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GLOBAL RIGIDITY OF HIGHER RANK ANOSOV ACTIONS

ON TORI AND NILMANIFOLDS
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WITH AN APPENDIX BY JAMES F. DAVIS

1. Introduction

An Anosov diffeomorphism f on a torus Tn is affine if f lifts to an affine map on
Rn. By a classical result of Franks and Manning, any Anosov diffeomorphism g on
Tn is topologically conjugate to an affine Anosov diffeomorphism. More precisely,
there is a homeomorphism φ : Tn �→ Tn such that f = φ◦g◦φ−1 is an affine Anosov
diffeomorphism. We call φ the Franks-Manning conjugacy. The linear part of f is
the map induced by g on H1(Tn).

Anosov diffeomorphisms are rarely C1-conjugate to affine ones. For example, one
can perturb a linear Anosov diffeomorphism locally around a fixed point p to change
the conjugacy class of the derivative at p. The resulting diffeomorphism will still be
Anosov but cannot be C1-conjugate to its linearization. The situation is radically
different for Zk-actions with many Anosov diffeomorphisms. In other words, Anosov
diffeomorphisms rarely commute with other Anosov diffeomorphisms.

It follows easily from the result for a single Anosov diffeomorphism that an
Anosov Zk-action α on Tn is topologically conjugate to a Zk-action by affine Anosov
diffeomorphisms. We call this action the linearization of α and denote it by ρ.
Again, for any a ∈ Zk the linear part of ρ(a) is the map induced by α(a) on H1(Tn).
The logarithms of the moduli of the eigenvalues of these linear parts define additive
maps λi : Zk �→ R, which extend to linear functionals on Rk. A Weyl chamber of
ρ is a connected component of Rk −

⋃
i kerλi.

Theorem 1.1. Let α be a C∞-action of Zk, k ≥ 2, on a torus Tn and let ρ be its
linearization. Suppose that there is a Z2 subgroup of Zk such that ρ(a) is ergodic
for every nonzero a ∈ Z2. Further assume that there is an Anosov element for α
in each Weyl chamber of ρ. Then α is C∞-conjugate to ρ.

Furthermore, for a linear Zk-action on Tn having a Z2 subgroup acting by ergodic
elements is equivalent to several other properties, in particular to being genuinely
higher rank [37]. A linear Zk-action is called genuinely higher rank if for all finite
index subgroups Z of Zk, no quotient of the Z-action factors through a finite
extension of Z. Hence we obtain the following corollary.

Received by the editors October 3, 2011 and, in revised form, November 17, 2011, and May

17, 2012.
2010 Mathematics Subject Classification. Primary 37C15, 37C85, 37D20, 53C24; Secondary

42B05.
The authors were supported in part by NSF grants DMS-0643546, DMS-1101150 and DMS-

0906085.
The contributing author was supported in part by NSF grant DMS-1210991.

c©2012 American Mathematical Society
Reverts to public domain 28 years from publication

167



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

168 DAVID FISHER, BORIS KALININ, AND RALF SPATZIER

Corollary 1.2. Let α be a C∞-action of Zk, k ≥ 2, on a torus Tn. Suppose that
the linearization ρ of α is genuinely higher rank. Further assume that there is an
Anosov element for α in each Weyl chamber of ρ. Then α is C∞-conjugate to ρ.

We can define Weyl chambers for the action α itself. In fact these Weyl chambers
will turn out to be the same for α and ρ. Hence existence of Anosov elements for
α in every Weyl chamber of ρ is equivalent to existence of Anosov elements for α
in every Weyl chamber of α.

We refer to our paper [11] for a brief survey of other results and methods in
the classification of higher rank Anosov actions. Our global rigidity results above
are optimal except that we require an Anosov element in every Weyl chamber.
Rodriguez Hertz in [34] classifies higher rank actions on tori assuming only one
Anosov element. However, his work requires multiple additional hypotheses such
as bunching conditions and low dimensionality of coarse Lyapunov spaces. In par-
ticular, the hypotheses in [34] require that the rank of the acting group has to grow
linearly with the dimension of the torus. It is a conjecture due to Katok and the
third author that global rigidity holds assuming α has one Anosov element. We
discuss this conjecture in more detail at the end of this introduction.

Let us briefly describe our proof, which crucially uses the Franks-Manning con-
jugacy φ for some Anosov element of the action. As we noted, φ also conjugates any
commuting diffeomorphism to an affine map. Consequently, each element of the
action gives a functional equation for φ. This yields explicit series representations
for its projection φV to any generalized joint eigenspace V of ρ. The existence
of Anosov elements of α in every Weyl chamber allows us to define coarse Lya-
punov foliations as finest nontrivial intersections of stable and unstable foliations
of Anosov elements. Since the latter are continuous, so are the coarse Lyapunov
foliations. It is precisely here that the existence of an Anosov element in each Weyl
chamber is used. We then employ the continuity of the coarse Lyapunov foliations
to obtain uniform estimates for contraction and expansion. Thus elements close
to a Weyl chamber wall act almost isometrically along suitable coarse Lyapunov
foliations, or more precisely, we can make their exponents in these estimates as
close to 0 as we wish, and in particular smaller than the size of the exponent in the
exponential decay we get from exponential mixing. We use such elements to study
the regularity of φV along each coarse Lyapunov foliation W . Using exponential
mixing for Hölder functions we show that the partial derivatives along W exist as
distributions dual to spaces of Hölder functions. Then we adapt ideas from a paper
by Rauch and Taylor to show that φ is smooth. We emphasize that the rigidity of
Zk-actions for k ≥ 2 is due to the co-existence of (almost) isometric and hyperbolic
behavior in the actions. This utterly fails for Z-actions.

The paper is organized as follows. We first explain general definitions, construc-
tions and results for higher rank Anosov actions in Section 2. In Section 3 we turn
to actions on tori and nilmanifolds and use the Franks-Manning conjugacy to de-
rive special properties of such actions. Most importantly, we will develop uniform
growth estimates for elements near the Weyl chamber walls of the action in Section
3.2. We then turn to the case of the torus as it is substantially more elementary than
the nilmanifold case. In Section 4, we establish exponential mixing for Zk-actions
by ergodic affine automorphisms on a torus. For smooth actions on tori with the
standard smooth structure, we prove in Section 5 the existence of partial derivatives
in all directions as distributions dual to Hölder functions. This concludes the proof
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for the case of standard tori using the general regularity result that we establish
in Section 8. For exotic tori, i.e., manifolds that are homeomorphic to but not
diffeomorphic to tori, in dimensions at least 5 we can pass to a finite cover with the
standard smooth structure. For dimension 4 we give a special argument in Section
6.

Finally, we adapt our arguments to nilmanifolds: Let N be a simply connected
nilpotent Lie group. We call a diffeomorphism of N affine if it is a composition of
an automorphism of N with a left translation by an element of N . If Γ ⊂ N is
a discrete subgroup, we call the quotient N/Γ a nilmanifold. An infra-nilmanifold
M is a manifold finitely covered by a nilmanifold. Diffeomorphisms of M covered
by affine diffeomorphisms of N are again called affine. The Franks-Manning conju-
gacy theorem generalizes to infra-nilmanifolds: Suppose M ′ is a smooth manifold
homeomorphic with an infra-nilmanifold. Then every Anosov diffeomorphism of
M ′ is conjugate to an affine diffeomorphism of M by a homeomorphism φ. We call
φ the Franks-Manning conjugacy. Given an action α of Zk on M ′ which contains
an Anosov diffeomorphism, then its Franks-Manning conjugacy jointly conjugates
all α(a), a ∈ Zk, to affine diffeomorphisms ρ(a). We call ρ the linearization of α.
Now we can state our main result for nilmanifolds:

Theorem 1.3. Let α be a C∞-action of Zk, k ≥ 2, on a compact infra-nilmanifold
N/Γ and let ρ be its linearization. Suppose that there is a Z2 subgroup of Zk such
that ρ(a) is ergodic for every nonzero a ∈ Z2. Further assume that there is an
Anosov element for α in each Weyl chamber of ρ. Then α is C∞-conjugate to ρ.

Our main result reduces to the case of standard nilmanifolds, i.e. nilmanifolds
with the differentiable structure coming from the ambient Lie group. Indeed, there
are no Anosov diffeomorphisms on nontoral nilmanifolds in dimensions 4 or less,
and the result by J. Davis in the appendix shows that any nilmanifold of dimension
at least 5 is finitely covered by a standard nilmanifold.

For standard nilmanifolds we proceed similarly to the toral case. We adapt argu-
ments of Margulis and Qian [32] to reduce regularity of the conjugacy to regularity
of the solution of a cohomology equation. The relevant cocycle however takes val-
ues in a nilpotent group and is not directly amenable to our approach. Instead, we
consider suitable factors of the cocycle in various abelian quotients of the derived
series of N . Again we prove regularity of coboundaries for the resulting cocycles by
exponential mixing of the Zk action, uniform expansion and contraction of elements
close to Weyl chamber walls, and showing existence of derivatives via distributions
dual to Hölder functions. Unlike in the toral case, exponential mixing of actions
by affine automorphisms does not follow from elementary Fourier analysis. Rather
this was established by Gorodnik and the third author in [14]. We remark that this
approach yields the first rigidity results for higher rank actions on general nilman-
ifolds. Earlier cocycle and local rigidity results, by A. Katok and the third author,
were only proved for actions which were higher rank both on the toral factor as
well as the fibers (e.g. [27]). There, cocycles were straightened out separately on
the base and the fibers. Exponential mixing of these actions thus allows for a much
simpler and direct approach and is also used in [15] to prove cocycle rigidity results.

Epilogue: We conclude this paper with some remarks about the conjecture by
Katok and Spatzier that genuinely higher rank abelian Anosov actions are smoothly
conjugate to affine actions. Using the arguments of our earlier paper [11], we
can show that the conjugacy is always smooth along almost every leaf of each
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coarse Lyapunov foliation. However, we have no further evidence in support of
this conjecture and in fact have some doubts about its truth. In [13], Gogolev
constructed a diffeomorphism of a torus which is Hölder conjugate to an Anosov
diffeomorphism but itself is not Anosov. Thus having one Anosov element may not
imply that most elements are Anosov. In [7], Farrell and Jones constructed Anosov
diffeomorphisms on exotic tori. In light of this construction it seems obvious to
ask:

Question 1.4. Are there genuinely higher rank Anosov Zk actions on exotic tori?

As exotic tori are finitely covered by standard tori, such actions would lift to
actions on standard tori. The latter could not be smoothly equivalent to their
linearizations since a smoothness result for conjugacy would descend to the C0

conjugacy between the exotic and standard tori. Thus such examples would also
give counterexamples to the conjecture by Katok and Spatzier even when the un-
derlying smooth structure on the torus is standard.

We remark here that the construction in [7], further explained and simplified in
[8], does not adapt easily to the case of actions of higher rank abelian groups. Indeed
because of the delicate cutting and pasting arguments used in their constructions,
it would be hard to guarantee that different elements continue to commute. As a
consequence of Theorem 1.1, a positive answer to Question 1.4 can only occur for
an action where relatively few elements are Anosov. Furthermore, by the results
in [34], a positive answer to Question 1.4 seems unlikely if the dynamically defined
foliations for the action have dimensions 1 or 2. The Farrell-Jones construction
proceeds by cutting and pasting exotic spheres into the torus. This suggests, in
order to construct examples for Question 1.4, that one would want to glue in the
exotic sphere in a manner somehow subordinate to the dynamical foliations using
their high dimension.

2. Preliminaries

Throughout the paper, the smoothness of diffeomorphisms, actions, and mani-
folds is assumed to be C∞, even though all definitions and some of the results can
be formulated in lower regularity.

2.1. Anosov actions of Zk. Let a be a diffeomorphism of a compact manifold
M . We recall that a is Anosov if there exist a continuous a-invariant decomposition
of the tangent bundle TM = Es

a ⊕ Eu
a and constants K > 0, λ > 0 such that for

all n ∈ N,

(1)
‖Dan(v)‖ ≤ Ke−λn‖v‖ for all v ∈ Es

a,

‖Da−n(v)‖ ≤ Ke−λn‖v‖ for all v ∈ Eu
a .

The distributions Es
a and Eu

a are called the stable and unstable distributions of a.
Now we consider a Zk action α on a compact manifold M via diffeomorphisms.

The action is called Anosov if there is an element which acts as an Anosov dif-
feomorphism. For an element a of the acting group we denote the corresponding
diffeomorphisms by α(a) or simply by a if the action is fixed.

The distributions Es
a and Eu

a are Hölder continuous and tangent to the stable
and unstable foliations Ws

a and Wu
a respectively [18]. The leaves of these foliations
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are C∞ injectively immersed Euclidean spaces. Locally, the immersions vary con-
tinuously in the C∞ topology. In general, the distributions Es and Eu are only
Hölder continuous transversally to the corresponding foliations.

2.2. Lyapunov exponents and coarse Lyapunov distributions. First we re-
call some basic facts from the theory of nonuniform hyperbolicity for a single dif-
feomorphism; see for example [2]. Let a be a diffeomorphism of a compact manifold
M preserving an ergodic probability measure μ. By Oseledec’s Multiplicative Er-
godic Theorem, there exist finitely many numbers χi and an invariant measurable
splitting of the tangent bundle TM =

⊕
Ei on a set of full measure such that the

forward and backward Lyapunov exponents of v ∈ Ei are χi. This splitting is called
Lyapunov decomposition. We define the stable distribution of a with respect to μ
as E−

a =
⊕

χi<0 Ei. The subspace E−
a (x) is tangent μ-a.e. to the stable manifold

W−
a (x). More generally, given any θ < 0 we can define the strong stable distri-

bution by Eθ
a =

⊕
χi≤θ Ei which is tangent μ-a.e. to the strong stable manifold

W θ
a (x). W θ

a (x) is a smoothly immersed Euclidean space. For a sufficiently small
ball B(x), the connected component of W θ

a (x) ∩ B(x), called a local manifold, can
be characterized by the exponential contraction property: for any sufficiently small
ε > 0 there exists C = C(x) such that

(2) W θ,loc
a (x) = {y ∈ B(x) | dist(anx, any) ≤ Ce(θ+ε)n ∀n ∈ N}.

The unstable distributions and manifolds are defined similarly. In general, E−
a

is only measurable and depends on the measure μ. However, if a is an Anosov
diffeomorphism, then E−

a for any measure always agrees with the continuous stable
distribution Es

a. Indeed, E
s
a cannot contain a vector with a nontrivial component in

some Ej with χj ≥ 0 since such a vector does not satisfy (1). Hence Es
a ⊂

⊕
χi<0 Ei.

Similarly, the unstable distribution Eu
a ⊂

⊕
χi>0 Ei. Since TM = Es

a ⊕ Eu
a , both

inclusions have to be equalities.
Now we consider the case of Zk actions. Let μ be an ergodic probability mea-

sure for a Zk action α on a compact manifold M . By commutativity, the Lyapunov
decompositions for individual elements of Zk can be refined to a joint invariant split-
ting for the action. The following proposition from [22] describes the Multiplicative
Ergodic Theorem for this case. See [20] for more details on the Multiplicative
Ergodic Theorem and related notions for higher rank abelian actions.

Proposition 2.1. There are finitely many linear functionals χ on Zk, a set of full
measure P, and an α-invariant measurable splitting of the tangent bundle TM =⊕

Eχ over P such that for all a ∈ Zk and v ∈ Eχ, the Lyapunov exponent of v is
χ(a), i.e.

lim
n→±∞

n−1 log ‖Dan(v)‖ = χ(a),

where ‖ · ‖ is a continuous norm on TM .

The splitting
⊕

Eχ is called the Lyapunov decomposition, and the linear func-
tionals χ, extended to linear functionals on Rk, are called the Lyapunov exponents
of α. The hyperplanes kerχ ⊂ Rk are called the Lyapunov hyperplanes or Weyl
chamber walls, and the connected components of Rk−

⋃
χ kerχ are called the Weyl

chambers of α. The elements in the union of the Lyapunov hyperplanes are called
singular, and the elements in the union of the Weyl chambers are called regular.
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Consider a Zk action by automorphisms of a torus M = Td = Rd/Zd or, more
generally, a nilmanifold M = N/Γ, where N is a simply connected nilpotent Lie
group and Γ ⊂ G is a (cocompact) lattice. In this case, the Lyapunov decompo-
sition is determined by the eigenspaces of the d × d matrix that defines the toral
automorphism or by the eigenspaces of the induced automorphism on the Lie al-
gebra of N . In particular, every Lyapunov distribution is smooth and in the toral
case integrates to a linear foliation. The Lyapunov exponents are given by the
logarithms of the moduli of the eigenvalues. Hence they are independent of the
invariant measure and give uniform estimates of expansion and contraction rates.

In the nonalgebraic case, the individual Lyapunov distributions are in general
only measurable and depend on the given measure. This can already be seen for
a single diffeomorphism, even if Anosov. However, as we observed above, the full
stable distribution Es

a of an Anosov element a always agrees with
⊕

χ(a)<0 Eχ on

a set of full measure for any measure.
For higher rank actions, coarse Lyapunov distributions play a similar role to the

stable and unstable distributions for an Anosov diffeomorphism. For any Lyapunov
functional χ the coarse Lyapunov distribution is the direct sum of all Lyapunov
spaces with Lyapunov exponents, as functionals, positively proportional to χ:

Eχ =
⊕

Eχ′ , χ′ = c χ with c > 0.

For an algebraic action such a distribution is a finest nontrivial intersection of
the stable distributions of certain Anosov elements of the action. For nonalgebraic
actions, however, this is not a priori clear. It was shown in [24, Proposition 2.4]
that, in the presence of sufficiently many Anosov elements, the coarse Lyapunov
distributions are well-defined, continuous, and tangent to foliations with smooth
leaves. We quote the discrete time version [23, Proposition 2.2]. We denote the set
of all Anosov elements in Zk by A.

Proposition 2.2. Let α be an Anosov action of Zk and let μ be an ergodic proba-
bility measure for α with full support. Suppose that there exists an Anosov element
in every Weyl chamber defined by μ. Then for each Lyapunov exponent χ the coarse
Lyapunov distribution can be defined as

Eχ(p) =
⋂

{a∈A | χ(a)<0}
Es

a(p) =
⊕

{χ′=c χ | c>0}
Eχ′(p)

on the set P of full measure where the Lyapunov splitting exists. Moreover, Eχ is
Hölder continuous, and thus it can be extended to a Hölder distribution tangent to
the foliation Wχ =

⋂
{a∈A |χ(a)<0} Ws

a with uniformly C∞ leaves.

Note that ergodic measures with full support always exist if a Zk action contains
a transitive Anosov element. A natural example is given by the measure μ of
maximal entropy for such an element, which is unique [25, Corollary 20.1.4] and
hence is invariant under the whole action. We emphasize that it is precisely here
where we use the assumption that every Weyl chamber contains an Anosov element.
We will use Proposition 2.2 in the next section to get uniform estimates for elements
close to Weyl chamber walls.

Since a coarse Lyapunov distribution is defined by a collection of positively pro-
portional Lyapunov exponents, it can be uniquely identified with the subset of Rk

where these functionals are positive (resp. negative). This subset is called the
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positive (resp. negative) Lyapunov half-space. Similarly, a coarse Lyapunov distri-
bution can be defined with the oriented Lyapunov hyperplane that separates the
corresponding positive and negative Lyapunov half-spaces.

3. Zk
actions on tori and nilmanifolds and uniform estimates

From now on we consider Anosov Zk actions on tori and nilmanifolds. In this
section, we explore the special features we obtain thanks to the Franks-Manning
conjugacy. This allows us to control invariant measures, Lyapunov exponents, and
even upper bounds of expansion for elements close to a Weyl chamber wall (cf.
Section 3.2).

3.1. Invariant measures and Lyapunov exponents. Let f be an Anosov dif-
feomorphism of a torus M = Td or, more generally, of a nilmanifold M = N/Γ. By
the results of Franks and Manning in [12, 31], f is topologically conjugate to an
Anosov automorphism A : M → M ; i.e., there exists a homeomorphism φ : M → M
such that A ◦ φ = φ ◦ f . The conjugacy φ is bi-Hölder; i.e., both φ and φ−1 are
Hölder continuous with some Hölder exponent γ.

Now we consider an Anosov Zk action α on a nilmanifold M . Fix an Anosov
element a for α. Then we have φ which conjugates α(a) to an automorphism A.
By [39, Corollary 1], any homeomorphism of M commuting with A is an affine
automorphism. Hence we conclude that φ conjugates α to an action ρ by affine
automorphisms. We will call ρ an algebraic action and refer to it as the linearization
of α.

Now we describe the preferred invariant measure for α (cf. [21, Remark 1]).
We denote by λ the normalized Haar measure on the nilmanifold M . Note that
λ is invariant under any affine automorphism of M and is the unique measure of
maximal entropy for any affine Anosov automorphism.

Proposition 3.1 ([11, Proposition 2.4]). The action α preserves an absolutely
continuous measure μ with smooth positive density. Moreover, μ = φ−1

∗ (λ) and for
any Anosov element a ∈ Zk, μ is the unique measure of maximal entropy for α(a).

In the next proposition we show that the Lyapunov exponents of (α, μ) and (ρ, λ)
are positively proportional and that the corresponding coarse Lyapunov foliations
are mapped into each other by the conjugacy φ. From now on, instead of indexing a
coarse Lyapunov foliation by a representative of the class of positively proportional
Lyapunov functionals, we index them numerically; i.e., we write Wi instead of
Wχ, implicitly identifying the finite collection of equivalence classes of Lyapunov
exponents with a finite set of integers.

Proposition 3.2. Assume there is an Anosov element in every Weyl chamber.
Then:

(1) The Lyapunov exponents of (α, μ) and (ρ, λ) are positively proportional,
and thus the Lyapunov hyperplanes and Weyl chambers are the same.

(2) For any coarse Lyapunov foliation Wi
α of α,

φ(W i
α) = W i

ρ,

where W i
α is the corresponding coarse Lyapunov foliation for ρ.
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Remark. In fact, one can show that (1) holds for Lyapunov exponents and coarse
Lyapunov foliations of (α, ν) for any α-invariant measure ν, so, in particular, the
Lyapunov exponents of all α-invariant measures are positively proportional and
the coarse Lyapunov splittings are consistent with the continuous one defined in
Proposition 2.2.

Remark. We do not claim at this point that the Lyapunov exponents of (α, μ) and
(ρ, λ) (or of different invariant measures for α) are equal. Of course, if α is shown
to be smoothly conjugate to ρ, then this is true a posteriori.

Proof. The proposition is the discrete time analogue of [11, Proposition 2.5]. We
include the proof for the sake of completeness. First we observe that the conjugacy
φ maps the stable manifolds of α to those of ρ. More precisely, for any a ∈ Zk and
any for μ-a.e. x ∈ M we have

(3) φ(W−
α(a)(x)) = W−

ρ(a)(φ(x)).

Indeed, it suffices to establish this for local manifolds, which are characterized by the
exponential contraction as in (2). Since φ is bi-Hölder, it preserves the property
that dist(xn, yn) decays exponentially, which implies (3). In particular, for any
Anosov a ∈ Zk and any x ∈ M we have φ(W s

α(a)(x)) = W s
ρ(a)(φ(x)). Hence the

formula for W i
α given in Proposition 2.2 implies (2) once we establish (1).

To establish (1) it suffices to show that the oriented Lyapunov hyperplanes of
(α, μ) and (ρ, λ) are the same. Suppose that an oriented Lyapunov hyperplane L
of one action, say α, is not an oriented Lyapunov hyperplane of the other action
ρ. Then we can take Zk elements a ∈ L+ and b ∈ L− which are not separated by
any Lyapunov hyperplane of either action other than L. Then, E−

α(b) = E−
α(a) ⊕E,

where E is the coarse Lyapunov distribution of α corresponding to L. Similarly,
since we assumed that L+ is not a positive Lyapunov half-space for ρ, we have
E−

ρ(b) ⊆ E−
ρ(a). We conclude that

W−
α(a) � W−

α(b) but W−
ρ(a) ⊇ W−

ρ(b),

which contradicts (3) since φ is a homeomorphism. �
3.2. Uniform estimates for elements near a Lyapunov hyperplane. The
uniform estimates proved in this section will play a crucial role in the proof of the
main theorem. They give us upper bounds with small exponents for the expansion
in certain directions for elements close to the Weyl chamber walls. This almost
isometric behavior together with strong hyperbolic behavior in other directions and
exponential mixing will force the convergence of suitable series as distributions.

We first address estimates for the first derivatives of these elements. We fix a
positive Lyapunov half-space L+ ⊂ Rk and the corresponding Lyapunov hyperplane
L. We denote the corresponding coarse Lyapunov distributions for α and ρ by E
and Ē respectively. Recall that γ > 0 denotes a Hölder exponent of φ and φ−1.

Lemma 3.3. For a given coarse Lyapunov distribution E of α there exist linear
functionals χm and χM on Rk positive on the Lyapunov half-space L+ corresponding
to E such that for any invariant ergodic measure ν of α(b) we have

χm(b) ≤ χν(b) ≤ χM (b) ∀ b ∈ L+ ∩ Zk,

where χν(b) is any Lyapunov exponent of (α(b), ν) corresponding to the distribution
E. Equivalently, we have χM (c) ≤ χν(c) ≤ χm(c) for all c ∈ L− ∩ Zk.
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Proof. The Lyapunov exponents of ρ corresponding to Ē are functionals positive
on L+. Let χ̄m and χ̄M be the smallest and the largest ones on L+. We will show
that χm = γχ̄m and χM = γ−1χ̄M satisfy the conclusion of the lemma.

First we will prove the second inequality, which is slightly easier. Suppose that
χν(b) > χM (b) for some Lyapunov exponent of (α(b), ν) corresponding to the dis-
tribution E. Let E′ be the distribution spanned by the Lyapunov subspaces of
(α(b), ν) corresponding to Lyapunov exponents greater than χM (b) + ε. Then, for
some ε > 0, E′ has nonzero intersection with the distribution E. The strong un-
stable distribution E′(x) is tangent for ν-a.e. x to the corresponding local strong
unstable manifold W ′(x). Hence the intersection F (x) of W ′(x) with the leaf W (x)
of the coarse Lyapunov foliation corresponding to E is a submanifold of positive
dimension. We take y ∈ F (x) and denote yn = α(−nb)(y) and xn = α(−nb)(x).
Then xn and yn converge exponentially with the rate at least χM (b)+ ε. Since the
conjugacy φ is γ bi-Hölder it is easy to see that

dist(φ(xn), φ(yn)) = dist(ρ(−nb)(x), ρ(−nb)(y))

decreases at a rate faster than γ χM (b). But this is impossible since φ maps W (x)
to W̄ (φ(x)), the leaf of corresponding Lyapunov foliation of ρ, which is contracted
by ρ(−b) at a rate at most χ̄M (b) = γ χM (b).

The first inequality can be established similarly. Suppose that χν(b) < χm(b)
for some Lyapunov exponent of (α(b), ν) corresponding to the distribution E. Let
E′′ ⊂ E be the Lyapunov distribution corresponding to this exponent. We cannot
assert that E′′ is tangent to an invariant foliation, so we consider a curve l tangent
to a vector 0 �= v ∈ E′′(x) for some ν-typical x. Then the exponent of v with respect
to α(−b) is −χν(b). However, since φ(l) ⊂ W̄ (φ(x)), we can obtain as above that
l is contracted by α(−b) at the rate at least χm(b). It is easy to see that this is
impossible. �

Proposition 3.4. Let E be a coarse Lyapunov distribution and L+ ⊂ Rk be the
corresponding Lyapunov half-space for α. Then for any element b ∈ L+ any ε > 0
there exists C = C(b, ε) such that

(4) C−1e(χm−ε)n‖v‖ ≤ ‖D(α(nb))v‖ ≤ Ce(χM+ε)n‖v‖ for all v ∈ E, n ∈ N,

where χm and χM are as in Lemma 3.3.

Proof. In the proof we will abbreviate α(b) to b. Consider functions an(x) =
log ‖Dbn|E(x)‖, n ∈ N. Since the distribution E is continuous, so are the func-
tions an. The sequence an is subadditive, i.e. an+k(x) ≤ an(b

k(x)) + ak(x). The
Subadditive and Multiplicative Ergodic Theorems imply that for every b-invariant
ergodic measure ν the limit limn→∞ an(x)/n exists for ν-a.e.x and equals the
largest Lyapunov exponent of (b, ν) on the distribution E. The latter is at most
χM (b) by Lemma 3.3. Thus the exponential growth rate of ‖Dbn|E(x)‖ is at most
χM (b) for all b-invariant ergodic measures. Since ‖Dbn|E(x)‖ is continuous, this
implies the uniform exponential growth estimate, as in the second inequality in (4)
(see [36, Theorem 1] or [34, Proposition 3.4]). The first inequality in (4) follows
similarly by observing that the exponential growth rate of ‖Db−n|E(x)‖ is at most
−χm(b). �

Lemma 3.5. Assume that there is an Anosov element in every Weyl chamber.
Then for any a ∈ Zk, α(a) is Anosov if and only if its linearization ρ(a) is Anosov.
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Proof. It is classical that if a is Anosov, so is its linearization. So assume that ρ(a)
is Anosov. Then a does not belong to any Lyapunov hyperplane of ρ and hence
of α. Then Proposition 3.4 applied to a or −a implies that any coarse Lyapunov
distribution of α is either uniformly contracted or uniformly expanded by α(a). This
implies that α(a) is Anosov since the coarse Lyapunov distributions span TM . �

3.3. Higher derivatives and estimates on compositions. In this subsection,
we recall a basic estimate on higher derivatives of compositions of diffeomorphisms.
The main point is that the exponential growth rate is entirely controlled by the
first derivative.

Let ψ be a diffeomorphism of a compact manifold M . Given a function f on
M , in local coordinates we have a vector-valued function fk consisting of f and
its partial derivatives up to order k. Using a finite collection of charts and a
subordinate partition of unity, one can define the Ck norm of f as supx ‖fk(x)‖. It
is easy to check that different choices of charts and/or partition of unity give rise to
equivalent Ck norms. We will also write ‖f(x)‖k = ‖fk(x)‖ for the corresponding
norm at x. More generally, let F be a foliation of M by smooth manifolds. Given a
function f which is continuous and differentiable along F we can again locally define
a vector-valued function fk,F (x) consisting of f and its partial derivative to order
k along F and let ‖f(x)‖k,F = ‖fk,F (x)‖. Fixing a finite collection of foliation
charts and a subordinate partition of unity, this allows us to define Ck norms
corresponding to only taking derivatives along F , by ‖f‖k,F = supx∈M ‖f(x)‖k,F .
Once again it is easy to check that different choices of charts and/or partitions of
unity give rise to equivalent norms. In this setting, for a homeomorphism ψ of
M that is smooth along F with all derivatives continuous transversely, we define
‖ψ(x)‖k,F = sup ‖f ◦ ψ(x)‖k,F , where the supremum is over functions f such that
‖f(ψ(x))‖k,F = 1. We then define ‖ψ‖k,F = supx∈M ‖ψ(x)‖k,F .

Lemma 3.6. Let ψ be a diffeomorphism of a manifold M preserving a foliation F
by smooth leaves. Let Nk = ‖ψ‖k,F . Then there exists a polynomial P depending
only on k and the dimension of the leaves of F such that for every m ∈ N,

(5) ‖ψm‖k,F ≤ Nmk
1 P (mNk).

This type of estimate is used frequently in the dynamics literature, particularly
in KAM theory, and is usually referred to as an estimate on compositions. This
lemma is essentially [9, Lemma 6.4] and a proof is contained in Appendix B of that
paper. There are many other proofs of (5) in the literature, though mostly only in
the case where the foliation F is trivial, i.e. when the only leaf of F is the manifold
M . Most proofs should adapt easily to the foliated setting.

4. Exponential mixing for Zk
actions on tori

Consider a diffeomorphism a on a manifold preserving a probability measure
μ. Given two Hölder functions f, g, we consider the matrix coefficients 〈akf, g〉,
where the bracket refers to the standard inner product on L2(μ). For an Anosov
diffeomorphism a, the matrix coefficients of Hölder functions decay exponentially
fast in k for either an invariant volume or the measure of maximal entropy, as follows
easily from symbolic dynamics. D. Lind established exponential decay for Hölder
functions for ergodic toral automorphisms in [30]. This is considerably harder,
as there is no suitable symbolic dynamics. Instead he shows that dual orbits of
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Fourier coefficients diverge fast as one has good lower bounds on the distances
from integer points to neutral subspaces along stable and unstable subspaces. This
precisely is Katznelson’s lemma on rational approximation of invariant subspaces.
We adapt Lind’s argument to prove exponential decay of matrix coefficients of
Hölder functions for Zk actions by ergodic automorphisms with a bound depending
on the norm of the element in Zk. Even if the Zk action contains only Anosov
elements this is not trivial since we seek a bound in terms of the norm of a ∈ Zk. In
addition, some elements in Zk will be arbitrarily close to the Lyapunov hyperplanes
and thus have little, if any, expansion in certain directions. Thus one essentially
has to deal with the partially hyperbolic case. We remark that Damjanović and
Katok obtained estimates of exponential divergence of Fourier coefficients for the
dual action induced by a Zk action by ergodic toral automorphisms [4].

Finally, Gorodnik and the third author generalized exponential decay of matrix
coefficients to ergodic automorphisms and Zk actions of such on nilmanifolds [14].
We will report on this development in more detail in Section 7 when we prove the
nilmanifold version of our main result. The arguments required for the nilmanifold
case are substantially more complicated and rely on work by Green and Tao on
equidistribution of polynomial sequences [16]. For this reason, and to keep our
exposition for the case of toral automorphisms self-contained and elementary, we
present our adaptation of Lind’s arguments.

Let τ be a Zk action by ergodic automorphisms of Tn. We begin by recalling
Katznelson’s Lemma. For a proof, see [4, Lemma 4.1].

Lemma 4.1. Let A be an N × N matrix with integer coefficients. Suppose that
RN splits as RN = V ⊕ V ′ with V and V ′ invariant under A and such that A |V
and A |V ′ do not have common eigenvalues. If V ∩ ZN = {0}, then there exists a
constant C such that

d(z, V ) ≥ C‖z‖−N

for all z ∈ ZN . Here ‖z‖ denotes the Euclidean norm and d the Euclidean distance.

Consider the finest decomposition into τ (Zk)-invariant subspaces Ei of Rn =⊕
i Ei. All Ei are subspaces of generalized eigenspaces of the elements of τ (Zk).

Let λi denote the Lyapunov exponent defined by the vectors in Ei. Then eλi(a) is
the absolute value of the eigenvalue of τ (a) on Ei. It is well known that the λi(a)
are the Lyapunov exponents of τ (a). Pick an inner product with respect to which
the Ej are mutually orthogonal. Let |||v||| denote its norm. Since all norms on Rn

are equivalent, we can pick D > 0 such that 1
D‖v‖ ≤ |||v||| ≤ D‖v‖. Finally note

that for any a ∈ Zk, τ (a) expands v ∈ Ej by at least eλj(a).

Lemma 4.2. If τ (a) is an ergodic toral automorphism, then for some i, λi(a) �= 0.

This follows immediately from Kronecker’s theorem that the eigenvalues of an
integer matrix are roots of unity if they all lie on the unit circle. However, let us
give a simple direct proof.

Proof. Consider the Jordan decomposition τ (a) = bc of a, where b is semisimple, c
unipotent and τ (a) and b commute. Then for all i, λi(a) = λi(b). If all λi(a) = 0,
then b lies in a compact subgroup. Since τ (a) is ergodic, no eigenvalue of τ (a) is
a root of unity, and hence no power of b is 1. Hence powers of b approximate 1
arbitrarily closely. Hence trτ (a)l = trbl is arbitrarily close to n for suitable l. Since
τ (a)l ∈ SL(n,Z), tr τ (a)l is an integer, and thus tr τ (a)l = n. On the other hand,
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however, tr τ (a)l < n since the eigenvalues of bl cannot be real. This is the final
contradiction. �

We will need a slightly stronger variant of this lemma. For a ∈ Zk, set S(a) =
maxi λi(τ (a)). Then S(a) �= 0 for τ (a) ergodic.

Lemma 4.3. Suppose that for all 0 �= a ∈ Zk, τ (a) acts ergodically. Then
inf{S(a) | 0 �= a ∈ Zk} > 0.

Explicit lower bounds can be found in the literature, e.g. in [3]. We give an easy
soft argument for a positive lower bound.

Proof. First suppose that all elements in Zk are semisimple. If τ (a) is semisimple,
then τ (a) expands each Ej precisely by eλj(a) with respect to |||v|||. Suppose
S(al) → 0 for a sequence of mutually distinct 1 �= al ∈ Zk. Then there are
infinitely many τ (al) which expand distances w.r.t. ||| . . . ||| by at most 2

D . Hence
distances w.r.t. ‖ . . . ‖ get expanded by at most 2. Pick any integer vector z ∈ Zn.
As the images al(e1) are integer vectors of norm at most 2 ‖z‖, for some al �= aj ,

al(z) = aj(z). Hence a−1
j al cannot be ergodic.

Next consider the general case. Consider a generating set a1, . . . , ak of Zk. Sup-
pose a1 ∈ Zk has a Jordan decomposition τ (a1) = b1 c1 with b1 semisimple and c1
unipotent. Since τ (a1) ∈ SL(n,Z) both b1 and c1 are in SL(n,Q). Since c1 is unipo-
tent, the subspace W1 = {v | c1v = v} of eigenvectors with eigenvalue 1 is nontrivial
and is defined over Q. Also, W1 is τ (Zk)-invariant, and τ (Zk) acts faithfully on W1

since otherwise some element τ (a) for a ∈ Zk has eigenvalue 1 and is not ergodic.
Also τ (a) |W1

is semisimple. Inductively, we define a descending sequence of ratio-
nal τ (Zk)-invariant subspaces W1 ⊃ W2 ⊃ . . . ⊃ Wk on which Zk acts faithfully. In
addition, τ (ai) |Wi

is semisimple. Hence Zk acts faithfully on Wk and every element
acts semisimply. By the special case above, inf{S(a |WK

) | 1 �= a ∈ Zk} > 0. Since
inf{S(a) | 0 �= a ∈ Zk} ≥ inf{S(a |WK

) | 0 �= a ∈ Zk}, the claim follows. �
Note that the λi and hence S extend to continuous functions on Rk.

Lemma 4.4. Suppose for all 0 �= a ∈ Zk, τ (a) acts ergodically. Then for all
0 �= a ∈ Rk, S(a) > 0. Thus 0 < σ := 1

2 inf{S(a) | a ∈ Rk, ‖ a ‖= 1}.

Proof. Suppose S(a) = 0 for some 0 �= a ∈ Rk. Since the line ta, t ∈ R comes
arbitrarily close to integer points in Zk, we can find tl ∈ R and al ∈ Zk with
al − tla → 0 as l → ∞. As S(tla) = 0 for all l, it follows readily that S(al) → 0 in
contradiction to the last lemma. The last claim follows as S is continuous. �

Let B(d) denote the ball of radius d in Zk.

Lemma 4.5. Let 1 < r < e
σ

n+2 . Set Hl = {z ∈ Z | −rl ≤ z ≤ rl}n. Then we have
for all sufficiently large l and a ∈ Zk with ‖a‖ ≥ l,

τ (a)(Hl) ∩Hl = {0}.
Proof. Fix a constant b > 0 such that for all r > 0, [−r, r]n is contained in the ball
Bbr(0) of radius br about 0.

Suppose that there is a sequence lm → ∞ and alm ∈ Zk with αlm := ‖alm‖ ≥ lm
such that τ (alm)(Hlm)∩Hlm �= {0}. Passing to a subsequence we may assume that
alm

αlm
→ a converges to a ∈ Rk. Since S(a) ≥ 2σ, λi(a) ≥ σ for some i. Hence we

get for all large m that λi(alm) ≥ lmσ.
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Let E =
⊕

j �=i Ej . By Katznelson’s Lemma applied to E, there is a constant

C > 0 such that for 0 �= z ∈ Zn, the distance d(z, E) > C‖z‖−n. Suppose zlm ∈ Hlm

with τ (alm)zlm ∈ Hlm . Then we get

‖zlm‖ < brlm and ‖τ (alm)zlm‖ < brlm .

Denote by πi the projection to Ei along E. Then ‖πi(zlm)‖ = d(zlm , E) ≥
C‖zlm‖−n > Cb−nr−nlm .

As E and Ei are transversal and have constant angle, there is a constant M such
that for all v ∈ Rn, πi(v) ≤ M‖v‖. Hence ‖τ (alm)(πi(zlm))‖ = ‖πi(τ (alm)zlm)‖ <
Mbrlm . On the other hand, we will show below that

‖τ (alm)(πi(zlm))‖ ≥ 1

D
eσlmb−nr−nlm .

Indeed, this estimate is clear when τ (a) is semisimple but needs more care when
τ (a) has nontrivial Jordan form. This estimate will yield a contradiction to the
Lyapunov exponent λi(a) of a to be at least σ. Here are the details.

Set vlm :=
πi(zlm )

‖πi(zlm )‖ . By the estimates above we get

‖τ (alm)(vlm)‖ ≤ Mbrlm

‖πizlm‖ ≤ MC−1bn+1r(n+1)lm .

Set blm := a − alm

αlm
. Then blm → 0. For all large m, we may assume that blm

expands vectors by a factor of at most r. Since lm ≤ αlm this implies that

‖τ (αlma)(vlm)‖ = ‖τ (αlmblm)τ (alm)(vlm)‖ ≤ MC−1bn+1r(n+1)lmrαlm

≤ MC−1bn+1r(n+2)αlm .

Find a basis w1, . . . , ws of Ei which brings a to Jordan form. Write vlm =
x1
lm
w1 + · · ·+ xs

lm
ws. Passing to a subsequence the vlm converge. Suppose j is the

last coordinate such that xj
lm

→ xj �= 0. Then τ (αlma)(vlm) has j-coordinate of

absolute value xjeαlm λi(a). Since the sup norm determined by the basis w1, . . . , wr

is equivalent to the standard Euclidean norm, there is a constant M ′ such that
‖τ (αlma)(vlm)‖ > M ′xjeαlm λi(a). Hence

M ′xjeαlm σ < M ′xjeαlm λi(a) < MC−1bn+1r(n+2)αlm .

This is impossible for large lm by choice of r and σ. �

We will use the approximation by Fejér kernel functions Kl(t) =
∑l

j=−l

(
1 −

|j|
l+1

)
e2πijt, and we refer to [28, chapter I] for details.

Set Fl(t1, . . . , tn) = Kl(t1) . . .Kl(tn). For continuous f : Tn �→ R, Kl � f is
supported on Hl. Endow the space

Hθ = {f : Tn → R | f is Hölder with Hölder exponent θ}

for 0 < θ < 1 with the norm

‖f‖θ = ‖f‖∞ + sup
t,h �=0

‖f(t+ h)− f(t)‖
‖h‖θ .
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As in [28, p. 21, Exercise 1], we get

Lemma 4.6. There is a constant C = C(θ) such that the map Hθ �→ L∞(Tn)
given by f �→ Fm � f satisfies the estimate

‖Fm � f − f‖∞ ≤ C(θ)‖f‖θm−θ.

Theorem 4.7. Suppose Zk acts affinely on Tn such that for all 0 �= a ∈ Zk, τ (a)
acts ergodically. Let f and g be two Hölder functions on Tn with Hölder exponents
θ. Then there exists r > 1 such that for any al ∈ Zk with ‖al‖ ≥ l we can bound
the matrix coefficients∣∣∣∣〈alf, g〉 −

∫
Tn

f

∫
Tn

g

∣∣∣∣ < C(θ) (4‖f‖θ‖g‖2 + 2‖g‖θ‖f‖2) r−θl.

In particular, the matrix coefficients decay exponentially fast.

Proof. We can assume that
∫
Tn f =

∫
Tn g = 0 are both 0 by subtracting the con-

stants
∫
Tn f and

∫
Tn g from f and g respectively.

We pick 1 < r < e
σ

n+2 as in Lemma 4.5, where σ is as in Lemma 4.4. Let
m = [rl] , the largest integer smaller than rl. Set fl = Km � f and gl = Km � g
with frequencies in Hl. Then

∫
Tn fl =

∫
Tn gl = 0 and ‖f −fl‖∞ ≤ 2C(θ)‖f‖θ(rl)−θ

and ‖g−gl‖∞ < 2C(θ)‖g‖θ(rl)−θ, where the 2 accounts for the discrepancy coming
from m versus rl. By the last lemma, we get

〈al(f), g〉 = 〈alf, (g − gl)〉+ 〈al(f − fl), gl〉+ 〈al(fl), gl〉.
The last term is eventually 0 since the constant term is 0 and al moves Hl off itself.
The first term is bounded by

‖f‖2‖g − gl‖∞ ≤ 2C(θ)‖g‖θ‖f‖2 r−θl.

Take l large enough so that ‖g − gl‖∞ < 2C(θ)‖g‖θ(rl)−θ < 2. Then the second
term is bounded by

‖gl‖2‖f − fl‖∞ ≤ 2C(θ)‖f‖θ‖gl‖2 r−θl ≤ 4C(θ)‖f‖θ‖g‖2 r−θl.

This yields the desired estimate �

Corollary 4.8. The same statement as above holds for any Anosov Zk action with
k > 1 where every element acts ergodically.

Proof. This combines Theorem 4.7, the existence of a Hölder conjugacy, and the
fact that we define matrix coefficients with respect to the push-forward measure,
which is the unique smooth invariant measure by Proposition 3.1. �

5. Regularity and the proof of Theorem 1.1

In this section we complete the proof of Theorem 1.1 by showing that the Franks-
Manning conjugacy φ between the Zk actions α and ρ is smooth. We will use φ and
the uniform exponential estimates along the coarse Lyapunov foliations of α from
Section 3.2, but we will not use Anosov elements explicitly in this section. Instead,
we will use the subgroup Z2 consisting of ergodic elements that we postulated in
Theorem 1.1. Theorem 4.7 gives exponential mixing with uniform estimates along
this Z2. This allows us to define distributions on Hölder functions which correspond
to the components of the conjugacy and their derivatives. First, however, we will
make some reductions to the general case.
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By passing to a finite index subgroup of Zk we can assume that the action α
has a common fixed point. First we reduce the problem to the case when α acts
on the torus with the standard differentiable structure. Note that a construction
due to Farrell and Jones shows that there exist Anosov diffeomorphisms of exotic
tori [7]. However, every exotic torus of dimension at least 5 has a finite cover
which is diffeomorphic to the standard torus [38, Chapter 15 A, last unitalicized
paragraph]. In this case we can consider the lifts of the actions and the conjugacy.
Clearly, the smoothness of φ follows from the smoothness of its lift. We will give
an independent argument in Section 6 for the case of 4-dimensional tori. Hence,
without loss of generality, we can assume that α acts on the same standard torus
as ρ. In dimensions 2 and 3, by Remark A.5 in the Appendix, there are no exotic
differentiable structures, though this fact is not strictly needed here. In dimension
3, Theorem 1.1 follows from the main result of [34]. As explained in Section 6,
there are no higher rank Anosov actions on tori in dimension 2.

By changing coordinates we can also assume that 0 is a common fixed point for
both α and ρ. Then there exists a unique conjugacy φ in the homotopy class of
the identity satisfying φ(0) = 0. We can lift φ to the map φ̃ : Rn → Rn satisfying

φ̃(0) = 0 and write it as φ̃ = I + h, where h : Rn → Rn is Zn periodic.
Consider an element a in Z2 and abbreviate α(a) to a and ρ(a) to Ā. We denote

their lifts to Rn that fix 0 by ã and A respectively and note that A is linear. Since
φ is a conjugacy and the lifts fix 0, they satisfy φ̃ ◦ ã = A ◦ φ̃. Hence we obtain

(I + h)(ã(x)) = A (I + h)(x),

which is equivalent to

h(x) = A−1(ã(x)−A(x)) +A−1(h(ã(x))) = Q(x) +A−1(h(ã(x))),

where Q(x) = A−1(ã(x)−A(x)). Note that Q(x) is smooth since a is smooth with
respect to the standard differentiable structure (this will be crucial later). Since
h is Zn periodic it is easy to see that A−1(h(ã(x))) and hence Q(x) are also Zn

periodic. For the remainder of this section we will view h and Q as functions from
Tn to Rn. The functional equation on Tn becomes

(6) h(x) = Q(x) +A−1(h(ax)).

Fix a coarse Lyapunov foliation V of α and the corresponding linear coarse
Lyapunov foliation V̄ of ρ. Let V be the subspace of Rn parallel to V̄ and W be
the complementary A invariant subspace, which is parallel to the sum of all coarse
Lyapunov foliations of ρ different from V̄. Denote by hV : Rn → V the projection
of h to V along W . Since V is A-invariant, projecting equation (6) and letting AV

denote the restriction of A to V we obtain

(7) hV (x) = QV (x) +A−1
V (hV (ax)) =: FV (hV )(x),

where QV denotes the projection of Q to V along W .
We will use the functional equation (7) with well-chosen elements a to study

the derivatives of hV along the coarse Lyapunov foliations of α. These derivatives
exist, a priori, only in the sense of distribution on smooth functions. The crucial
element of the proof is Lemma 5.1 below, which shows that these distributional
derivatives extend to functionals on the spaces of Hölder functions. We emphasize
that this lemma is quite general and may be useful in other situations. The main
ingredients are the uniform exponential estimates with arbitrarily small exponents
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along coarse Lyapunov foliations, and exponential mixing for Hölder functions. The
key idea is that in our estimates for derivatives, the exponential decay coming from
exponential mixing overcomes small exponential growth coming from derivatives.

Lemma 5.1. For any coarse Lyapunov foliation V ′ of α, possibly equal to V, and
for any θ > 0 the derivatives of hV of any order along V ′ exist as distributions on
the space of θ-Hölder functions.

Proof. Let L,L+, L− ⊂ Rk be the Lyapunov hyperplane and the positive and nega-
tive Lyapunov half-spaces corresponding to V . Let L′ be the Lyapunov hyperplane
corresponding to V ′. In this proof we will choose a in the Z2 subgroup consisting
of ergodic elements. We note that V and V ′ are coarse Lyapunov foliations for
α-action of the full Zk and that we make no assumptions on the relative positions
of Z2, L, and L′ in Rk. We will choose a in a narrow cone in Z2 around L′ ∩Z2, so
that a will expand V ′ at most slowly. In case Z2 ⊂ L′, this automatically holds for
all a in Z2. Since any such cone cannot be contained entirely in L−, we can always
choose such an a ∈ Z2 in L+ or L.

If a ∈ L+, then A−1
V is a contraction. Then the operator FV in (7) is a contrac-

tion on the space C0(Tn, V ). Hence it has a unique fixed point limFm
V (0), which

therefore has to coincide with hV . Thus we obtain

(8) hV (x) =
∞∑

m=0

A−m
V QV (a

mx).

If a ∈ L the series in (8) does not converge in the space of continuous functions.
However, it converges in the space D0 of distributions on smooth functions with
zero average, and the equality in (8) holds in D0. To see this we iterate (7) to get

(9) hV (x) =

N−1∑
m=0

A−m
V QV (a

mx) +A−N
V hV (a

Nx).

Since ‖A−m
V ‖ grows at most polynomially in m for a ∈ L, and since hV is Hölder,

Corollary 4.8 implies that the pairing 〈A−N
V hV (a

Nx), f〉 → 0 for any Hölder func-
tion f with

∫
Tn f = 0. This establishes convergence and equality in (8) when both

sides are considered as elements in D0.
We will use the notation of Section 3.3 for derivatives. Given a smooth function

g : Tn → Rl, we write gk,V
′
for the vector consisting of the derivatives of g up to

order k along the foliation V ′. If g is a vector-valued function on Tn and f is a scalar-
valued function, we write gf for the vector function obtained by component-wise
multiplication of g by f . We then write 〈g, f〉 for the vector obtained by integrating

gf over Tn. We will use the same notation hk,V′

V for the vector of distributional
derivatives of hV along V ′ (see Section 8 for a detailed description of distributional
derivatives in the context of foliations). Differentiating (8) term-wise we obtain the

formula for hk,V′

V ,

(10) 〈hk,V′

V , f〉 =
∞∑

m=0

〈A−m
V (QV ◦ am)k,V

′
, f〉.

Note that the derivative of a distribution is defined by its values on derivatives of
test functions (16), and those have zero average. Thus convergence and equality in
(10) hold in the space D of distributions on smooth functions, even if equality in (8)
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holds only in D0. Since QV is smooth, the pairings in the series in (10) are simply

given by integration. To show that hk,V′

V extends to a functional on the space of
Hölder functions we will now estimate these pairings in terms of the Hölder norm
of f .

We will use smooth approximations of f by convolutions fε = f � φε, where the
kernel is given by rescaling φε(x) = ε−nφ(xε ) of a fixed bump function φ and thus
is supported on the ball of radius ε and satisfies

φε ≥ 0,

∫
Tn

φε = 1, ‖φε‖Ck = ε−(n+k)‖φ‖Ck .

Then it is easy to check the following estimates, where ‖ · ‖k denotes the Ck

norm for k ≥ 0,
(11)
‖fε − f‖0 ≤ εθ‖f‖θ for 0 < θ ≤ 1 and ‖fε‖Ck ≤ ck ε

−n−k‖f‖0 for k ∈ N,

where f is a θ-Hölder function and ck is a constant depending only on k. First we
estimate the pairings in (10) with fε. Note that ‖ · ‖l ≤ ‖ · ‖k if l ≤ k. We have

‖〈A−m
V (QV ◦ am)k,V

′
, fε〉‖ ≤ ‖A−m

V ‖ · ‖〈(QV ◦ am)k,V
′
, fε〉‖

= ‖A−m
V ‖ · ‖〈QV ◦ am, (fε)

k,V′〉‖ .

Since ‖(fε)k,V
′‖θ ≤ ‖(fε)k,V

′‖1 ≤ ‖fε‖k+1, using Corollary 4.8 and (11) we can
estimate

‖〈QV ◦ am, (fε)
k,V′〉‖ ≤ K1 r

−m‖a‖θ ‖QV ‖θ‖(fε)k,V
′‖θ

≤ K2 r
−m‖a‖θε−(n+k+1)‖QV ‖θ ‖f‖0 .

Since a is chosen in L+∪L, ‖A−1
V ‖ grows at most polynomially in ‖a‖ and thus, for

any η > 0, we can ensure that ‖A−1
V ‖ < (1 + η)‖a‖ for all a with sufficiently large

norm. Thus we conclude from the two equations above that

(12) ‖〈A−m
V (QV ◦ am)k,V

′
, fε〉‖ ≤ K2 (1 + η)m‖a‖ r−m‖a‖θ ε−(n+k+1)‖QV ‖θ ‖f‖0 .

Now we estimate the pairings in (10) with f − fε using the supremum norm and
estimating ‖A−m

V ‖ as above:

‖〈A−m
V (QV ◦ am)k,V

′
, (f − fε)〉‖ ≤ ‖A−m

V (QV ◦ am)k,V
′‖0 · ‖(f − fε)‖0

≤ ‖A−m
V ‖ · ‖QV ◦ am‖k,V′ · εθ‖f‖θ ≤ (1 + η)m‖a‖ · ‖am‖k,V′ · ‖QV ‖k,V′ · εθ‖f‖θ.

Here we used the notation of Section 3.3. Denoting Nk = ‖a‖k,V′ , and using
equation (5) from Lemma 3.6 we conclude that

‖〈A−m
V (QV ◦ am)k,V

′
, (f − fε)〉‖ ≤ (1 + η)m‖a‖ ·Nmk

1 P (mNk) · εθ · ‖QV ‖k · ‖f‖θ .
Recall that we choose a in a cone around L′∩Z2. For any η > 0, by taking the cone
sufficiently narrow and using Proposition 3.4, we can ensure that N1 = ‖a‖1,V′ <

(1+ η)‖a‖ for any such a with sufficiently large norm. Then from the last equation
we obtain that

(13) ‖〈A−m
V (QV ◦am)k,V

′
, (f−fε)〉‖ ≤ (1+η)m(k+1)‖a‖ ·P (mNk)·εθ ·‖QV ‖k ·‖f‖θ .

For any fixed θ, we have a fixed rate of exponential decay with respect to m in
(12), but the rate of exponential growth in (13) can be made arbitrarily slow. This
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allows us to choose an ε that gives exponentially decaying estimates for both (12)
and (13). More precisely, we take

ε = r
−m‖a‖θ
θ+n+k+1 and denote ζ = r

θ2

θ+n+k+1 > 1.

Then we obtain from (12) and (13) that

‖〈A−m
V (QV ◦ am)k,V

′
, fε〉‖ ≤ K2 (1 + η)m‖a‖ ζ−m‖a‖ · ‖QV ‖θ ‖f‖0 and

‖〈A−m
V (QV ◦ am)k,V

′
, (f − fε)〉‖ ≤ (1 + η)(k+1)m‖a‖ P (mNk) ζ

−m‖a‖ · ‖QV ‖k ‖f‖θ.
For any k we can now choose a, and hence η, so that ξ = ζ ·(1+η)−(k+2) > 1. Since
the polynomial P and constant Nk depend only on k and a, we can then estimate
P (mNk) ≤ K3(1 + η)m‖a‖. Finally, we obtain from the last two equations that

‖〈A−m
V (QV ◦ am)k,V

′
, f〉‖ ≤ K4 ξ

−m‖a‖ · ‖QV ‖k ‖f‖θ.
Thus for any θ and k we obtain exponentially decreasing estimates for the terms

in (10). We conclude that ‖〈hk,V′

V , f〉‖ ≤ C‖f‖θ and hence hk,V′

V extends to a
functional on the space of θ-Hölder functions.

Proof of Theorem 1.1. We discussed actions on two- and three-dimensional tori
above, and we will prove Theorem 1.1 for four-dimensional tori with an exotic
smooth structure in the next section. When the dimension is greater than four, as
explained above, we can pass to a finite cover by smoothing theory and assume that
the smooth structure is standard. Passing to a subgroup of finite index, we can also
assume that α has a common fixed point. By Lemma 5.1, for any coarse Lyapunov
foliation V ′ of α and for any θ > 0 the derivatives of hV of any order along V ′

exist as distributions on the space of θ-Hölder functions. Hence by Corollary 8.5,
all hV are C∞. Since the subspaces V span, h is determined by the projections
hV . It follows that h is C∞ and hence so is φ. It remains to show that φ is a dif-
feomorphism. Since φ is a homeomorphism, it suffices to show that the differential
of φ is everywhere nondegenerate. This follows from Proposition 3.1 since we have
λ = φ∗(μ) and μ has smooth positive density.

�

6. Four-dimensional exotic tori

Now consider a higher rank Anosov action on a 4-dimensional torus with an
exotic differentiable structure. Due to low dimension we are able adapt arguments
from [11] to obtain the result in this case.

By passing to a finite index subgroup of Zk we can assume that the linear part
ρ acts by linear automorphisms from SL(4,Z). We begin by analyzing possibilities
for such actions on T4. Let A ∈ SL(4,Z) be an Anosov element for ρ. First we
claim that the characteristic polynomial of A is irreducible over Q. Indeed, the
only possible splitting would be into a product of quadratic terms and would imply
existence of a rational invariant subspace of dimension two. Such a subspace would
be invariant with respect to a finite index subgroup of Zk. The restriction of ρ to
the corresponding torus would still be Anosov and contain a Z2 subgroup of ergodic
elements, as ergodicity is equivalent to having no root of unity as an eigenvalue.
The latter however is impossible since Anosov actions on T2 can only have rank
one. More precisely, by the Dirichlet Unit Theorem the centralizer of an irreducible
Anosov matrix in SL(n,Z) is a finite extension of Zd, where d is n − 1 minus the
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number of pairs of complex eigenvalues. Moreover, all nontrivial elements of this
Zd are semisimple. We conclude that ρ(Zk) is a subgroup of such Zd ⊂ SL(4,Z).

We note that ρ has four Lyapunov exponents (counted with multiplicity) and
χ1+χ2+χ3+χ4 = 0 by volume preservation. If no two are negatively proportional,
then ρ, and hence α, is so-called TNS (totally nonsymplectic) and smoothness
of the conjugacy follows from [11, Theorem 1.1]. Now suppose that there are
negatively proportional Lyapunov exponents. This case does not follow from any
previous theorem but can still be handled using techniques from [11] and [22].
Note that in this case there are no positively proportional Lyapunov exponents,
as otherwise for elements near the kernel of the negatively proportional ones all
Lyapunov exponents will be close to zero by volume preservation, contradicting
Lemma 4.3. This implies that ρ(Zk) contains matrices with pure real spectrum and
the coarse Lyapunov spaces for ρ are one-dimensional and totally irrational, so in
particular the corresponding linear foliations of T4 are ergodic.

For the nonlinear action α the coarse Lyapunov foliations are also one-dimension-
al and any pair Wi,Wj is jointly integrable in the topological sense by the conjugacy
to the linear action. By [22, Lemma 4.1], the joint foliation Wij has smooth leaves.
For each Wi consider a Wj which does not correspond to negatively proportional
exponents. Then one can see as in [11, Proposition 5.2] that there is an element
that contracts Wi faster than Wj and conclude that Wi and Wj are C∞ along the
leaves of Wij . In place of measurable normal forms in [11], for one-dimensional
foliations we can use the nonstationary linearization [26, Proposition A.1] which
is continuous on M in the C∞ topology. Hence a simple version of the holonomy
argument [11, Proposition 8.1] works for any Wi using the holonomy along such
Wj . The argument shows that the conjugacy φ is C∞ along any Wi(x) with the
derivatives continuous on M . Then the smoothness of φ follows easily as in [11].

7. The nilmanifold case

In this section we will describe the adaptations of our arguments needed for the
case of an Anosov action on an infranilmanifold M . Passing to finite covers, we can
assume that N/Γ is a nilmanifold. Next we reduce to the case when the differen-
tiable structure on N/Γ is standard, i.e., given by the ambient Lie group structure.
First we note that there are no nilmanifolds of dimension at most 4 supporting an
Anosov automorphism besides the torus. Hence we can employ the theorem of J.
Davis, proved in the appendix, that every exotic nilmanifold in dimension at least
5 has a finite cover with standard differentiable structure. This allows us to lift
the actions to ones smooth with respect to a standard differentiable structure, as
in the beginning of Section 5. Thus the main theorem follows for nilmanifolds of
dimension at least 5 provided it holds for actions on standard nilmanifolds. We will
now give a proof of the main theorem in this setup.

First note that the arguments from Section 3 allowing uniform control of expo-
nents work verbatim. That certain distributions are dual to the space of Hölder
functions will again be key to our arguments. This requires exponential mixing
of the action which does not follow easily from Fourier analysis or more generally
representation theory anymore. Instead we evoke a recent result by Gorodnik and
the third author [15]. This is far less elementary than the results in Section 4 and
uses recent results of Green and Tao [16] on the equidistribution of polynomial
sequences.
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Theorem 7.1 (Gorodnik-Spatzier). Consider a Zk action α by ergodic affine dif-
feomorphisms on an infra-nilmanifold. Then for any 0 < θ < 1 there is 0 < λ < 1
such that for any two θ-Hölder functions f, g : X �→ R we get∣∣∣∣〈f ◦ α(z), g〉 −

∫
Tn

f

∫
Tn

g

∣∣∣∣ ≤ Oθ(λ
‖z‖)‖f‖θ‖g‖θ,(14)

where ‖z‖ denotes some fixed norm on Zk.

We need to establish regularity of the solutions to the cocycle equations em-
ployed in Section 5. We are inspired by the approach of Margulis and Qian in [32,
Lemma 6.5]. However, while they write their equations in exponential coordinates
and directly study the solutions in these coordinates, we will reduce the cocoycle
equation to a series of equations, one for each term of the derived series of N . This
yields abelian-valued cocycle equations to which we can apply the arguments from
the toral case. Here are the details.

As in Section 5 we consider the lift φ̃ : N → N of the Franks-Manning conjugacy
φ : N/Γ → N/Γ. We can write it as a product φ̃ = h · I, where h : N → N satisfies

(h · I)(a(x)) = A
(
(h · I)(x)

)
(15)

on N and projects to the map from N/Γ to N .
Let N ′ be the commutator subgroup of N . Pick a splitting of the Lie algebra

N = N ′ ⊕N0 of N , where N ′ is the Lie algebra of N ′. Note that N0 is not a Lie
algebra. Let N0 = expN0, where exp is the exponential map. Now we decompose
h as a product h = h1 · h0, where h0 takes values in N0 and h1 takes values in N ′,
in the following way. We take h0 to be the exponential of the N0 component of
exp−1 h and define h1 = h · (h0)

−1. One can see that h1 ∈ N ′ from the Campbell-
Hausdorff formula since all brackets are in N ′. Note that h0 and h1 project to maps
from N/Γ to N .

Step 1. We first show that h0 is smooth. Let h̄ : N → N ′\N be the composition
of h with the projection N → N ′\N . Note that h0 is smooth precisely when
h̄ is smooth, since by construction exp−1 h0 and exp−1 h̄ are just related by the
identification of N0 with the Lie algebra of N ′\N . Write the group operation in
N ′\N additively. Denote by Ā the induced automorphism of N ′\N . Then we get

(I + h̄)(a(x)) = Ā (I + h̄)(x).

Now we can use exactly the same arguments as in Section 5 and in particular
exponential mixing to show that h̄ is smooth.

Step 2. We write (15) in terms of the decomposition h = h1 · h0:

h1(a(x))h0(a(x))a(x) = A(h1(x))A(h0(x))A(x).

This gives the formula

h1(x) = A−1(h1(a(x)))A
−1(h0(a(x)))A

−1(a(x))x−1h0(x)
−1.

Since the automorphism A leaves N ′ invariant it follows that both h1(x) and
A−1(h1(a(x))) belong to N ′. Hence the function

Q1(x) := A−1(h0(a(x)))A
−1(a(x))x−1h0(x)

−1
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also takes values in N ′. In addition, Q1(x) is smooth by construction and satisfies
the functional equation

h1(x) = A−1(h1(a(x)))Q1(x).

Since h1 projects to a map from N/Γ, then so does A−1(h1(a(x))) and, from the
equation, Q1(x). Thus the equation holds in C0(N/Γ, N ′).

Now mod out by the second derived group N ′′ and denote the projected maps
by bars. Again we write multiplication in N ′′\N ′ additively to get

h̄1(x) = (A |N ′)−1(h̄1(a(x))) +Q1(x).

We can analyze the solution to this equation once again using the methods from the
basic toral case, and in particular exponential mixing and uniqueness of solutions.
We conclude that h̄1 is a smooth function. Continue this analysis by decomposing
N ′ in terms of N ′′ and a complement N1 to N ′′ inside N ′. Since the derived series
terminates for a nilpotent Lie group, we see that h is a smooth function.

8. Wavefront sets

We establish regularity properties of a distribution whose derivatives along a
foliation F are dual to Hölder functions in a suitable fashion. While the definitions
and concepts will be developed for foliations, the proof will be entirely local on an
open subset of Rn1 ×Rn2 and only uses partial derivatives along the second factor.
However, it will be important to develop the appropriate notions for foliations for
our application to the conjugacy problem in the main part of the paper.

The main theorem is a variation of results of Rauch and Taylor in [35] who assume
that derivatives of the distribution along a foliation belong to various function
spaces. The novelty here is that the derivatives are allowed to be distributions,
of a precise order less than 0. While we only deal with the particular case of
distributions dual to certain Hölder functions, we expect this to be true much more
generally.

We first lay out our assumptions on the foliation. Let x and y denote the
coordinates of the first and second factor of a point in Rn1 × Rn2 . Suppose z =
Γ(x, y) is a bi-Hölder homeomorphism of an open subset O ⊂ Rn1

x ×Rn2
y into Rn1+n2

with the property that Γ has y-derivatives of all orders and these derivatives are
Hölder in (x, y). We further assume that for a fixed x, Γ(x,− ) is an immersion
on each {x} × Rn2

y . Then we call Γ a foliation chart, or more precisely, a Hölder
foliation chart with smooth leaves. On a manifold, Hölder foliations F with smooth
leaves are defined by patching foliation charts. If F can be defined by using smooth
foliation charts Γ, we call F smooth. Note that the x × Rn2 for x ∈ Rn1 define a
smooth foliation Y of Rn1+n2 .

We will further assume F is strongly absolutely continuous, i.e. there is a contin-
uous function J(x, y) > 0 such that all y-derivatives of J exist and are Hölder in x
and y and such that for any compactly supported continuous function u on Γ(O),∫

u(z)dz =

∫
u(Γ(x, y))J(x, y)dxdy.

Note that if a function u(z) has partial derivatives along the foliation F , then
u ◦ Γ(x, y) has partial y-derivatives. In addition, the dependence of these latter
derivatives on x is continuous or Hölder if the partial derivatives of u along F
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are continuous or Hölder. Thus the partials ∂β
y (u(Γ(x, y))) are well-defined, and it

makes sense to discuss their regularity.
We will now define derivatives along the foliation F on a manifold M defined by

foliation charts Γ. Fix a standard basis for Rn2
y , parallel translate it over Rn1+n2

and consider the push-forward under Γ. This defines vector fields Vj tangent to F
which are smooth along the leaves of F and whose derivatives along F of any order
depend Hölder transversely to F . We say that a function f has derivatives of order
up to k along F if for any sequence Vj1 , . . . , Vjk the derivatives Vj1 . . . Vjk(f) exist. If
M is endowed with a Riemannian metric, equivalently we can require the following:
consider any smooth vector fields X1, . . . , Xk on M , and denote their orthogonal
projections to the tangent spaces of F by Z1, . . . , Zk. Then f has derivatives up to
order k along F if the derivatives Z1 . . . Zk(f) exist.

Lemma 8.1. Under the above assumptions, the derivatives of Γ−1 along F are
also Hölder.

Proof. This follows from the standard formulas for differentiating the inverse of
immersions, and the assumptions on Hölderness of Γ and its derivatives along Y .
Note that the correspondence of the Hölder coefficients, while complicated, is ex-
plicit. �

In our main theorem below, we will allow the Hölder exponents of the higher
order derivatives of both Γ and J to get worse with the order. In the following
we will use a fixed nonincreasing sequence αk such that all Y or F derivatives of
both Γ, Γ−1 and J of order at most k are Hölder with Hölder exponent αk. This is
possible by the last lemma. Note that the vector fields Vj defined above and their
derivatives along F up to order k depend αk-Hölder transversely to F .

Fix a Riemannian metric on M . Next, we introduce the space Cα,k
F of compactly

supported α-Hölder functions on M which in addition have derivatives along F of

all orders ≤ k and all such derivatives are α-Hölder as functions on M . Then Cα,k
F

is a Banach space with the norm given by the finite sequence of α-Hölder norms of
the derivatives along F of order ≤ k. If M is compact, the norm is independent

of the Riemannian metric chosen up to bi-Lipschitz equivalence. Note that Cα,k
F

is closed under multiplication. We let (Cα,k
F )∗ be the dual space to Cα,k

F . Note
that any compactly supported smooth function on M naturally belongs to any

Cα,k
F . Hence any element in (Cα,k

F )∗ defines a distribution on smooth functions on

M . Alternatively, (Cα,k
F )∗ is the space of distributions (dual to smooth functions)

which extend to continuous linear functionals on Cα,k
F . As for notation, we will also

write the pairing D(φ) = 〈D,φ〉 for D ∈ (Cα,k
F )∗ and φ ∈ Cα,k

F . All of these notions
apply to the special case of F = Y .

We will work with a foliation chart Γ and use the above notation for the case
M = Γ(O).

Lemma 8.2. Under composition with Γ, functions in Cα,k
F pull back to functions in

Cααk,k
Y . Conversely, functions in Cβ,k

Y pull back to functions in Cβαk,k
F under com-

position with Γ−1. Consequently, we can also pull back distributions in (Cβαk,k
F )∗

by Γ to get distributions in (Cβ,k
Y )∗.
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Proof. Both assertions are standard and follow simply from the fact that Hölder
exponents multiply under composition and don’t change under addition and mul-
tiplication. The last statement is obtained by taking duals. The pull-back for
distributions means push-forward by Γ−1. �

Now we define distributional derivatives. Let us first consider partial derivatives
along y-directions for the Y foliation. These are the derivatives we will use in
the proof of the main theorem below. Fix a standard basis for Rn2

y and parallel

translate it over Rn1+n2 . Then the ∂
∂yi

derivative of a distribution D ∈ (Cα,k
Y )∗ is

defined by evaluating on h ∈ Cα,k+1
F via

〈 ∂

∂yi
(D), h〉 = −〈D,

∂

∂yi
(h)〉.(16)

Note that ∂
∂yi

(D) is only defined on Cα,k+1
Y , and hence, ∂

∂yi
(D) ∈ (Cα,k+1

Y )∗.

Similarly, we define distributional derivatives along F . Fix a standard basis
for Rn2

y , parallel translate it over Rn1+n2 and consider the push-forward under Γ.
This defines vector fields Vj tangent to F which are smooth along the leaves of
F and whose derivatives along F of order up to k depend αk-Hölder transversely
for αk as above. Assume in the following that α ≤ αk. Indeed the Vi(h) involve
the coefficients of Γ, and this assumption will insure that taking derivatives along

the Vj does not affect Hölder exponents. More precisely we have Vi(h) ∈ Cα,k
F for

h ∈ Cα,k+1
F as the Vi are α-Hölder by assumption on α. Hence we can define the

derivative of a distribution D ∈ (Cα,k
F )∗ by evaluating on h ∈ Cα,k+1

F via

〈Vi(D), h〉 = −〈D,Vi(h)〉.(17)

Note that Vi(D) is only defined on Cα,k+1
F , and hence, Vi(D) ∈ (Cα,k+1

F )∗.

Note that pulling back derivatives Vj(D) gives us ∂
∂yj

derivates of the pull-back

of D on the appropriate function spaces.

Further define gD for g ∈ Cα,k
F and D ∈ (Cα,k

F )∗ by evaluating on a test function

φ ∈ Cα,k
F by

(gD)(φ) = 〈gD, φ〉 = 〈D, gφ〉.(18)

We conclude that gD ∈ (Cα,k
F )∗. If D is given by integration against a compactly

supported L1- function u, then gD is given by integrating against gu.

Lemma 8.3. Let α ≤ αk and suppose that g ∈ Cα,k+1
F and D ∈ (Cα,k

F )∗. Then

Vi(g D) = Vi(g)D+ gVi(D) holds true in (Cα,k+1
F )∗, i.e. as functionals on Cα,k+1

F .

Proof. We check this by evaluating both sides on φ ∈ Cα,k+1
F :

〈Vi(g D), φ〉 = −〈g D, Viφ〉 = −〈D, g (Viφ)〉 = −〈D,Vi(gφ)− (Vig)φ〉 =
〈D, (Vig)φ〉 − 〈D,Vi(gφ)〉 = 〈(Vig)D,φ〉+ 〈ViD, g φ〉 = 〈(Vig)D,φ〉+ 〈g(ViD), φ〉.

�

Note. The inner product 〈D, (Vig)φ〉 is not defined unless g ∈ Cα,k+1
F . Thus we

need the higher regularity on g in the hypothesis of the previous lemma. This

simple problem caused the introduction of the spaces of test functions Cα,k
F .
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Let u be an L1 function defined on a neighborhood of a point z0. A vector ζ0 is
called not singular for u at z0 if there exist an open set U � z0 and an open cone
Z ⊂ Rn \ {0} around ζ0 such that for any positive integer N and any C∞ function
χ with support in U there exists a constant C = C(N,χ) so that
(19)

|χ̂u (ζ)| =
∣∣ ∫ u(z)χ(z) exp(−iz · ζ)dz

∣∣ ≤ C|ζ|−N for all ζ ∈ Z with |ζ| > 1.

Otherwise, ζ0 is called singular for u at z0. The wave front set WF (u) is defined
as the set of all (z0, ζ0) such that ζ0 is singular for u at z0.

Theorem 8.4. Suppose that u(z) is an L1 function. Let F be a Hölder foliation
with smooth leaves which is also strongly absolutely continuous. Consider the dis-
tribution D defined by integration against u(z). Assume that any derivative of D
along F of any order belongs to (Cα

F)
∗ for all positive α. If (z0, ζ0) ∈ T ∗(Rn)\0 is

not conormal to F , then

(z0, ζ0) /∈ WF (u).

As an immediate corollary, we obtain the result needed in Section 5.

Corollary 8.5. Let F1, . . . ,Fr be Hölder foliations with smooth leaves on a mani-
fold M which are also strongly absolutely continuous. Assume in addition that the
tangent spaces to these foliations span the tangent spaces to M at all points.

Now suppose that u(z) is an L1 function. Consider the distribution D defined
by integration against u(z). Assume that any derivative of D of any order along
any Fi, i = 1, . . . , r belongs to (Cα

Fi
)∗ for all 1 ≤ i ≤ r and all positive α. Then u

is C∞.

Proof. Since the tangent spaces to the foliations span the tangent bundle every-
where, no vector ζ �= 0 can be conormal to all Fi. Now it follows from Theorem
1.1 that WF (u) is empty and hence u is smooth by e.g. [19, Section 8.1]. �

The main idea in the proof of Theorem 8.4 is a simple generalization of an
argument of Rauch and Taylor in [35]. However much more care has to be taken
to make sure that various operations undertaken are well defined and allowed.
In particular, we use integration by parts for derivatives along the foliation. This
requires that the test functions in question are differentiable along F up to a suitable
order. This led to the definition of the function spaces above.

Remark. The proof of Theorem 1.1 becomes easier if the foliation F has derivatives
of all orders of a fixed Hölder class and the distribution in question together with
its derivatives along F is dual to a fixed Hölder class.

Proof. We fix (z0, ζ0) which in not conormal to F . By the definition of the wave
front set it suffices to show that there exist an open set U � z0 and an open cone
Z ⊂ Rn \ {0} around ζ0 such that for any N > 0 and any χ ∈ C∞

0 (U) there exists
a constant C so that
(20)

|χ̂u (ζ)| =
∣∣ ∫ u(z)χ(z) exp(−iz · ζ)dz

∣∣ ≤ C|ζ|−N for all ζ ∈ Z with |ζ| > 1.

We define

φ(x, y, ζ) = −Γ(x, y) · ζ,
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and note that, for a fixed ζ, the function φ is in Cαk,k for all k by the choice of αk.
Using a foliation chart and the strong absolute continuity of F we can write

χ̂u (ζ) =

∫
u(Γ(x, y)) χ(Γ(x, y))J(x, y) exp(iφ(x, y, ζ))dxdy.

The hypothesis that (z0, ζ0) is not conormal to F implies that

dyφ(x, y, ζ0) �= 0, where Γ(x, y) = z.

Relabeling the y coordinates it follows that there exist a neighborhood U of z0, an
open cone Z ⊂ Rn \ {0} around ζ0, and δ > 0 so that

(21)

∣∣∣∣∂φ(x, y, ζ)∂y1

∣∣∣∣ > δ|ζ|, when (Γ(x, y), ζ) ∈ U × Z.

To obtain the desired decay in ζ we use the identity(
1

i∂φ(x, y, ζ)/∂y1

∂

∂y1

)
exp(iφ(x, y, ζ)) = exp(iφ(x, y, ζ))

to deduce that
(22)

χ̂u(ζ) =

∫
u(Γ(x, y))χ(Γ(x, y))J(x, y)

(
1

i∂φ(x, y, ζ)/∂y1

∂

∂y1

)N

exp(iφ(x, y, ζ))dxdy.

We can expand

(23)

(
1

i∂φ(x, y, ζ)/∂y1

∂

∂y1

)N

=

N∑
m=1

ψm,N (x, y, ζ)

(
∂

∂y1

)m

.

To describe functions ψm,N (x, y, ζ) we note that (g ∂
∂y1

)N is a sum of terms of

the form Pm( ∂
∂y1

)m, where Pm is a polynomial in g and its first N −m derivatives.

Applying this to g = 1
i∂φ(x,y,ζ)/∂y1

, we see that each function ψm,N (x, y, ζ) is a

quotient of a polynomial in Γ(x, y) · ζ and its first N − m + 1 derivatives divided
by a power of i∂φ(x, y, ζ)/∂y1. Taking k derivatives of ψm,N yields, by the product
and quotient rules, a similar expression which involves derivatives of Γ(x, y) of order
N−m+1+k and hence is Hölder with exponent α(k+N−m+1). It follows that, for a

fixed ζ and any m = 1, ..., N , the function ψm,N (x, y, ζ) is in C
α(N+1),m

Y . Moreover,
there exists a constant C such that

(24) ‖ψm,N‖α(N+1),m ≤ C |ζ|−N for all ζ ∈ Z with |ζ| > 1.

Indeed, since φ(x, y, ζ) is linear in ζ, both sides of (23) are homogeneous of degree
−N in ζ, and hence so are the functions ψm,N and their derivatives. We conclude
that the functions in (24) are rational functions in ζ of homogeneous degree −N
whose coefficients, as functions of (x, y), are Hölder on Γ−1(U). The Hölder norms of
these coefficients are continuous in ζ and hence are uniformly bounded on Z∩{|ζ| =
1}. Finally, using equation (21) we can bound the denominators away from zero
and obtain (24).

Using (22) and (23) we can write χ̂u as a finite sum

χ̂u(ζ)=

N∑
m=1

∫
u(Γ(x, y))χ(Γ(x, y))J(x, y)ψm,N(x, y, ζ)

(
∂

∂y1

)m

exp(iφ(x, y, ζ))dxdy.
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In the remainder of the proof we estimate each term of this sum. For this we denote

A = u(Γ(x, y))χ(Γ(x, y)) and Aζ
m,N = u(Γ(x, y))χ(Γ(x, y)) J(x, y)ψm,N(x, y, ζ)

and view A and Aζ
m,N as the distributions given by integration, with a fixed ζ,

against the corresponding functions. Since the functions u ◦ Γ, χ ◦ Γ, J and ψM,n

are in L1, A and Aζ
m,N lie in (Cα

Y)
∗ = (Cα,0

Y )∗ for all positive α, and Aζ
m,N = Jψm,NA

as elements of (Cα
Y)

∗ with multiplication of distributions defined as in (18). Recall
that φ(x, y, ζ) is in (Cαm,m

Y ), so by the definition of derivatives of distributions for
each term in χ̂u(ζ) we obtain∫

u(Γ(x, y))χ(Γ(x, y)) J(x, y)ψm,N(x, y, ζ)

(
∂

∂y1

)m

exp(iφ(x, y, ζ)) dxdy

= 〈Aζ
m,N ,

( (
∂

∂y1

)m

exp(iφ(x, y, ζ)

)
〉

= (−1)m〈
( (

∂

∂y1

)m

(Aζ
m,N )

)
, exp(iφ(x, y, ζ))〉

= (−1)m〈
( (

∂

∂y1

)m

(Jψm,NA)

)
, exp(iφ(x, y, ζ))〉 ,

where the pairing is in the sense of (Cαm,m
Y )∗ for 1 ≤ m ≤ N . Now we apply the

Leibniz rule, Lemma 8.3, m times to write
(

∂
∂y1

)m

(Jψm,NA) as(
∂

∂y1

)m

(Jψm,NA)

=
∑

a+b+c=m

Ka,b,c

[(
∂

∂y1

)a

J(x, y)

] [(
∂

∂y1

)b

(ψm,N )

] [(
∂

∂y1

)c

A

]
.

The equation holds in (C
αN+1,m
Y )∗ since A is in (CαN+1

Y )∗ and ψm,N as well as J are

in C
αN+1,m
Y . Finally, we can rewrite the pairing in (C

αN+1,m
Y )∗ of each term in this

sum with exp(iφ(x, y, ζ)) as

〈
([(

∂

∂y1

)a

J(x, y)

]
·
[(

∂

∂y1

)b

(ψm,N )

]
·
[(

∂

∂y1

)c

A

])
, exp(iφ(x, y, ζ))〉

(25) = 〈
(

∂

∂y1

)c

A ,

([(
∂

∂y1

)a

J(x, y)

]
·
[(

∂

∂y1

)b

(ψm,N )

]
· exp(iφ(x, y, ζ))〉.

Now we use the assumption that derivatives of u and hence of the localization
uχ along F exist as elements in (Cα

F )
∗ for all positive α. Therefore, by Lemma

8.2, y-derivatives of the pull-back A = (uχ) ◦ Γ also exist as elements in (Cα
Y)

∗

for all positive α. Hence the pairing in (25) can be estimated by the (αN+1)-

Hölder norm of the product
[(

∂
∂y1

)a
J(x, y)

][(
∂

∂y1

)b
(ψm,N )

]
exp(iφ(x, y, ζ)). As

b, c ≤ m, all three functions are (αN+1)-Hölder. Moreover, for all ζ ∈ Z with |ζ| >
1, ‖

(
∂

∂y1

)a
J(x, y)‖αN+1

is bounded by a fixed constant, ‖
(

∂
∂y1

)b
(ψm,N )‖αN+1

≤
C |ζ|−N by (24), and the norm ‖ exp(iφ(x, y, ζ))‖αN+1

can be estimated by C ′ |ζ|.
We conclude that each pairing in (25) can be estimated by C ′′ |ζ|−N+1, and hence
the same estimate holds for |χ̂u(ζ)|. Since N is arbitrary, the desired estimate (20)
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now follows and shows that any (z0, ζ0) which is not conormal to F is not the wave
front set of u. �

Appendix. A finite cover of an exotic nilmanifold is standard

A nilmanifold is the quotient G/L of a simply connected nilpotent Lie group
G by a discrete cocompact subgroup L. Two homeomorphisms f, g : X → Y are
isotopic if they are homotopic through homeomorphisms.

Theorem A.1. Let h : M → G/L be a homeomorphism from a smooth manifold to

a nilmanifold of dimension greater than four. Then there is a finite cover Ĝ/L →
G/L so that the induced pull-back homeomorphism M̂ → Ĝ/L is isotopic to a
diffeomorphism.

Theorem A.1 is a consequence of Lemma A.3 and Lemma A.4 stated below.

Definition A.2. A space N satisfies condition (*) if for any i > 0, for any finite

abelian group T , for any finite cover p̂ : N̂ → N , and for any x ∈ Hi(N̂ ;T ), then

there exists a finite cover p̃ : Ñ → N̂ so that p̃∗x = 0.

Lemma A.3. Let h : M → N be a homeomorphism of smooth manifolds of di-
mension greater than four. Suppose N satisfies (*). Then there is a finite cover

N̂ → N so that the induced pull-back homeomorphism M̂ → N̂ is isotopic to a
diffeomorphism.

In particular any two smooth structures onN become diffeomorphic after passing
to a finite cover. An existence result can be proved using similar techniques: any
topological manifold of dimension greater than four which satisfies (*) has a finite
cover which admits a smooth structure.

Lemma A.4. Any nilmanifold satisfies condition (*).

Proof. Since a finite cover of a nilmanifold is a nilmanifold, it will be notationally
simpler to show that any nilmanifold satisfies condition (**) defined below.

A space N satisfies condition (**) if for any i > 0, for any finite abelian group

T , and for any x ∈ Hi(N ;T ), then there exists a finite cover p̂ : N̂ → N so that
p̂∗x = 0.

We first verify condition (**) when i = 1. Indeed, the Universal Coefficient
Theorem gives an isomorphism H1(N ;T ) → Hom(H1(N);T ) for all spaces N , and
the Hurewicz Theorem gives an isomorphism π1(N,n0)

ab → H1(N) for a path-
connected space N . Thus there is a natural isomorphism of contravariant functors
from path-connected based spaces to abelian groups

Φ(N,n0) : H
1(N ;T )

∼=−→ Hom(π1(N,n0), T ).

Given x ∈ H1(N ;T ), there is a connected cover p̂ : N̂ → N and a base point

n̂0 ∈ N̂ so that

p̂∗(π1(N̂ , n̂0)) = ker(Φ(N,n0)(x) : π1(N,n0) → T ).
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Since T is a finite group, p̂ is a finite cover. The commutative square

H1(N̂ ;T )
∼=−−−−→ Hom(π1(N̂ , n̂0), T )�⏐⏐p̂∗

�⏐⏐− ◦ p̂∗

H1(N ;T )
∼=−−−−→ Hom(π1(N,n0), T )

shows that p̂∗x = 0.
We now turn to the proof that any nilmanifold satisfies condition (**) when i > 1.

The proof will be by induction on the dimension of the nilmanifold N = G/L, using
the Gysin sequence of a principal S1-bundle

S1 → N
π−→ N/S1,

where N/S1 is a nilmanifold. To obtain this principal bundle note that the center
Z(G) is nontrivial since G is nilpotent. Furthermore, it can by shown that Z(L) =
L ∩ Z(G) is a discrete cocompact subgroup of the real vector space Z(G) (see [33,
Proposition 2.17]). Choose a primitive element l ∈ L∩Z(G). Then S1 = R · l/Z · l
acts freely on N and the quotient N/S1 is the nilmanifold (G/R · l)/(L/Z · l).

Let N be a nilmanifold. Assume by induction that condition (**) holds for all
nilmanifolds of strictly smaller dimension. The Gysin sequence (see [5])

· · · → Hi−2(N/S1;T )
∪e−−→ Hi(N/S1;T )

π∗
−→ Hi(N ;T )

π!−→ Hi−1(N/S1;T ) → · · ·

is an exact sequence associated to a principal S1-fibration. By the inductive hy-

pothesis, there exists a finite cover p̃/S1 : Ñ/S1 → N/S1 so that p̃/S1
∗
(π!x) = 0.

(Note, here is where we use that i > 1.) Define Ñ as the pull-back

Ñ
π̃−−−−→ Ñ/S1⏐⏐�p̃

⏐⏐�p̃/S1

N
π−−−−→ N/S1.

We have a map of principal S1 bundles, hence a map of Gysin sequences (see the
bottom two rows of the diagram below). By commutativity of the lower right

square below and the exactness of the middle row, there is an x′ ∈ Hi(Ñ/S1;T )
so that π̃∗x′ = p̃∗x. By the inductive hypothesis again, there is a finite cover

p̂/S1 : N̂/S1 → Ñ/S1 so that p̂/S1
∗
(x′) = 0. Defining N̂ as a pull-back, we have

the diagram below:

Hi(N̂/S1;T )
π̂∗

−−−−→ Hi(N̂ ;T )
π̂!−−−−→ Hi−1(N̂/S1;T )�⏐⏐p̂/S1

∗
�⏐⏐p̂∗

�⏐⏐p̂/S1
∗

Hi(Ñ/S1;T )
π̃∗

−−−−→ Hi(Ñ ;T )
π̃!−−−−→ Hi−1(Ñ/S1;T )�⏐⏐p̃/S1

∗
�⏐⏐p̃∗

�⏐⏐p̃/S1
∗

Hi(N/S1;T )
π∗

−−−−→ Hi(N ;T )
π!−−−−→ Hi−1(N/S1;T ).
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Hence our desired finite cover is p̃ ◦ p̂ : N̂ → N . This completes the proof of the
lemma. �

In preparation for the proof of Lemma A.3 we review a bit of smoothing theory.
The two definitive treatments are the books [29] and [17]; see also the recent survey
[6]. A smooth structure on a topological manifold Σ is a pair (M,h), where M is
a smooth manifold and h : M → Σ is a homeomorphism. Two smooth structures
(M1, h1) and (M2, h2) are isotopic if there is a diffeomorphism f : M1 → M2 so
that h1 is isotopic to h2 ◦ f . Let TO(Σ) be the set of isotopy classes of smooth
structures on Σ.

The fundamental theorem of smoothing theory says that a topological manifold
of dimension greater than four admits a smooth structure if and only if its topolog-
ical tangent bundle admits the structure of a vector bundle. Furthermore, isotopy
classes of smooth structures are in bijective correspondence with bundle reductions.
It will be easier (and slicker) to express this in terms of maps to classifying spaces,
as in Part 2 of [17].

Let Top(n) be the group of homeomorphisms of Rn fixing the origin. Give
Top(n) the compact open topology. Let O(n) be the orthogonal group. Let
Top = colimTop(n) and O = colimO(n). The quotient space Top/O admits the
structure of an abelian H-space satisfying the following property: if Σ is a topolog-
ical manifold of dimension greater than four, then the abelian group of homotopy
classes [Σ, T op/O] acts freely and transitively on the set of isotopy classes of smooth
structures TO(Σ). For smooth structures (M1, h1) and (M2, h2), let d(h1, h2) be
the unique element of [Σ, T op] so that d(h1, h2)[M1, h1] = [M2, h2] ∈ TO(Σ). Thus
d(h1, h2) = 0 if and only if the homeomorphism h−1

2 ◦ h1 : M1 → M2 is isotopic to
a diffeomorphism.

The homotopy groups of Top/O are reasonably well-understood. Indeed,

πi(Top/O) = 0, 0, 0,Z/2, 0, 0, 0,Z/28 for i = 0, 1, 2, 3, 4, 5, 6, 7

and for i ≥ 5, πi(Top/O) ∼= Θi, the group of exotic smooth structures on the
i-sphere. In particular, Top/O is simply connected and the homotopy groups
πi(Top/O) are all finite.

Proof of Lemma A.3. Let Σ be a topological manifold of dimension greater than
4 which admits a smooth structure. Here are three observations. First, if p̂ :

Σ̂ → Σ is a covering map, then the map p̂∗ : TO(Σ) → TO(Σ̂) is equivariant with

respect to the group homomorphism p̂∗ : [Σ, T op/O] → [Σ̂, T op/O]. In other words,
p̂∗([α] · [M,h]) = p̂∗[α] · p̂∗[M,h]. The geometric fact underlying this is that the
pull-back of the tangent bundle of the base space under a covering map is the
tangent bundle of the total space. Second, note that Σ admits the structure of a
CW-complex, for example, by triangulating the smooth structure. Finally, note
that if f, g : X → Y are maps from a CW-complex to a simply connected space,
and H(i− 1) : Xi−1 × I → Y is a homotopy from f |Xi−1 to g|Xi−1 , there is a well-
defined obstruction class O = Oi(f, g,H(i − 1)) ∈ Hi(X;πiY ) (see [5, Theorem
7.12]. This class vanishes if and only if there is a homotopy H(i) : Xi × I → Y
from f |Xi to g|Xi which restricts to H(i− 1)|Xi−2×I .

Let (M1, h1) and (M2, h2) be two smooth structures on a topological manifold
Σ which satisfies condition (*). Assume n = dimΣ ≥ 5. Give Σ the structure
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of an n-dimensional CW-complex. Assume, by induction, that there exists a fi-

nite cover p̂i−1 : Σ̂i−1 → Σ so that d(p̂i−1h1, p̂
∗
i−1h2) is represented by a map

Σ̂i−1 → Top/O which is null-homotopic restricted to the (i − 1)-skeleton. Let

O ∈ Hi(Σ̂i−1;πi(Top/O)) be the obstruction to extending to null-homotopy. By

condition (*), there is a finite cover p̂(i) : Σ̂i → Σ̂i−1 so that p̂(i)∗O = 0. Then the

finite cover p̂i := p̂i−1 ◦ p̂(i) : Σ̂i → Σ satisfies the inductive hypothesis. Thus p̂n is
a finite cover so that the smooth structures p̂∗nh1 and p̂∗nh2 are isotopic. �

Remark A.5. Suppose Σ is a manifold of dimension 3 or less. Using the work of
many mathematicians, most notably Rado and Moise, one can show (see [6]) that
Σ admits a smooth structure and that any two smooth structures are isotopic.
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