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Abstract. We consider linear cocycles over non-uniformly hyperbolic dynam-
ical systems. The base system is a di↵eomorphism f of a compact manifold
X preserving a hyperbolic ergodic probability measure µ. The cocycle A over
f is Hölder continuous and takes values in GL(d,R) or, more generally, in
the group of invertible bounded linear operators on a Banach space. For a
GL(d,R)-valued cocycle A we prove that the Lyapunov exponents of A with
respect to µ can be approximated by the Lyapunov exponents of A with respect
to measures on hyperbolic periodic orbits of f . In the infinite-dimensional set-
ting one can define the upper and lower Lyapunov exponents of A with respect
to µ, but they cannot always be approximated by the exponents of A on peri-
odic orbits. We prove that they can be approximated in terms of the norms of
the return values of A on hyperbolic periodic orbits of f .

1. Introduction and statements of the results. The theory of non-uniformly
hyperbolic dynamical systems was pioneered by Ya. Pesin in [11, 12] as a general-
ization of uniform hyperbolicity. It has become one of the central areas in smooth
dynamics with numerous applications, see [2, 13]. Periodic points play a major
role in the study of both uniformly and non-uniformly hyperbolic systems. In the
non-uniformly hyperbolic case, the existence of hyperbolic periodic orbits and their
relations to dynamical and ergodic properties of the system were established by A.
Katok in a seminal paper [9]. In fact, any hyperbolic invariant measure can be
approximated in weak* topology by invariant measures supported on hyperbolic
periodic points of the system [2]. A further advance in this direction was obtained
by Z. Wang and W. Sun who showed that Lyapunov exponents of any hyperbolic
measure can be approximated by Lyapunov exponents at periodic points [14]. This
does not follow from weak* approximation as Lyapunov exponents in general do
not depend continuously on the measure in weak* topology.

The Lyapunov exponents above correspond to the derivative cocycle Df of the
base system (X, f), which is a particular case of a linear cocycle, that is, an au-
tomorphism of a vector bundle over X that projects to f . Linear cocycles are the
prime examples of non-commutative cocycles over dynamical systems. For uni-
formly hyperbolic systems, where every invariant measure is hyperbolic, a periodic
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approximation of Lyapunov exponents of linear cocycles was established by the first
author in [5]. The results and techniques in [5] proved useful in various areas such as
cohomology of non-commutative cocycles and the study of random and Markovian
matrices and operators. More recently, approximation results were obtained by the
authors for cocycles with values in the group of invertible bounded linear operators
on a Banach space [7] and by L. Backes for semi-invertible matrix cocycles [1].

In this paper we extend the periodic approximation results to linear cocycles
over non-uniformly hyperbolic systems. In the base we consider a di↵eomorphism
f of a compact manifold X preserving a hyperbolic ergodic probability measure
µ. The cocycles over (X, f) will take values in GL(d,R) or, more generally, the
group GL(V ) of invertible bounded linear operators on a Banach space V . The
space L(V ) of bounded linear operators on V is a Banach space equipped with
the operator norm kAk = sup {kAvk : v 2 V, kvk  1}. The open set GL(V ) of
invertible elements in L(V ) is a topological group and a complete metric space with
respect to the metric

d(A,B) = kA�Bk+ kA�1 �B

�1k.

Definition 1.1. Let f be a homeomorphism of a compact metric space X and let
A be a function from X to GL(V ). The GL(V )-valued cocycle over f generated by
A is the map A : X ⇥ Z ! GL(V ) defined by A(x, 0) = Id and for n 2 N,

A(x, n) = An

x

= A(fn�1
x) � · · · �A(x), A(x,�n) = A�n

x

= (An

f

�n
x

)�1.

In the finite-dimensional case of V = Rd we will call A a GL(d,R)-valued cocycle.

We say that the cocycle A is ↵-Hölder, 0 < ↵  1, if there exists M > 0 such
that

d(A
x

,A
y

)  Mdist(x, y)↵ for all x, y 2 X. (1)

Clearly, A satisfies the cocycle equation An+k

x

= An

f

k
x

�Ak

x

. Since X is compact,

the Hölder condition (1) is equivalent to kA
x

�A
y

k  M

0dist(x, y)↵ for all x, y 2 X.
Hölder continuity of a cocycle is natural in our setting as the lowest regularity
allowing development of a meaningful theory beyond the measurable case. It is
also the regularity of the derivative cocycle of a C

1+Hölder di↵eomorphism and its
restrictions to Hölder continuous invariant sub-bundles.

Any GL(V )-valued cocycle A can be viewed as an automorphism of the trivial
vector bundle E = X⇥V , A(x, v) = (fx,A

x

(v)). More generally, we can consider a
linear cocycle A, i.e. an automorphism of any vector bundle E over X that projects
to f . This setting covers the case of the derivative cocycle Df of a di↵eomorphism
f of X with nontrivial tangent bundle. For any measure µ on X, any vector bundle
E over X is trivial on a set of full measure [2, Proposition 2.1.2] and hence any
linear cocycle A can be viewed as a GL(V )-valued cocycle on a set of full measure.

First we consider the finite dimensional case where the Lyapunov exponents and
Lyapunov decomposition for A with respect to an ergodic f -invariant measure µ are
given by Oseledets Multiplicative Ergodic Theorem. We note that both are defined
µ-a.e. and depend on the choice of µ.

Oseledets Multiplicative Ergodic Theorem. [10, 2] Let f be an invertible er-
godic measure-preserving transformation of a Lebesgue probability space (X,µ). Let
A be a measurable GL(d,R)-valued cocycle over f satisfying log kA

x

k 2 L

1(X,µ)
and log kA�1

x

k 2 L

1(X,µ). Then there exist numbers �1 < · · · < �

m

, an f -invariant
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set ⇤ with µ(⇤) = 1, and an A-invariant Lyapunov decomposition

Rd = E
x

= E1
x

� · · ·� Em

x

for x 2 ⇤ such that

(i) lim
n!±1

n

�1 log kAn

x

vk = �

i

for any i = 1, . . . ,m and any 0 6= v 2 E i

x

, and

(ii) lim
n!±1

n

�1 log | detAn

x

| =
P

m

i=1 di�i

, where d

i

= dim E i

x

.

Definition 1.2. The numbers �1, . . . ,�m

are called the Lyapunov exponents of A
with respect to µ and the integers d1, . . . , dm are called their multiplicities.

Definition 1.3. Let µ be an ergodic invariant Borel probability measure for a
di↵eomorphism f of a compact manifold X. The measure is called hyperbolic if all
the Lyapunov exponents of the derivative cocycleDf with respect to µ are non-zero.

By Lyapunov exponents of A at a periodic point p = f

k

p we mean the Lyapunov
exponents of A with respect to the invariant measure µ

p

on the orbit of p. They
equal (1/k) of the logarithms of the absolute values of the eigenvalues of Ak

p

. A

periodic point p is called hyperbolic if Df has no zero exponents at p, that is D
p

f

k

has no eigenvalues of absolute value 1.
The following theorem extends the periodic approximation results in [14] and [5]

to linear cocycles over non-uniformly hyperbolic systems.

Theorem 1.4. Let f be a C

1+Hölder di↵eomorphism of a compact manifold X, let
µ be a hyperbolic ergodic f -invariant Borel probability measure on X, and let A be
a GL(d,R)-valued Hölder continuous cocycle over f .

Then the Lyapunov exponents �1  · · ·  �

d

of A with respect to µ, listed
with multiplicities, can be approximated by the Lyapunov exponents of A at periodic
points. More precisely, for each ✏ > 0 there exists a hyperbolic periodic point p 2 X

for which the Lyapunov exponents �

(p)
1  · · ·  �

(p)
d

of A satisfy

|�
i

� �

(p)
i

| < ✏ for i = 1, . . . , d. (2)

The largest and smallest Lyapunov exponents �+(A, µ) = �

m

and ��(A, µ) = �1

can be expressed as follows:

�+(A, µ) = lim
n!1

n

�1 log kAn

x

k for µ-a.e. x 2 X,

��(A, µ) = lim
n!1

n

�1 log k(An

x

)�1k�1 for µ-a.e. x 2 X.

(3)

While there is no Multiplicative Ergodic Theorem in the infinite-dimensional case
in general, the upper and lower Lyapunov exponents �+ and �� of A can still be
defined by (3), see Section 4.1. For the invariant measure µ

p

on the orbit of p = f

k

p

we have

�+(A, µ

p

) = k

�1 log (spectral radius of Ak

p

)  k

�1 log kAk

p

k.

In the infinite-dimensional setting, it is not always possible to approximate �+(A, µ)
by �+(A, µ

p

), even for cocycles over uniformly hyperbolic systems [7, Proposition
1.5]. However, an approximation of �+(A, µ) by k

�1 log kAk

p

k was obtained in [7]
for cocycles over uniformly hyperbolic systems. The next theorem establishes such
an approximation in the non-uniformly hyperbolic setting.

Theorem 1.5. Let f be a C

1+Hölder di↵eomorphism of compact manifold X, let µ
be a hyperbolic ergodic f -invariant Borel probability measure on X, and let A be a
Hölder continuous GL(V )-valued cocycle over f .
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Then for each ✏ > 0 there exists a hyperbolic periodic point p = f

k

p in X such
that

��
�+(A, µ)� k

�1 log kAk

p

k
��
< ✏ and

��
��(A, µ)� k

�1 log k(Ak

p

)�1k�1
��
< ✏. (4)

Moreover, for any N 2 N there exists such p = f

k

p with k > N .

The proof of the finite dimensional approximation in Theorem 1.4 relies on Mul-
tiplicative Ergodic Theorem, which yields that the cocycle has finitely many Lya-
punov exponents and, in particular, the largest one is isolated. As this may not be
the case in infinite dimensional setting even for a single operator, in Theorem 1.5
we use a di↵erent approach which relies on norm estimates. In particular, we use a
suitable version of Lyapunov norm and results on subadditive cocycles [8].

Remark 1.6. Theorems 1.4 and 1.5 can be strengthened to conclude the existence
of a hyperbolic periodic point p = f

k

p which gives simultaneous approximation as
in (2) and (4) for finitely many cocycles A(i), i = 1, . . . ,m, over f with values in
GL(V

i

). We describe the modifications for this case in the proofs.

Remark 1.7. Theorems 1.4 and 1.5 hold if we replaceX⇥V by a Hölder continuous
vector bundle E over X with fiber V and the cocycle A by an automorphism A :
E ! E covering f . This setting is described in detail in Section 2.2 of [6] and the
proofs work without any significant modifications.

2. Preliminaries. For a GL(V )-valued cocycle A over (X, f) we consider the triv-
ial bundle E = X ⇥ V and view An

x

as a fiber map from E
x

to E
f

n
x

. This makes
notations and arguments more intuitive and the extension to non-trivial bundles
more transparent. In fact, all our arguments are written for the bundle setting,
except we sometimes identify fibers E

x

and E
y

at nearby points x and y. This is
automatic for a trivial bundle, and a detailed description of a suitable identification
for a non-trivial bundle is given in [6, Section 2.2].

2.1. Lyapunov metric. We consider a GL(d,R)-valued cocycle A over (X, f, µ)
as in the Oseledets Multiplicative Ergodic Theorem and denote the standard scalar
product in Rd by h·, ·i. We fix ✏ > 0 and for any point x 2 ⇤ define the Lyapunov
scalar product h·, ·i

x,✏

on Rd as follows.
For u 2 E i

x

, v 2 Ej

x

, i 6= j, we set hu, vi
x,✏

= 0.
For u, v 2 E i

x

, i = 1, . . . ,m, we define hu, vi
x,✏

= d

P
n2Z

hAn

x

u,An

x

v i e�2�in�✏|n|
.

The series converges exponentially for any x 2 ⇤. The constant d in the formula
allows a more convenient comparison with the standard scalar product. The norm
generated by this scalar product is called the Lyapunov norm and is denoted by
k.k

x,✏

. When ✏ is fixed we will denote the scalar product by h·, ·i
x

and the norm by
k.k

x

.

We summarize the main properties of the Lyapunov scalar product and norm,
see [2, Sections 3.5.1-3.5.3] for more details. A direct calculation shows [2, Theorem
3.5.5] that for any x 2 ⇤ and any u 2 E i

x

,

e

n�i�✏|n| · kuk
x,✏

 kAn

x

uk
f

n
x,✏

 e

n�i+✏|n| · kuk
x,✏

for all n 2 Z, (5)

e

n�+�✏n  kAn

x

k
f

n
x x

 e

n�++✏n for all n 2 N, (6)
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where �+ = �

m

is the largest Lyapunov exponent and k.k
f

n
x x

is the operator
norm with respect to the Lyapunov norms defined as

kAk
y x

= sup {kAuk
y,✏

· kuk�1
x,✏

: 0 6= u 2 Rd}.
The Lyapunov scalar product and norm are defined only on ⇤ and, in general,

depend only measurably on the point even if the cocycle is Hölder, so comparison
with the standard norm is important. The lower bound follows easily from the
definition: kuk

x,✏

� kuk. An upper bound is not uniform, but can be chosen to
change slowly along the orbits [2, Proposition 3.5.8]: there exists a measurable
function K

✏

(x) on ⇤ such that

kuk  kuk
x,✏

 K

✏

(x)kuk for all x 2 ⇤ and u 2 Rd

, and (7)

K

✏

(x)e�✏|n|  K

✏

(fn

x)  K

✏

(x)e✏|n| for all x 2 ⇤ and n 2 Z. (8)

For any matrix A and any points x, y 2 ⇤ inequalities (7) and (8) yield

K

✏

(x)�1kAk  kAk
y x

 K

✏

(y)kAk . (9)

For any ` > 1 we define the sets

⇤
✏,`

= {x 2 ⇤ : K

✏

(x)  `}. (10)

and note that µ(⇤
✏,`

) ! 1 as ` ! 1. Without loss of generality we can assume that
the set ⇤

✏,`

is compact and that Lyapunov splitting and Lyapunov scalar product
are continuous on ⇤

✏,`

. Indeed, by Luzin theorem we can always find a subset of
⇤
✏,`

satisfying these properties with arbitrarily small loss of measure.

2.2. Pesin sets and closing lemma. Let f be a di↵eomorphism of a compact
manifold X and µ be an ergodic f -invariant Borel probability measure. We apply
the Multiplicative Ergodic Theorem and construct the Lyapunov metric as above for
the derivative cocycle A

x

= D

x

f . For this cocycle, we will denote the corresponding
set ⇤

✏,`

defined in the previous section by R
✏,`

, which is often called a Pesin set.
Suppose now that the measure µ is hyperbolic, i.e. all Lyapunov exponents

of the derivative cocycle Df with respect to µ are non-zero. We assume that
there are both positive and negative such exponents. Otherwise µ is an atomic
measure on a single periodic orbit [2, Lemma 15.4.2], in which case our results
are trivial. We denote by � > 0 the smallest absolute value for these exponents.
We will fix ✏ > 0 su�ciently small compared to � and ` 2 N large enough so
that the corresponding Pesin set R

✏,`

has positive measure. We will apply the
following closing lemma. It does not use the splitting into individual Lyapunov sub-
bundles E i, only the stable/unstable sub-ones, which are the sums of all Lyapunov
sub-bundles corresponding to negative/positive Lyapunov exponents, respectively.
Consequently, a cruder version of a Pesin set can be used instead of R

✏,`

.

Lemma 2.1 (Closing Lemma). [9], [2, Lemma 15.1.2] Let f : X ! X be a
C

1+Hölder di↵eomorphism preserving a hyperbolic Borel probability measure µ and
let be � > 0 the smallest absolute value of its Lyapunov exponents. Then for any
su�ciently large ` 2 N, any su�ciently small ✏ > 0, and any � > 0 there exist
� = �(✏, `) 2 (✏,�� 2✏) and � = �(�, ✏, `) > 0 such that if

x 2 R
✏,`

, f

k

x 2 R
✏,`

and dist(x, fk

x) < � for some k 2 N,

then there exists a hyperbolic periodic point p = f

k

p such that

dist(f i

x, f

i

p)  � e

�� min{ i, k�i } for every i = 0, . . . , k. (11)
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While the lemma is usually stated with a constant on the right hand side of (11),
this constant can be absorbed using the choice of �. We will not use hyperbolicity
of the periodic point p in the proof. In fact, for su�ciently large k the hyperbolicity
of p can be recovered by applying our argument to the derivative cocycle Df .

3. Proof of Theorem 1.4. Let �1 < · · · < �

m

be the Lyapunov exponents of A
with respect to µ, listed without multiplicities. We will denote the largest exponent
�

m

by � and second largest �

m�1 by �

0. Similarly, for any periodic point p we
denote by �

(p) the largest Lyapunov exponent of A at p.
We fix ✏

0
> 0 su�ciently small compared to � and `

0 2 N large enough so that
the corresponding Pesin set R

✏

0
,`

0 for the derivative cocycle Df of the base system
has positive measure. We apply the Closing Lemma 2.1 and get � = �(✏0, `0) > 0.

If � is not the only Lyapunov exponent of A with respect to µ, we define

✏0 = min {↵�, (�� �

0)/4, ✏0 }, (12)

and otherwise we set ✏0 = min {↵�, ✏0 }.
We fix 0 < ✏ < ✏0 and consider the sets ⇤

`,✏

for the cocycle A. We denote

P = ⇤
`,✏

\R
`

0
,✏

0
.

and fix ` su�ciently large so that µ(P ) > 0.
We take a point x 2 P which is in the support of µ restricted to P . Then for

any � > 0 we have µ(P \ B

�/2(x)) > 0, where B

�/2(x) is the open ball of radius
�/2 centered at x. By Poincare recurrence there are infinitely many k 2 N such
that fk

x 2 P \B

�/2(x). For any such k we have: x, fk

x 2 P and dist(x, fk

x) < �.
Taking � = �(�, ✏0, `0) > 0 from the Closing Lemma 2.1 we obtain a hyperbolic
periodic point satisfying (11). We can assume that �  �, so that when � is small
so is �.

We conclude that for each � > 0 there exist arbitrarily large k such that x, fk

x 2
P and there is a hyperbolic periodic point p = f

k

p satisfying (11). Now we show
that for such a point p with a su�ciently large k and a su�ciently small � we have

|�� �

(p)|  3✏. (13)

To estimate �

(p) from above we use the fact [5, Lemma 3.1] that for such a point p

kAk

p

k  ` e

c `�

↵

e

k(�+✏)
, (14)

where the constant c depends only on A and on the number (↵� � ✏), which also
follows from Lemma 4.3 below. Since we chose ✏ < ↵� we obtain

�

(p)  k

�1 log kAk

p

k  �+ ✏+ k

�1 log(` ec `�
↵

)  �+ 2✏

provided that � < 1 and k is large enough compared to `.
Now we estimate �(p) from below. We denote x

i

= f

i

x and p

i

= f

i

p, and we write
k.k

i

for the Lyapunov norm at x
i

. Since the Lyapunov norm may not exist at points
p

i

we will use the Lyapunov norms at the corresponding points x
i

for the estimates.
For each i we have the orthogonal splitting Rd = E 0

i

� E 00
i

, where E 0
i

= Em

xi
is the

Lyapunov space at x
i

corresponding to the largest Lyapunov exponent � = �

m

, and
E 00
i

is the direct sum of the other Lyapunov spaces at x
i

. We will assume that � is
not the only Lyapunov exponent of A, as otherwise E 00

i

= {0} and the argument is
simpler. For a vector u 2 Rd we write u = u1 + u2, where u1 2 E 0

i

and u2 2 E 00
i

.
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We take ✓ = e

�

0��+4✏
< 1 by the choice of ✏. For i = 0, . . . , k we consider the

cones

K

i

= {u 2 Rd : ku2ki  ku1ki} and K

✓

i

= {u 2 Rd : ku2ki  ✓ ku1ki }.
Now we show that there exist �0 > 0 such that for all 0 < � < �0 and all i =
0, . . . , k � 1

A
pi(Ki

) ⇢ K

✓

i+1 and k (A
piu)1 ki+1 � e

��2✏ku1ki for each u 2 K

i

. (15)

We fix 0  i < k and a vector u 2 K

i

. Denoting A
xiu = v = v1 + v2 we get by (5)

e

��✏ku1ki  kv1ki+1  e

�+✏kuk
i

and kv2ki+1  e

�

0+✏ku2ki . (16)

We write A
pi = (Id +�

i

)A
xi , where �

i

= A
pi(Axi)

�1 � Id = (A
pi �A

xi)(Axi)
�1

.

Since both x0 and x

k

are in ⇤
`

and dist(x
i

, p

i

)  �e

�� min{i, k�i}, using (9) we
can estimate

k�
i

k
xi+1 xi+1  K(x

i+1) k�i

k  K(x
i+1) kApi �A

xik · k(Axi)
�1k 

 K(x
i+1) · c1 dist(xi

, p

i

)↵  `e

✏min{i+1, k�i�1} · c1�↵e�↵� min{i, k�i} 

 `c1�
↵

e

✏

e

(��↵+✏)min{i, k�i}  c2`�
↵ since ��↵+ ✏ < 0.

(17)

Since kuk
i


p
2 ku1ki we conclude using (16) that

k�
i

vk
i+1  k�

i

k
xi+1 xi+1kvki+1  c2`�

↵

e

�+✏kuk
i

 c3` �
↵ku1ki. (18)

Setting w = A
piu = (Id +�

i

)A
xiu = (Id +�

i

)v we observe that

w1 = v1 + (�
i

v)1 and w2 = v2 + (�
i

v)2 (19)

and hence using (16) and (18) we obtain that for small enough �

kw1ki+1 � kv1ki+1 � k�
i

vk
i+1 � e

��✏ku1ki � c3` �
↵ku1ki � e

��2✏ku1ki ,
which gives the inequality in (15). Similarly, using ku2ki  ku1ki, we get

kw2ki+1  kv2ki+1 + k�
i

vk
i+1  e

�

0+✏ku2ki + c3` �
↵ku1ki 

 (e�
0+✏ + c3` �

↵)ku1ki  e

�

0+2✏ku1ki
for all su�ciently small �. Finally, if u 6= 0 we get that

kw2ki+1 / kw1ki+1  e

�

0+2✏
/e

��2✏ = e

�

0��+4✏ = ✓.

This shows that w 2 K

✓

i+1 and the inclusion A
pi(Ki

) ⇢ K

✓

i+1 in (15) follows.
We conclude that (15) holds for each i = 0, . . . , k � 1 and hence Ak

p

(K0) ⇢ K

✓

k

.
Since ⇤

`

is chosen compact and so that the Lyapunov splitting and Lyapunov metric
are continuous on it, the cones K

✓

0 and K

✓

k

are close if dist(x, fk

x) < � is small.
Thus we can ensure that K

✓

k

⇢ K0 if � small enough and hence Ak

p

(K0) ⇢ K0.
Finally, using the inequality in (15) for each i = 0, . . . , k� 1 we obtain that for any
u 2 K0

kAk

p

uk
k

� k(Ak

p

u)1kk � e

k(��2✏)ku1k0 � e

k(��2✏)kuk0/
p
2 � e

k(��2✏)kuk
k

/2

since Lyapunov norms at x and f

k

x are close if � and hence � is small enough.
Since Ak

p

u 2 K0 for any u 2 K0, we can iterate Ak

p

and use the inequality above to

estimate �

(p) from below by the exponent of any u 2 K0:

�

(p) � lim
n!1

(nk)�1 log kAnk

p

uk
k

� k

�1 · lim
n!1

n

�1 log
⇣
(ek(��2✏)/2)n kuk

k

⌘
�

� k

�1 [k(�� 2✏)� log 2] + k

�1 lim
n!1

n

�1 log kuk
k

� (�� 2✏)� k

�1 log 2 � �� 3✏



5112 BORIS KALININ AND VICTORIA SADOVSKAYA

provided that k is large enough. This completes the proof of the approximation of
the largest exponent (13).

To approximate all Lyapunov exponents of A we consider cocycles ^i A induced
by A on the i-fold exterior powers ^i Rd, for i = 1, . . . , d. The largest Lyapunov
exponent of ^i A is (�

d

+ · · · + �

d�i+1), where �1  · · ·  �

d

are the Lyapunov
exponents of A listed with multiplicities. If a periodic point p = f

k

p satisfies

|(�
d

+ · · ·+ �

d�i+1)� (�(p)
d

+ · · ·+ �

(p)
d�i+1)|  3✏ for i = 1, . . . , d,

then we obtain the approximation |�
i

� �

(p)
i

|  3d✏ for all i = 1, . . . , d, completing
the proof of Theorem 1.4. Such a periodic point exists since we can take a set

P = R
✏

0
,`

0 \ ⇤1
✏,`

\ · · · \ ⇤d

✏,`

with µ(P ) > 0, where ⇤i

`

are the corresponding sets for all cocycles ^i A, i =
1, . . . , d. Then the previous argument applies yielding (13) for each ^i A.

A similar argument shows that one can obtain a simultaneous approximation of
all Lyapunov exponents for several cocycles.

4. Subadditive cocycles and infinite-dimensional Lyapunov norm.

4.1. Subadditive cocycles and their exponents. A subadditive cocycle over a
dynamical system (X, f) is a sequence of measurable functions a

n

: X ! R with

a

n+k

(x)  a

k

(x) + a

n

(fk

x) for all x 2 X and k, n 2 N.

For any ergodic measure-preserving transformation f of a probability space (X,µ)
and any subadditive cocycle over f with integrable a

n

, the Subadditive Ergodic
Theorem yields that for µ almost all x

lim
n!1

a

n

(x)

n

= lim
n!1

a

n

(µ)

n

= inf
n2N

a

n

(µ)

n

=: ⌫(a, µ), where a

n

(µ) =

Z

X

a

n

(x)dµ.

The limit ⌫(a, µ) � �1 is called the exponent of the cocycle a

n

with respect to µ.
For a GL(V )-valued cocycle A over (X, f) it is easy to see that

a

n

(x) = log kAn

x

k and ã

n

(x) = log k(An

x

)�1k. (20)

are subadditive cocycles over f . For these continuous cocycles the Subadditive
Ergodic Theorem gives the existence of the limits in (3): for µ almost all x

�+(A, µ) = lim
n!1

n

�1 log kAn

x

k = lim
n!1

n

�1
a

n

(x) = ⌫(a, µ), (21)

� ��(A, µ) = lim
n!1

n

�1 log k(An

x

)�1k = lim
n!1

n

�1
ã

n

(x) = ⌫(ã, µ). (22)

It is easy to see that ��  �+ and both are finite. Also, for µ almost all x

� ��(A, µ) = lim
n!1

n

�1 log kA�n
x

k (23)

since the integrals of log kA�n
x

k and log k(An

x

)�1k are equal. We denote

⇤ = ⇤(A, µ) = {x 2 X : equations (21), (22), and (23) hold }, (24)

which implies that both equalities in (3) hold for x 2 ⇤. Clearly, µ(⇤) = 1.
We will also use the following more detailed result on the behavior of subadditive

cocycles established by A. Karlsson and G. Margulis.
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Proposition 4.1. [8, Proposition 4.2] Let a
n

(x) be an integrable subadditive cocycle
with exponent � > �1 over an ergodic measure-preserving system (X, f, µ). Then
there exists a set E ⇢ X with µ(E) = 1 such that for each x 2 E and each ✏ > 0
there exists an integer L = L(x, ✏) so that the set S = S(x, ✏, L) of integers n

satisfying

a

n

(x)� a

n�i(f
i

x) � (�� ✏)i for all i with L  i  n (25)

is infinite. (In fact, S has positive asymptotic upper density [3]).

We will use the following corollary of this result.

Corollary 4.2. Let a

(1)
n

(x), . . . , a

(m)
n

(x) be integrable subadditive cocycles with
exponents �

(1)
> �1, . . . , �

(m)
> �1, respectively, over an ergodic measure-

preserving system (X, f, µ). Then there exists a set E ⇢ X with µ(E) = 1 such that
for each x 2 E and each ✏ > 0 there exists an integer L = L(x, ✏) so that the set
S = S(x, ✏, L) of integers n satisfying the following condition is infinite:

a

(j)
n

(x)� a

(j)
n�i(f

i

x) � (�(j) � ✏)i for all L  i  n and 1  j  m. (26)

Proof. We apply Proposition 4.1 to the subadditive cocycle

a

n

(x) = a

(1)
n

(x) + · · ·+ a

(m)
n

(x)

with exponent � = �

(1) + · · · + �

(m)
> �1 and obtain the set E0 for this cocycle.

Then for each x 2 E

0 and each ✏ > 0 there exists L

0 = L

0(x, ✏) and an infinite set
S = S(x, ✏, L0) such that for all n 2 S we have

mX

j=1

⇣
a

(j)
n

(x)� a

(j)
n�i(f

i

x)
⌘
�

0

@
mX

j=1

�

(j) � ✏

1

A
i for all L0  i  n. (27)

By the Subadditive Ergodic Theorem there exists a set G of full measure such that

for each x 2 G and each j = 1, . . . ,m we have lim
n!1 n

�1
a

(j)
n

(x) = �

(j) and hence
there exists M = M(x, ✏) such that for

a

(j)
i

(x)  (�(j) + ✏)i for all i � M and 1  j  m.

It follows by subadditivity that for all j and all n � M

a

(j)
n

(x)� a

(j)
n�i(f

i

x)  a

(j)
i

(x)  (�(j) + ✏)i for all M  i  n.

We set L = L(x, ✏) = max{L0,M} and E = G\E

0, with µ(E) = 1. Subtracting the
inequalities above for j = 2, . . . ,m from (27) we get that for all x 2 E and n 2 S

a

(1)
n

(x)� a

(1)
n�i(f

i

x) � (�(1) �m✏)i for all i with L  i  n.

The inequalities for the = cocycles a(j)
n

, j = 2, . . . ,m, follow similarly.

4.2. Lyapunov norm for upper and lower Lyapunov exponents. Since the
Multiplicative Ergodic Theorem does not apply in the infinite dimensional setting,
we use a cruder version of Lyapunov norm which takes into account only upper and
lower Lyapunov exponents. We fix ✏ > 0 and for any point x 2 ⇤ we define the
Lyapunov norm of u 2 E

x

as follows:

kuk
x

= kuk
x,✏

=
1X

n=0

kAn

x

uk e�(�++✏)n +
1X

n=1

kA�n
x

uk e(���✏)n
. (28)
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By the definition (24) of ⇤, both series converge exponentially. Properties of this
norm were obtained in [7, Proposition 3.1]. They are similar to those of the usual
Lyapunov norm discussed in Section 2.1. In particular,

kAn

x

k
xn x0  e

n(�+ +✏) and k(An

x

)�1k
x0 xn  e

n(��� +✏) for x 2 ⇤ (29)

and the ratio to the background norm kuk
x

/kuk is “tempered”. Specifically, there
exist an f -invariant set ⇤0 ⇢ ⇤ with µ(⇤0) = 1 and a measurable function K

✏

(x) on
⇤0 satisfying conditions (8) and (7). For any ` > 1 we define

⇤
`

= {x 2 ⇤0 : K(x)  `}, (30)

and note that µ(⇤
`

) ! 1 as ` ! 1.
We use this Lyapunov norm to obtain estimates similar to (29) for any point

p 2 X whose trajectory is close to that of a point x 2 ⇤
`

. Since the Lyapunov norm
may not exist at points f

i

p we will use the Lyapunov norms at the corresponding
points f i

x for the estimates.

Lemma 4.3. [7, Lemma 4.1] Let f be an ergodic invertible measure-preserving
transformation of a probability space (X,µ), let A be an ↵-Hölder cocycle over f

with the set {A
x

: x 2 X} bounded in GL(V ), and let �+ and �� be the upper and
lower Lyapunov exponents of A.

Then for any ✏ > 0 and � with ✏ < �↵ there exists a constant c = c (A, ↵� � ✏)
such that for any point x in ⇤

✏,`

with f

k

x in ⇤
✏,`

and any point p 2 X such that
the orbit segments x, fx, . . . , f

k

x and p, fp, . . . , f

k

p satisfy with some � > 0

dist(f i

x, f

i

p)  �e

�� min{i, k�i} for every i = 0, . . . , k (31)

we have for every i = 0, . . . , k

kAi

p

k  ` kAi

p

k
xi x0  ` e

c `�

↵

e

i(�++✏) and (32)

k(Ai

p

)�1k  `e

✏min{i, k�i}k(Ai

p

)�1k
x0 xi  `e

✏min{i, k�i}
e

c `�

↵

e

i(���+✏)
. (33)

5. Proof of Theorem 1.5. We fix a su�ciently small ✏0 > 0 and su�ciently large
`

0 2 N so that µ(R
✏

0
,`

0) > 0.9 and so that we can apply the Closing Lemma 2.1
and get � = �(✏0, `0) > 0. We define ✏0 = min{↵�/4, ✏0} > 0. We fix 0 < ✏ < ✏0

and consider the sets ⇤
`,✏

for the cocycle A. We choose ` su�ciently large so that
µ(P ) > 0.8 where

P = ⇤
`,✏

\R
`

0
,✏

0
.

We apply Corollary 4.2 to the subadditive cocycles

a

(1)
n

(x) = a

n

(x) = log kAn

x

k and a

(2)
n

(x) = ã

n

(x) = log k(An

x

)�1k

and obtain the set E of full measure for these two cocycles.
We take a compact set K ⇢ (P \ E) with µ(K) > 0.7, let ⌫ be the restriction

of µ to K, and denote by G the support of ⌫. Then G is a compact subset of K
satisfying ⌫(X \ G) = 0, ⌫(G) = µ(K) > 0.7, and ⌫(U) > 0 for any subset U

(relatively) open in G. We fix a countable basis {U
j

}, U
j

⇢ G, for the topology of
G and note that µ(U

j

) = ⌫(U
j

) > 0. We denote by G

0 the subset of full µ-measure
in G on which the Birkho↵ Ergodic Theorem holds for the indicator functions of
each U

j

, that is for each x 2 G

0

lim
n!1

n

�1 ��{i : 0  i  n� 1 and f

i

x 2 U

j

}
�� = µ(U

j

) > 0 for all j 2 N. (34)
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For the remainder of the proof we fix a point x 2 G

0 and choose � = 4✏/(↵�).
We establish the following lemma, which is a refinement of [4, Lemma 8] for our
setting.

Lemma 5.1. For each x 2 G

0, � > 0 and � > 0 there exists an integer N =
N(x,�,�) such that for each n � N there is an integer k satisfying

n(1 + �)  k  n(1 + 2�), f

k

x 2 G, and dist(x, fk

x) < �.

Proof. We fix x 2 G

0 and � > 0 and consider a set U
j

from the countable base that
is contained in the open ball B(x,�/2). Since x 2 G

0, condition (34) holds for x.
Denoting the set of the return times i to U

j

by T and letting �(n) = |T \ [0, n�1] |
we get that �(n)/n ! t = µ(U

j

) > 0. For any � > 0 we can take c > 0 such that

(1 + c)/(1� c) < (1 + 2�)/(1 + �)

and then M such that

(1� c)tn < �(n) < (1 + c)tn for all n � M.

Using this and the fact that (1� c)(1 + 2�)� (1 + c)(1 + �) > 0 by the choice of c,
we obtain that there exists N > M such that for all n � N we have

�(n(1 + 2�))� �(n(1 + �)) > [(1� c)(1 + 2�)� (1 + c)(1 + �)] tn > 1,

which means there exists k between n(1 + �) and n(1 + 2�) such that f

k

x is in
U

j

⇢ (G \B(x,�/2)).

Since x 2 G

0 ⇢ E, by Corollary 4.2 there exists an integer L = L(x, ✏) such that
for any n 2 S

x

and any i with L  i  n

a

n

(x)� a

n�i(f
i

x) � (�+ � ✏)i and ã

n

(x)� ã

n�i(f
i

x) � (��� � ✏)i. (35)

We conclude that for any � > 0 there exist arbitrarily large n for which the above
property holds and a corresponding k = k(n) satisfying the conclusion of Lemma
5.1. We will later choose � > 0 su�ciently small so that (47) below is satisfied, and
take � = �(�, `, �) > 0 from the Closing Lemma 2.1, which then gives a periodic
point p = f

k

p such that

dist(f i

x, f

i

p)  �e

�� min{i, k�i} for every i = 0, . . . , k. (36)

Obtaining upper estimates for kAk

p

k and k(Ak

p

)�1k. Since x and p satisfy
(36) we can apply Lemma 4.3 with i = k to get

kAk

p

k  `e

c `�

↵

e

k(�+ +✏) and k(Ak

p

)�1k  `e

c `�

↵

e

k(��� +✏)
.

For k su�ciently large compared to ` and c = c(A, ↵� � ✏), we obtain

k

�1 log kAk

p

k  �+ + ✏+ k

�1(log `+ c `�

↵)  �+ + 2✏, and (37)

k

�1 log k(Ak

p

)�1k  ��� + ✏+ k

�1(log `+ c `�

↵)  ��� + 2✏. (38)
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Obtaining a lower estimate for kAk

p

k. First we bound kAn

x

�An

p

k.

An

x

�An

p

= An�1
x1

� (A
x

�A
p

) + (An�1
x1

�An�1
p1

) �A
p

= An�1
x1

� (A
x

�A
p

) +
�
An�2

x2
� (A

x1 �A
p1) + (An�2

x2
�An�2

p2
) �A

p1

�
�A

p

= An�1
x1

� (A
x

�A
p

) +An�2
x2

� (A
x1 �A

p1) �Ap

+ (An�2
x2

�An�2
y2

) �A2
p

= · · · =
n�1X

i=0

An�(i+1)
xi+1

� (A
xi �A

pi) �Ai

p

.

Hence we can estimate the norm as follows

kAn

x

�An

p

k 
n�1X

i=0

kAn�(i+1)
xi+1

k · kA
xi �A

pik · kAi

p

k. (39)

Since n satisfies (35) with a

n

(x) = log kAn

x

k,

kAn�(i+1)
xi+1

k  kAn

x

k e�(i+1)(�+�✏) for all i with L  i  n� 1. (40)

Since n < k, applying Lemma 4.3 we get

kAi

p

k  ` e

c `�

↵

e

i(�+ +✏) for i = 0, . . . , n. (41)

Using (36) and Hölder continuity of A we obtain

kA
xi �A

pik  M dist(x
i

, p

i

)↵  M(� e�� min{i,k�i})↵ = M�

↵

e

�↵� min{i, k�i}
.

We claim that the exponent satisfies

↵�min{i, k � i} � 4✏i for i = 0, . . . , n. (42)

If i = min{i, k � i} this holds since ✏ < ↵�/4. If k � i = min{i, k � i} then

↵�min{i, k � i} = ↵�(k � i) � 4✏i is equivalent to i  k/(1 + 4✏/(↵�)),

which holds for i  n since n  k/(1+ �) and � = 4✏/(↵�). Thus we conclude that

kA
xi �A

pik  M�

↵

e

�4✏i for i = 0, . . . , n. (43)

Combining (40), (43), and (41) we obtain that for L  i  n� 1

kAn�(i+1)
xi+1

k · kA
xi �A

pik · kAi

p

k 

 kAn

x

k e�(i+1)(�+�✏) ·M�

↵

e

�4✏i · ` ec `�
↵

e

i(�+ +✏)
< C1(�) kAn

x

k e�✏i,
(44)

where C1(�) = �

↵

M` e

c `�

↵��+ +✏, and we conclude that

n�1X

i=L

kAn�(i+1)
xi+1

k · kA
xi �A

pik · kAi

p

k 

 C1(�) kAn

x

k
n�1X

i=L

e

�✏i  C1(�) kAn

x

k 1

1� e

�✏ = C2(�) kAn

x

k.

(45)

Since the set {A
x

: x 2 X} is bounded in GL(V ), there exists �⇤  ��  �+

such that k(A
x

)�1k  e

��⇤ for all x 2 X. For i < L we estimate

kAn�i
xi

k  kAn

x

k · k(Ai

x

)�1k  kAn

x

k e��⇤i
.
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Then using (41) and (43) we obtain

L�1X

i=0

kAn�(i+1)
xi+1

k · kA
xi �A

pik · kAi

p

k 


L�1X

i=0

kAn

x

k e�(i+1)�⇤ ·M�

↵

e

�4✏i · `ec `�
↵

e

i(�+ +✏) 

 L · �↵M`e

c `�

↵

e

��⇤+(�+��⇤)L · kAn

x

k = C3(�) kAn

x

k.

(46)

Combining estimates (39), (45) and (46) we obtain

kAn

x

�An

p

k  kAn

x

k (C2(�) + C3(�))  kAn

x

k/2

since by the choice of � > 0 we have

C2(�) + C3(�) = �

↵

M`e

c `�

↵
⇣
(1� e

�✏)�1e��+ +✏ + Le

��⇤+(�+��⇤)L
⌘
< 1/2. (47)

Hence
kAn

p

k � kAn

p

k � kAn

x

�An

p

k � kAn

x

k/2 > e

(�+�✏)n
/2,

provided that n is su�ciently large for the limit in (21). Since An

p

= (Ak�n
f

n
p

)�1 �Ak

p

,

kAn

p

k  k(Ak�n
f

n
p

)�1k · kAk

p

k  kAk

p

k e��⇤(k�n)
.

Hence

kAk

p

k � e

�⇤(k�n)kAn

p

k > e

(�+�✏)n+�⇤(k�n)
/2 > e

(�+�✏)k�(�+��⇤)(k�n)
/2, and so

k

�1 log kAk

p

k > k

�1[(�+ � ✏)k � (�+ � �⇤)(k � n)� log 2].

Since k � n < 2�n < 2�k and � = 4✏/(↵�) we obtain

k

�1 log kAk

p

k > �+ � ✏� k

�1 log 2� (�+ � �⇤)2� > �+ � 2✏� 8✏(�+ � �⇤)/(↵�)

if n and hence k are su�ciently large.
Since 0 < ✏ < ✏0 is arbitrary and �+, �⇤,↵, � do not depend on ✏, this inequality

above together with (37) imply the approximation of �+(A, µ) by k

�1 log kAk

p

k.

Obtaining a lower estimate for k(Ak

p

)�1k. We use the equation

(An

x

)�1 � (An

p

)�1 =
n�1X

i=0

(Ai

p

)�1 �
�
(A

xi)
�1 � (A

pi)
�1� � (An�(i+1)

xi+1
)�1

and estimate the norm of the di↵erence similarly to (39):

k(An

x

)�1 � (An

p

)�1k =
n�1X

i=0

k(Ai

p

)�1k · k(A
xi)
�1 � (A

pi)
�1k · k(An�(i+1)

xi+1
)�1k. (48)

Since n satisfies the second part of (35) with ã

n

(x) = log k(An

x

)�1k,

k(An�(i+1)
xi+1

)�1k  k(An

x

)�1k e�(i+1)(����✏) for all i with L  i  n.

Since n < k, using (33) of Lemma 4.3 we get

k(Ai

p

)�1k  `e

✏min{i, k�i}
e

c `�

↵

e

i(��� +✏)  ` e

c `�

↵

e

i(��� +2✏) for i = 1, . . . , n.

Using Hölder continuity and the exponent estimate (42) we obtain as in (43) that

k(A
xi)
�1 � (A

pi)
�1k  M dist(x

i

, p

i

)↵  M�

↵

e

�↵� min{i, k�i}  M�

↵

e

�4✏i
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for i = 1, . . . , n. Combining these estimates we obtain for the terms in (48) the
same estimate as in (44)

k(Ai

p

)�1k · k(A
xi)
�1 � (A

pi)
�1k · k(An�(i+1)

xi+1
)�1k  C1(�) k(An

x

)�1k e�✏i (49)

for all i with L  i  n� 1. The remainder of the argument is essentially identical
to estimating kAk

p

k with A replaced by A�1.
It is clear from the argument that we can choose arbitrarily large n and hence k.

Simultaneous approximation for several cocycles. Finally, we remark on how
to obtain simultaneous approximation for cocycles A(1)

, . . . ,A(m) in Remark 1.6.
First, we take the set ⇤

✏,`

to be the intersection of the corresponding sets for all
A(j) and define the set P = ⇤

✏,`

\R
✏

0
,`

0 as in the proof. We also take E to be the
full measure set given by Corollary 4.2 for 2m subadditive cocycles

a

(j)(x) = log kA(j)k, ã

(j)(x) = log k(A(j))�1k, j = 1, . . . ,m.

Then the argument goes through showing that the constructed point p = f

k

p gives
the approximation of the upper and lower exponents for all cocycles A(1)

, . . . ,A(m).
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