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Abstract. We consider a hyperbolic toral automorphism L and its C 1-
small perturbation f . It is well-known that f is Anosov and topolog-
ically conjugate to L, but a conjugacy H is only Hölder continuous in
general. We discuss conditions for smoothness of H , such as conju-
gacy of the periodic data of f and L, coincidence of their Lyapunov
exponents, and weaker regularity of H , and we summarize questions,
results, and techniques in this area. Then we introduce our new re-
sults: if H is weakly differentiable then it is C 1+Hölder, and if L is also
weakly irreducible then H is C∞.

1. Introduction

Hyperbolic automorphisms of tori are the prime examples of hyperbolic dynamical
systems. The action of a matrix L ∈ SL(d ,Z) on Rd induces an automorphism of the
torus Td = Rd /Zd , which we denote by the same letter. An automorphism L is called
hyperbolic or Anosov if the matrix has no eigenvalues on the unit circle. In general, a
diffeomorphism f of a compact manifold M is called Anosov if there exist a continu-
ous D f -invariant splitting T M = E s ⊕E u and constants K > 0 and θ < 1 such that for
all n ∈N,

‖D f n(v)‖ ≤ Kθn‖v‖ for all v ∈ E s and ‖D f −n(v)‖ ≤ Kθn‖v‖ for all v ∈ E u .

The sub-bundles E s and E u are called stable and unstable, respectively. They are tangent
to the stable and unstable foliations W s and W u . A diffeomorphism is transitive if there
is a point in M with dense orbit. All known examples of Anosov diffeomorphisms have
this property.

One of the key properties of hyperbolic systems is structural stability: any diffeomor-
phism f of M sufficiently C 1-close to an Anosov diffeomorphism g is also Anosov and
is topologically conjugate to g [1]. The latter means that there exists a homeomorphism
H of M , called a conjugacy, such that g ◦H = H ◦ f . Moreover, H is unique in a C 0 neigh-
borhood of the identity. A conjugacy H is always bi-Hölder, but it is usually not even C 1,
as there are various obstructions to smoothness. The problem of establishing smooth-
ness of the conjugacy H from some weaker assumptions has been extensively studied. It
is often referred to as local rigidity, in the sense that weak equivalence of f and g implies
strong equivalence.
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We will concentrate on a conjugacy H between a hyperbolic toral automorphism L
and its small perturbation f . We have

L ◦H = H ◦ f , that is, f = H−1 ◦L ◦H . (1)

Any two such conjugacies differ by an affine automorphism ofTd commuting with L [34],
and in particular they have the same regularity.

2. Smoothness of the conjugacy

2.1. Necessary conditions for smoothness of H . Hyperbolic systems have an abun-
dance of periodic points, and a lot of information about the system is captured by the
periodic data. If f n(p) = p for some n ∈ N then Ln(H(p)) = H(p). If H is a C 1 diffeo-
morphism, then differentiating the iterated conjugacy equation f n = H−1 ◦Ln ◦ H at p
yields

Dp ( f n) = (Dp H)−1 ◦Ln ◦Dp H =C−1
p ◦Ln ◦Cp , where Cp = Dp H ,

and so f and L have conjugate periodic data. This condition can be easily destroyed by
a small perturbation near a fixed or periodic point, and hence H is not C 1 in general.

Let ρi be the absolute values of the eigenvalues of L, and let E i be the sum of general-
ized eigenspaces corresponding to the eigenvalues with modulus ρi . We recall that the
Lyapunov exponents of L are logρi , more specifically, for every vector v 6= 0 in E i ,

lim
n→±∞

1

n
log‖Ln(v)‖ = logρi .

If H is a C 1 diffeomorphism, then the Lyapunov exponents of f are the same as for L:
for each x ∈ Td and each v with Dx H(v) ∈ E i , the Lyapunov exponent of v is ρi . We
note that conjugacy of periodic data implies that the Lyapunov exponents of f at each
periodic point p are the same as for L. By periodic approximation [35, 17], it follows that
the Lyapunov exponents of f for each invariant measure are also the same as for L.

It is natural to ask whether necessary conditions, such as conjugacy of periodic data
or equality of Lyapunov exponents for some or all measures, are also sufficient for C 1

regularity of H . In addition, one can consider sufficiency of weaker regularity properties
of H such as Lipschitz continuity, weak differentiability, and absolute continuity (in di-
mension two). Further, one can consider sufficiency of any of these conditions for C∞

regularity of H .

2.2. Two-dimensional case. Definitive results for Anosov diffeomorphisms of T2 were
obtained by de la Llave and Moriyón in [4, 8, 5]. In this case, conjugacy of the periodic
data, or equality of Lyapounov exponents at periodic points, or absolute continuity im-
ply smoothness of H . More precisely, the following holds.

Theorem 2.1 ([5]). Let f and g be C k , k = 2,3, . . .∞,ω, Anosov diffeomorphism of T2

topologically conjugate by H. Then H is C k−ε provided that either

(a) the Lyapounov exponents of f and g at corresponding periodic orbits are the same
(b) or both H and H−1 are absolutely continuous.

In most local rigidity results, smoothness of H is first established along natural in-
variant foliations, such as the stable and unstable, or their finer sub-foliations. Global
smoothness of H is then obtained using regularity results such as Journé lemma [16].

The main approach in Theorem 2.1 is to show that H maps the invariant volume,
or more generally the SRB measure µ, for f to that for g . For this either the periodic
data or absolute continuity of H can be used. Then H maps the absolutely continuous
conditional measures of µ along the leaves of W u, f to those for W u,g . The densities of
these measures on the leaves are positive Hölder continuous functions smooth along
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the leaves. Since the leaves are one-dimensional, any H that matches the conditional
measures is also smooth along the leaves. Smoothness along the stable foliations can be
obtained similarly. The study of regularity of these densities and related objects was a
major part of the proof of Theorem 2.1.

Next, local rigidity results were obtained for systems conformal on full stable and
unstable sub-bundles and for systems close to irreducible automorphisms with simple
Lyapunov spectrum.

2.3. Higher dimensional conformal case. If g is conformal on full stable and unstable
sub-bundles, smoothness of the conjugacy is given by the next theorem, provided that
the perturbed system is also conformal.

Theorem 2.2 ([18, 7]). Let f , g : M → M be transitive C k , k = 2,3, . . .∞, Anosov diffeo-
morphisms that are conformal (or more generally uniformly quasiconformal) on their
stable and unstable sub-bundles, which have dimension at least two. Than any topologi-
cal conjugacy between f and g is C k−ε.

For k =∞ this was proved in [18] under an additional assumption that either dimE s

and dimE u are at least three or that M is a torus (or more generally, an infranilmanifold).
It is a corollary of a global rigidity result: any such f is C∞ conjugate to a finite factor
of an automorphism of a torus [18]. The result in [7] is for any k, but it makes an addi-
tional assumption of conformality with respect to a C 1 conformal structure. In [18, 29],
existence of a continuous invariant conformal structure is obtained from uniform qua-
siconformality, and its C∞ smoothness is then proved for C∞ f using conformality and
smoothness of stable and unstable holonomies. To verify the extra assumption [7] that
the conformal structure is C 1, it suffices to assume that f is C 2.

The question whether conformality of g and conjugacy of the periodic data of f and g
implies conformality of f is difficult. This is always true for two-dimensional E s and
E u [19], but in higher dimensions, current results have additional assumptions. In [6] it
is that for every periodic point p = g n(p), the restrictions Dg n

∣∣E s (p) and Dg n
∣∣E u(p) are

scalar multiples of the identity map. More generally, one can require that the conjugat-
ing maps can be chosen uniformly bounded in p, see Theorem 2.8 below.

2.4. Non-algebraic systems close to codimension one automorphisms. Major pro-
gress in local rigidity for non-algebraic systems was recently obtained by Gogolev and
Rodriguez Hertz in [15]. They considered diffeomorphisms f and g in a neighborhood
of a codimension one Anosov automorphism L, which is either conformal or suitably
pinched. Smoothness of the conjugacy was established under a weaker assumption of
matching of Jacobian periodic data, which means that whenever p = f n p,

det
(
D f n∣∣E u(p)

)= det
(
Dg n∣∣E u(H(p))

)
and det

(
D f n∣∣E s (p)

)= det
(
Dg n∣∣E s (H(p))

)
,

where H is the unique conjugacy close to the identity between f and g . The strongest
results are in dimension three.

Theorem 2.3 ([15]). Let L :T3 →T3 be an Anosov automorphism with a pair of complex
conjugate eigenvalues. Then there exists a C 1 neighborhood U of L such that for any C r ,
r ≥ 2, Anosov diffeomorphisms f , g ∈ U with matching Jacobian periodic data, either f
and g are C r∗ conjugate or the SRB measure of f coincides with its measure of maximal
entropy. Here r∗ = r if r is not an integer, and r∗ = r −1+Lipschitz if r is an integer.

The coincidence of the SRB measure and the measure of maximal entropy is equiva-
lent to the unstable Jacobian of f being cohomologous to a constant. Therefore, rigidity
holds for all f in an open dense subset of U where this does not happen. A similar result
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was obtained under the assumption of matching of full Jacobians, provided that they are
not cohomologous to a constant, that is, f and g are not volume preserving.

In [15] rigidity was also established in higher dimensions near L such that dimE s = 1,
expansion rates along E u are suitably pinched, no three eigenvalues have the same mod-
ulus, and only complex conjugate eigenvalues may have the same modulus. For f and g
in a C 1 open dense subset in a neighborhood of L, C 1+Hölder smoothness of the conju-
gacy was obtained under the assumption of matching Jacobian periodic data.

The restrictions on the expansion/contraction rates for f and g yield certain smooth-
ness of E s and E u . This smoothness is used to obtain regularity of the so called periodic
cycle functionals (PCF) associated to the unstable Jacobians. Since H matches the Jaco-
bian periodic data, it matches the PCFs. The main part of the proof in [15] is to show that
if the Jacobians are not cohomologous to a constant, then H matches enough smooth
functions so that its smoothness can be obtained using the implicit function theorem.

We note that any automorphism L with dimE s = 1 is irreducible.

2.5. Counterexamples and irreducibility. In [5] de la Llave constructed examples
showing that conjugacy of the periodic data is not sufficient in general for C 1 smooth-
ness of H , see also [10]. In these examples, L is an automorphism of T 4 of the form

L(x, y) = (Ax,B y), (x, y) ∈T2 ×T2,

where matrices A,B ∈ SL(2,R) have eigenvalues λ, λ−1 and µ, µ−1, respectively, with
µ>λ> 1. Let v be an eigenvector of A corresponding to λ, and let f be a perturbation
of L of the form

f (x, y) = (Ax +ϕ(y)v, B y).

The maps L and f have conjugate periodic data since Ln and Dp f n have the same dis-
tinct eigenvalues. A conjugacy H is found in the form

H(x, y) = (x +ψ(y)v, y).

This yields a cohomological equation ϕ(y)+ψ(B y) =λψ(y) with a continuous solution

ψ(y) =λ−1
∑
k≥0

λ−kϕ(B k y).

If ϕ and hence ψ are C 0 small, then H is the unique conjugacy close to the identity.
However, ψ is usually not differentiable in y , for example, for ϕ(y1, y2) = εsin(2πy1).

Extending these examples, Gogolev showed in [10] that, outside of the conformal
case, irreducibility of L is a necessary assumption for conjugate periodic data to imply
smoothness of H . We recall that L is irreducible if it has no nontrivial rational invariant
subspace or, equivalently, if its characteristic polynomial is irreducible over Q. While
the eigenvalues of an irreducible L are always simple, different eigenvalues may have
the same absolute value, and hence the Lyapunov exponents of L are not necessarily
simple.

2.6. Irreducible L with simple Lyapunov spectrum. We now focus on irreducible L and
discuss results and approaches for this case. We consider the splittings into Lyapunov
subspaces for L and f . Let 1 < ρ1 < ·· · < ρ` be the distinct moduli of the unstable eigen-
values of L and let

E u,L = E L
1 ⊕E L

2 ⊕·· ·⊕E L
`

be the corresponding splitting of E u,L . Since f is C 1-close to L, its unstable sub-bundle
splits into a direct sum of ` invariant Hölder continuous sub-bundles close to the ones
for L [27, Section 3.3]:

E u, f = E f
1 ⊕E f

2 ⊕·· ·⊕E f
`

.
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They integrate to Hölder foliations W f
i with C 1+Hölder leaves. While this can be seen

using partially hyperbolic theory, unique integrability was obtained directly in [10]. So
one can try showing that H is C 1+Hölder along these foliations. Once this is done, the
regularity of H on Td follows from Journé’s lemma.

Local rigidity results for irreducible L with simple Lyapunov exponents were obtained
by Gogolev and Guysinski in [12, 10]. Even though in this case each E L

i is one-dimen-
sional, there are major difficulties in extending Theorem 2.1. One difficulty is showing

that H(W f
i ) = W L

i for each i . This always holds for the full unstable foliation and for
i = 1, but it is not true for other foliations in general. Indeed, while the weak flag for f is
always mapped by H to that of L [10], it may not be the case for the strong flags. In [10],

the property H(W f
i ) = W L

i was proved by an intricate inductive process, which uses
partial smoothness of H obtained in the previous steps. The argument also relies on
density of leaves of these foliations, which follows from irreducibility of L.

These arguments are difficult to extend to an Anosov diffeomorphism g in place of L,
as there may be no continuous invariant splitting of W u,g . However, it was proved that
conjugacy of the periodic data implies that H is C 1+Hölder in the case when g is suf-
ficiently close to an irreducible L with simple spectrum: for T3 in [12] and for higher
dimensions in [10] under an additional assumptions on density of leaves. Another dif-
ficulty in this case is that, unlike W u,g , the foliations W g

i are not absolutely continuous
in general. Apart from these results and the ones in Sections 2.2, 2.3, and 2.4, the prob-
lem of smoothness of conjugacy between an arbitrary Anosov diffeomorphism g and its
perturbation is open. The results in [10, 32] for irreducible L with simple Lyapunov expo-
nents were extended by DeWitt in [9] to the case when L is an Anosov automorphisms of
a nilmanifold. This is a more complicated setting due to interactions between dynam-
ics and the nilpotent structure, so the notion of irreducibility has to be appropriately
modified and an extra assumption of sorted spectrum has to be added.

The following theorem generalized the result for toral automorphisms in [10]. It al-
lows pairs of eigenvalues of the same modulus. Unlike automorphisms with simple
spectrum, toral automorphisms L in Theorems 2.4 are generic in the sense that the pro-
portion of matrices of norm at most T in SL(d ,Z) satisfying the assumptions tends to 1
as T →∞.

Theorem 2.4 ([13]). Let L be an irreducible Anosov automorphism of Td such that no
three of its eigenvalues have the same modulus. Let f be a C 2 diffeomorphism ofTd suffi-
ciently C 1-close to L. If the derivative Dp f n is conjugate to Ln whenever p = f n p, then f
is C 1+Hölder conjugate to L.

Using similar arguments, outlined below, we obtain another version of this theorem.

Theorem 2.5. Let L be an irreducible Anosov automorphism of Td and let f be a C 2

diffeomorphism of Td sufficiently C 1-close to L. Suppose that for each p = f n p there is
a matrix Cp so that Dp f n = C−1

p ◦Ln ◦Cp , and the set of all matrices Cp is bounded in

GL(d ,R). Then f is C 1+Hölder conjugate to L.

2.7. Rigidity of the Lyapunov spectrum. The results in [10] for irreducible L with sim-
ple Lyapunov exponents were extended by Saghin and Young in [32] in a different di-
rection: the assumption of conjugacy of the periodic data was weakened to equality of
Lyapunov exponents of L to those of f with respect to the f -invariant volume µ. They
used the notion of leaf-wise entropy and a leaf-wise analog of Ledrappier’s results in [23]
to show that µ has absolutely continuous conditional measures on the leaves of foli-

ation W f
i , which are mapped by H to the corresponding conditional measures for L.

Then Hölder continuity of the densities of these conditional measures implies, as in the
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arguments for Theorem 2.1, that H is is C 1+Hölder along W f
i . The following result es-

tablished in [14] generalized this to a broader class of toral automorphisms, which is
generic in the same sense as for Theorem 2.4.

Theorem 2.6 ([14]). Let L be an irreducible Anosov automorphism of Td such that no
three of its eigenvalues have the same modulus and L has no pairs of eigenvalues of the
form λ,−λ or iλ,−iλ, where λ is real. Let f be a volume-preserving C 2 diffeomorphism
of Td sufficiently C 1-close to L. If the Lyapunov exponents of f with respect to the volume
are the same as the Lyapunov exponents of L, then f is C 1+Hölder conjugate to L.

It may be surprising that equality of exponents for a single measure yields smooth-
ness of the conjugacy, but this result is specific to linear L. It relies on the property that
the measure of maximal entropy for L coincides with the volume. The equality of the
Lyapunov exponents implies that the same property holds for f . Below we deduce a
different version of the theorem. The argument showcases the source of rigidity.

Corollary 2.7. Let L be as in Theorem 2.6 and let f be a C 2 diffeomorphism of Td suffi-
ciently C 1-close to L. If the Lyapunov exponents of f with respect to its measure of maxi-
mal entropy are the same are the same as the Lyapunov exponents of L, then f is C 1+Hölder

conjugate to L.

We denote by m the Lebesgue measure on Td . Then µ := (H−1)∗(m) is the measure
of maximal entropy for f since

htop( f ) = htop(L) = hm(L) = hµ( f ).

We denote the Lyapunov exponents of f with respect to µ by λ f and the Lyapunov ex-
ponents of L by λL . If these exponents are the same then by Ruelle inequality we have

htop( f ) = hµ( f ) ≤ ∑
λ f >0

λ f = ∑
λL>0

λL = hm(L) = htop(L) = htop( f ).

Thus equality holds in Ruelle inequality, which implies by [23] that the conditional mea-
sures of µ on W u, f are absolutely continuous. The same argument with f −1 shows that
the conditional measures ofµ on W s, f are also absolutely continuous. By the local prod-
uct structure of the measure of maximal entropy, µ is absolutely continuous. Hence µ is
an f -invariant volume, and Theorem 2.6 applies.

2.8. Higher-dimensional foliations and linear cocycles. Now we describe the techni-
ques and results used in Theorems 2.4, 2.5, and 2.6 to deal with higher-dimensional sub-

bundles E L
i and E f

i . Suppose that dimE L
i = dimE f

i is at least two. Even if H maps W f
i

to W L
i , and absolutely continuous conditional measures on the leaves of foliation W f

i

to the corresponding conditional measures for L, smoothness of f along W f
i does not

follow. The key new step in Theorems 2.4, 2.5, and 2.6 was to establish conformality of

the derivative cocycle D f
∣∣E f

i . It used results on linear cocycles over hyperbolic systems,
which we now discuss.

Let f be an Anosov diffeomorphism of M and let A be a map from M to GL(m,R).
The GL(m,R)-valued cocycle over f generated by A is the map A : M ×Z → GL(m,R)
given by A (x,0) = Id and for n ∈N,

A (x,n) =A n
x = A( f n−1x) · · · A(x) and A (x,−n) =A −n

x = (A n
f −n x )−1.

The regularity of A is defined as that of if its generator A.
A prime example of a linear cocycle is the derivative cocycle. For T M = M ×Rm ,

one can take A(x) = Dx f ∈GL(m,R), and then A n
x = Dx f n . Similarly, one can consider

A(x) = D f
∣∣E(x), where E is a D f -invariant sub-bundle such as E s , E u , or E f

i .
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We say that cocycles A and B are (measurably or continuously) hohomologous if
there exists a (measurable or continuous) function C : M →GL(m,R) such that

Ax =C ( f x)Bx C (x)−1 for all x ∈M .

The function C is called a conjugacy or a transfer map between A and B.
The next theorem established conformality of a cocycle based on its periodic data.

Theorem 2.8 ([20]). Let A be a GL(m,R)-valued Hölder continuous cocycle over a transi-
tive Anosov diffeomorphism f : M →M . Suppose that for each periodic point p = f n(p)
in M there exists a matrix Cp such that C−1

p A n
p Cp is conformal.

If either m = 2, or m > 2 and the set of matrices Cp is bounded in GL(m,R), then A is
Hölder continuously cohomologous to a conformal cocycle, i.e., a cocycle with values in
the conformal subgroup.

For m > 2, the result does not hold without the boundedness assumption [20]. This

theorem yields conformality of the derivative D f on each two-dimensional E f
i in The-

orems 2.4 and 2.5, and explains the difference in their assumptions. Theorem 2.6 uses
the continuous amenable reduction results [21], which for m = 2 yield that a cocycle
is cohomologous to conformal if it does not have a continuous invariant sub-bundle
or a continuous invariant field of two lines [14]. If L has no pairs of eigenvalues λ,−λ
or iλ,−iλ with λ ∈ R, then L

∣∣E L
i has no such invariant objects, and D f

∣∣E f
i for a small

perturbation has the same property.

Once it is established that H(W f
i ) = W L

i , regularity of H along W f
i is proved us-

ing conformality of L on E L
i and of D f on E f

i . After conjugating L
∣∣E L

i and D f
∣∣E f

i (x)

to conformal cocycles, the norms give scalar cocycles a(x) = ρi = ∥∥L
∣∣E L

i

∥∥ and b(x) =∥∥D f
∣∣E f

i (x)
∥∥. In Theorems 2.4 and 2.5, these Hölder continuous scalar cocycles have

equal periodic data, and hence they are Hölder continuously cohomologous by the Liv-
šic periodic point theorem [24]. In Theorem 2.6, there is a measurable conjugacy be-

tween a and b, which is obtained from the Jacobian of H along W f
i , and it follows by the

measurable Livšic theorem [24] that the conjugacy is Hölder continuous.
Continuous conjugacy between a and b implies that the ratio of norms

∥∥Ln
∣∣E L

i

∥∥ and∥∥D f n
∣∣E f

i

∥∥ is bounded above and below uniformly in x and n. This is used to show

that H is bi-Lipschitz continuous along W f
i , which yields differentiability of H almost

everywhere on each leaf. The derivative D H is then a bounded measurable conjugacy

between linear cocycles D f
∣∣E f

i and L
∣∣E L

i . Thus to conclude that H is C 1+Hölder along

W f
i it suffices to establish Hölder continuity of the conjugacy D H .
Continuity of a measurable conjugacy between Hölder continuous cocycles over hy-

perbolic systems has been extensively studied. It always holds for scalar cocycles [24],
but may fail already for GL(2,R)-valued cocycles with more than one Lyapunov expo-
nent, even when both generators are close to the identity [28]. Continuity was obtained
under various compactness, boundedness, and conformality assumptions on both or
one of the cocycles [26, 25, 33, 30, 31, 2]. Results for conformal cocycles were used to

obtain Hölder continuity of D H
∣∣E f

i above.

2.9. New results for cocycles and smoothness of a weakly differentiable conjugacy. In
our recent work [22] we establish Hölder continuity of a measurable conjugacy in the
optimal setting of cocycles with one Lyapunov exponent.

Theorem 2.9 ([22]). Let f : M → M be a transitive C 1+Hölder Anosov diffeomorphism,
and let A and B be β-Hölder linear cocycles over f . Let µ be an ergodic f -invariant
measure on M with full support and local product structure.
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Suppose that A has one Lyapunov exponent at every periodic point and B is fiber
bunched. Then any µ-measurable conjugacy between A and B is β-Hölder continuous,
i.e., coincides with a β-Hölder continuous conjugacy on a set of full measure.

Fiber bunching is a technical condition weaker than having one exponent. It means
that non-conformality of the cocycle is dominated by the contraction and expansion in
the base. In the proof we apply continuous amenable reduction [21] to A and obtain
a block-triangular structure with conformal blocks on the diagonal. Using the measur-
able conjugacy C , we obtain a similar measurable block structure for B and establish its
continuity. Then continuity of the diagonal blocks of C follows from [31]. To prove con-
tinuity of the off-diagonal blocks of C we use an inductive process. For this we establish
a result on continuity of a measurable conjugacy for vector-valued cocycles twisted by a
bounded linear cocycle.

As a corollary, we obtain the following result for perturbations of constant cocycles,
which we then use in the new local rigidity results.

Theorem 2.10 ([22]). Let f and µ be as in Theorem 2.9 and let A be a constant GL(m,R)-
valued cocycle over f . Then for any Hölder continuous GL(m,R)-valued cocycle B suffi-
ciently C 0-close to A , any µ-measurable conjugacy between A and B is Hölder continu-
ous.

Also, we obtain estimates of the Hölder exponent and Hölder constant of the conjugacy.
As we observed, existence of a continuous conjugacy between the derivative cocycles

is closely related to smoothness of H . However, the relationship is not straightforward.
If D f is continuously conjugate to L and L is irreducible, then Theorem 2.5 yields that
H is C 1+Hölder. Without irreducibility, however, existence of some continuous conjugacy
between the derivative cocycles D f and L does not imply in general that H is C 1. In fact,
if all eigenvalues of L are simple with distinct moduli, then conjugacy of Dp f n and Ln

whenever p = f n(p) always gives Hölder conjugacy of the cocycles (as the cohomolog-
ical equations splits into scalar ones for the restrictions to Ei ), but H may not be C 1 as
the counterexample above shows.

However, if H is differentiable in a weak sense, we show that H is C 1+Hölder. This result
holds for an arbitrary hyperbolic automorphism without any irreducibility assumption.
We denote by W 1,q (Td ) the Sobolev space of Lq functions with Lq weak partial deriva-
tives of first order. Note that any Lipschitz function is in W 1,∞(Td ).

While H satisfying (1) is not unique, there is a unique conjugacy C 0-close to the iden-
tity. This is the unique H in the homotopy class of the identity with H(p) = 0, where p is
the fixed point of f closest to 0.

Theorem 2.11. Let L be a hyperbolic automorphism of Td and let f be a C 1+Hölder dif-
feomorphism of Td which is C 1-close to L. Suppose that for some conjugacy H between f
and L, either H or H−1 is in W 1,q (Td ) with q > d. Then H is a C 1+Hölder diffeomorphism.

More precisely, there is a constant β0 = β0(L), 0 < β0 ≤ 1, so that for any 0 < β′ < β0

there exist constants δ> 0 and K > 0 such that for any 0 <β≤β′ the following holds.
For any C 1+β diffeomorphism f with ‖ f −L‖C 1 < δ, if some conjugacy between L and f ,

or its inverse, is in W 1,q (Td ), q > d, then any conjugacy is a C 1+β diffeomorphism. More-
over, for the conjugacy H that is C 0-close to the identity,

‖H − I‖C 1+β ≤ K ‖ f −L‖C 1+β . (2)

In the proof we differentiate the conjugacy equation L ◦H = H ◦ f to obtain

L ◦D H = D H ◦D f , (3)
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where D H is the Jacobian matrix of weak partial derivatives. We use the assumption
that H is in W 1,q (Td ) with q > d to show that f preserves an absolutely continuous
measure µ, that D H gives the differential of H µ-a.e onTd , that (3) holds µ-a.e, and that
D H is invertible µ-a.e. Hence (3) shows that D H is a measurable conjugacy between L
and D f . Then Theorem 2.10 yields that D H is Hölder continuous, and so H is a C 1+Hölder

diffeomorphism.
The inequality (2) is obtained using the estimate for the conjugacy between cocycles

in Theorem 2.10. It plays an important role in establishing higher regularity of H in
Theorem 3.2 below.

3. Higher regularity of the conjugacy

In dimension two and in the higher-dimensional conformal case, Theorems 2.1 and
2.2 yield that if C∞ Anosov diffeomorphisms f and g are conjugate by a C 1 diffeomor-
phism H , then H is C∞. The general higher dimensional case is much more compli-
cated. The problem of the exact regularity of H is subtle: for any k ∈ N and any d ≥ 4
there exists a reducible hyperbolic automorphism L of Td and its analytic perturbation
f such that the conjugacy H is C k but is not C k+1 [5]. This was demonstrated by exam-
ples as in Section 2.5 with an appropriate relation between the eigenvalues λ and µ. On
the other hand, for a given L (or a nonlinear g ) there is k(L) such that if H is C k(L) then
it is C∞ [5]. For systems close to conformal on both stable and unstable sub-bundles, k
is close to one.

Theorems 2.4, 2.5, and 2.6 yield only that H is C 1+Hölder. This low smoothness is due
to the method of the proof, which shows regularity of H along foliations W i

f , whose

leaves are typically only C 1+Hölder smooth. Nevertheless, Gogolev conjectured [10] that
the conjugacy in Theorem 2.1 should be C r−ε, if f is C r . The only progress in this di-
rection until now was the result of Gogolev for automorphisms of T3 with real spec-
trum [11].

In the next theorem we obtain C∞ smoothness of a conjugacy to a C∞ perturbation
f assuming that L is weakly irreducible, which is defined as follows. Let Rd =⊕

ρi
E i be

the splitting where E i is the sum of generalized eigenspaces of L corresponding to the
eigenvalues of modulus ρi , and let Ê i = ⊕

ρ j 6=ρi
E j . We say that L is weakly irreducible

if each Ê i contains no nonzero elements of Zd . Irreducibility over Q implies weak irre-
ducibility. Indeed, if there is a nonzero integer point n ∈ Ê i then span{Lmn : m ∈Z} ⊂ Ê i

is a nontrivial rational invariant subspace. Weak irreducibility is determined by the char-
acteristic polynomial of L as follows.

Lemma 3.1 ([22]). A matrix L ∈GL(d ,Z) is weakly irreducible if and only if there is a set
∆⊂R so that for each irreducible overQ factor of the characteristic polynomial of L the set
of moduli of its roots equals ∆.

It follows that if L is irreducible or weakly irreducible then the following matrices are
weakly irreducible (

L 0
0 L

)
and

(
L I
0 L

)
.

These matrices are not irreducible and the second one is not even diagonalizable. So
while an irreducible L is always conformal (in some metric) on each Lyapunov subspace,
weakly irreducible L may have Jordan blocks.
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Theorem 3.2 ([22]). Let L be a weakly irreducible hyperbolic automorphism of Td . Then
there is r = r (L) ∈ N so that for any C∞ diffeomorphism f that is C r -close to L the fol-
lowing holds. If for some conjugacy H between f and L either H or H−1 is in the Sobolev
space W 1,q (Td ) with q > d, then any conjugacy between f and L is a C∞ diffeomorphism.

Our approach is completely different from the previous local rigidity results. Theo-
rem 2.11 is used as the first step in the proof of Theorem 3.2 to obtain C 1+β regularity
of H and the estimate (2). Then to establish C∞ smoothness of H we use an iterative
method which is somewhat similar to the traditional KAM scheme. However, KAM is
primarily used for elliptic systems and not for hyperbolic ones. The main ingredient in
the iterative step is obtaining an approximate C∞ solution for the linearized conjugacy
equation.

Assuming f (0) = H(0) = 0, we lift f and H to Rd as H̃ = Id+h and f̃ = L +R, where
h,R :Rd →Rd areZd -periodic functions. The lifts satisfy the conjugacy equation L◦ H̃ =
H̃ ◦ f̃ , which yields L ◦h −h ◦ f̃ = R. The latter projects to the torus as

L ◦h −h ◦ f = R.

This is a twisted by L cohomological equation over f for Rd -valued functions h and R
on Td , where R is C∞ and h is C 1+β. The iterative scheme relies on finding an approxi-
mate C∞ solution with good estimates for the linearized equation over L:

L ◦h′−h′ ◦L =Q, where Q −R = h ◦ f −h ◦L.

Conjugating f by the C∞ diffeomorphism H ′ = Id−h′ we get a new C∞ diffeomorphism
f ′, which is much closer to L and is still C 1+β conjugate to L. Continuing this iterative
process and establishing convergence in a suitable smooth topology proves the theo-
rem.

Closest to our setting, KAM techniques were used in [3] to prove C∞ local rigidity
for some Z2 actions by partially hyperbolic toral automorphisms. The structure of a
higher rank action was used there in an essential way to construct such an approximate
solution. In our case these methods do not apply, and instead the argument relies on
existence of a C 1+β conjugacy with the estimate (2). The linearized equation is analyzed
using Fourier coefficients. However, expansion/contraction of the twist L requires work-
ing in higher smoothness classes, while our functions h, and hence Q, are only C 1+β. To
employ our low regularity data we use the Lyapunov splitting Rd = ⊕E i for L and con-
sider projections

Li ◦hi −hi ◦L =Qi , where Li = L
∣∣E i .

Differentiating along E i , we “balance” the twist by the derivative

Li ·Di hi − (Di hi )◦L ·Li = Di Qi ,

which allows us to use the existence of Hölder solution Dh.
Applying Theorem 3.2 we improve the regularity of the conjugacy from C 1+Hölder to

C∞ in Theorems 2.4 and 2.6.

Corollary 3.3. Let L : Td → Td be an irreducible Anosov automorphism such that no
three of its eigenvalues have the same modulus. Let f be a C∞ diffeomorphism which is
C r close to L such that the derivative Dp f n is conjugate to Ln whenever p = f n(p). Then
f is C∞ conjugate to L.

Corollary 3.4. Let L : Td → Td be an irreducible Anosov automorphism such that no
three of its eigenvalues have the same modulus and there are no pairs of eigenvalues of
the form λ,−λ or iλ,−iλ, where λ ∈R. Let f be a volume-preserving C∞ diffeomorphism
of Td sufficiently C r -close to L. If the Lyapunov exponents of f with respect to the volume
are the same as the Lyapunov exponents of L, then f is C∞ conjugate to L.
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