξ(Ws
c ) = π(c) .

Again as in the previous lemma the Pinsker algebra of c (with respect to
the measure of the maximal entropy for c) is coarser than the partition
into the fibers of the suspension. Thus the ergodic components of a consist
of the whole fibers. Since the conditional measures on the fibers have full
support, the closure of a-orbit of a typical point contains the whole fiber
through that point and, in particular, Wij. �

We conclude from Theorem 1.3 that α′ is C∞ conjugate to an algebraic
action. To compete the proof of Theorem 1.4 we use Lemma 6.3 below.
We note that in our case the infranlimanifold is finitely covered by a torus.
Indeed, if the corresponding nilpotent Lie algebra was not abelian then
there would be a resonance relation χ1 + χ2 = χ3 among the Lyapunov
exponents, this can be seen as in the end of the proof of Theorem 5.1.
It is easy to see, however, that such a relation is impossible due to the
nondegeneracy assumption.
Lemma 6.3. If the suspension of a Z

k Anosov action is C∞-conjugate
to an algebraic action then the original Z

k-action is C∞-conjugate to an
action by automorphisms of infranilmanifolds

Proof. The induced R
k-action contains the original Z

k-action by restricting
to a fiber. Since the algebraic R

k-action expands and contracts a smooth
Riemannian metric such that

‖a∗(v)‖ = eχ(a)‖v‖ for any v ∈ Eχ

so does the original Z
k-action. Also notice that the non-orbit coarse Lya-

punov spaces are all tangent to the fibers of the suspension. Then it follows
by the same argument as at the end of the proof of Theorem 1.4 that the
Z

k-action is algebraic. It is well known that the only algebraic Z
k ac-

tions are the ones by automorphisms of infranilmanifolds. We refer to [GS,
Prop. 3.13] for a proof. �



Vol. 17, 2007 ON THE CLASSIFICATION OF CARTAN ACTIONS 489

References

[B] Y. Benoist, Convexes divisibles I, Algebraic Groups and Arithmetic, Tata
Inst. Fund. Res., Mumbai (2004), 339–390,

[DK] D. Damjanovic, A. Katok, Local rigidity of partially hyperbolic actions
on the torus, preprint.

[FJ] F.T. Farrell, L.E. Jones, Anosov diffeomorphisms constructed from
π1 Diff(Sn), Topology 17:3 (1978), 273–282.

[Fr] J. Franks, Anosov diffeomorphisms, in “Global Analysis, Proc. Sympos.
Pure Math. XIV, Berkeley, Calif., 1968”, Amer. Math. Soc., Providence,
R.I. (1970), 61–93.

[FrW] J. Franks, B. Williams, Anomalous Anosov flows, Global Theory of
Dynamical Systems (Proc. Internat. Conf., Northwestern Univ., Evanston,
Ill., 1979), Springer Lecture Notes in Math. 819 (1980), 158–174.

[GS] E. Goetze, R.J. Spatzier, Smooth classification of Cartan actions of
higher rank semisimple Lie groups and their lattices, Annals of Math. 150
(1999), 743–773.

[GrT] M. Gromov, W. Thurston, Pinching constants for hyperbolic mani-
folds, Invent. Math. 89:1 (1987), 1–12.

[HT] M. Handel, W.P. Thurston, Anosov flows on new three manifolds,
Invent. Math. 59:2 (1980), 95–103.

[HiPS] M.W. Hirsch, C.C. Pugh, M. Shub, Invariant Manifolds, Springer-
Verlag, New York, 1977.

[Hu1] S. Hurder, Rigidity for Anosov actions of higher rank lattices, Ann. of
Math. (2) 135:2 (1992), 361–410.

[Hu2] S. Hurder, A survey of rigidity theory for Anosov actions, in “Differential
Topology, Foliations, and Group Actions (Rio de Janeiro, 1992), Contemp.
Math. 161, Amer. Math. Soc., Providence, RI (1994), 143–173.

[KH] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dy-
namical Systems, (with a supplementary chapter by A. Katok and L.

Mendoza), Encyclopedia of Mathematics and its Applications, 54. Cam-
bridge University Press, Cambridge, 1995.

[KL1] A. Katok, J. Lewis, Global rigidity results for lattice actions on tori
and new examples of volume-preserving actions, Israel J. Math. 93 (1996),
253–280.

[KL2] A. Katok, J. Lewis, Local rigidity for certain groups of toral automor-
phisms, Israel J. Math. 75:2-3 (1991), 203–241.

[KLZ] A. Katok, J. Lewis, R. Zimmer, Cocycle superrigidity and rigidity for
lattice actions on tori, Topology 35:1 (1996), 27–38.

[KNT] A. Katok, V. Nitica, A. Török, Non-abelian cohomology of abelian
Anosov actions, Ergodic Theory Dynam. Systems 20:1 (2000), 259–288.

[KS1] A. Katok, R.J. Spatzier, First cohomology of Anosov actions of higher
rank abelian groups and applications to rigidity, Inst. Hautes Études Sci.
Publ. Math. 79 (1994), 131–156.



490 B. KALININ AND R. SPATZIER GAFA

[KS2] A. Katok, R.J. Spatzier, Invariant measures for higher-rank hyperbolic
abelian actions, Ergodic Theory Dynam. Systems 16:4 (1996), 751–778;
Corrections in Ergodic Theory Dynam. Systems 18:2 (1998), 503–507.

[KS3] A. Katok, R.J. Spatzier, Differential rigidity of Anosov actions of
higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst.
Steklova 216 (1997), Din. Sist. i Smezhnye Vopr. 292–319; translation in
Proc. Steklov Inst. Math. 1 (216) (1997), 287–314.

[LY] F. Ledrappier, L.-S. Young, The metric entropy of diffeomorphisms,
Ann. Math. 122 (1985), 509–539.

[Li] E. Lindenstrauss, Rigidity of multiparameter actions. Probability in
mathematics, Israel J. Math. 149 (2005), 199–226.

[LlMM] R. de la Llave, J.M. Marco, R. Moriyo’n, Canonical perturbation
theory of Anosov systems and regularity results for the Livšic cohomology
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