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1. T h e  m a i n  r e su l t s .  

1.1. Newman's well-known theorem [1] reads: 
Let M be a topological manifold endowed with a metric d. Then there exists r = ~( M, d) > 0 

such that an arbitrary action of a finite group G by homeomorphisms on M is trivial, provided that 
d(~-x, x) < e for a11 r E G and x E M. 

A number of authors generalized the theorem and simplified its proof (see [2-5]). The most 
essential generalization belongs to A. V. ChernavskiY [3], who proved an analogous theorem under the 
assumption that,  instead of the action of a finite group, there is a continuous partition of M induced 
by a finite-to-one, open and closed mapping. In line with [6], by a pseudosubmersion we will mean 
a continuous, surjective, open and closed mapping f : X ---+ Y between topological spaces which is not 
a homeomorphism and which has card f - l ( y )  < oo for all y E Y. It was in particular proven in [3] 
that,  for a topological manifold endowed with a metric, the Newman constant to be defined below is 
always positive. 

1.2. DEFINITION. The Newman constant e(X, d) of a connected metric space (X, d) is defined as 
the least ~ > 0 for which there is a pseudosubmersion F : X -+ Y with diam f - l ( y )  < r for all y C Y. 

The above-mentioned results related only to the case of topological manifolds, except the article [2] 
in which more general spaces were considered in the case of the action of a finite group. However, 
strong requirements were imposed on the local homological structure of the spaces; in consequence, 
such spaces as, say, finite trees fall out of the consideration. 

Our purpose is to propose a generalization of Newman's theorem which would cover such geomet- 
rically interesting objects as the Alexandrov spaces with curvatures bounded below (or above) and 
would make it possible to obtain geometric estimates for the Newman constant. 

The main result is the following 

1.3. T h e o r e m .  Let a connected locally compact metric space ( X , d ) b e  representable as the 
closure of the union of finitely many open subsets Ai which are topological manifolds (poSsibly of 
different dimensions). Then r d) > 0. 

(In the article [7] there are some estimates for e in dependence on the injectivity radius and 
curvatures. If we confine ourselves only to the isometry group then the corresponding "Newman 
constant" admits of stronger estimates (see [8]).) 

By virtue of the stratification theorem (see [9] or [10, Theorem 13.2]), the conditions of Theorem 1.3 
hold for compact finite-dimensional Alexandrov Spaces with curvature bounded below; hence, for such 
spaces we have e(X, d) > 0. 

Denote by ffJl(K, n, D, V) the class of compact Alexandrov spaces M of dimension n whose cur- 
vature is at least K and for which diam M _< D and Vol M >_ V. (The presence of the boundary is 
not excluded for M.) 

Theorem 1.3, the compactness theorem for Alexandrov spaces [10, Theorem 8.5], and Perelman's 
stability theorem [10, Theorem 13.2; 11] imply 

1.4. C o r o l l a r y .  For positive D and V, an arbitrary K,  and an integer n, there exists ~o = 
eo(K,n ,D,  V)  > 0 such that ~(M) > e0 for all M E FOt(K,n,D, V).  
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The corollary generalizes one result of [6] proven for closed Riemannian manifolds. 
The conditions of Theorem 1.3 hold for some Alexandrov spaces of nonpositive (or bounded above) 

curvature which have, roughly speaking, "finitely many ramifications"; for example, for finite trees. 
At the same time, the example of the tree with arbitrarily many short twin branches shows that  in 
the general case the conclusion of the theorem fails for such spaces. 

1.5. Despite the formal novelty of Theorem 1.3, its proof can be achieved by directly generalizing 
A. V. ChernavskiY's arguments. However, here we give a simpler proof by combining the ideas by 
A. V. ChernavskiY [3] and A. Dress [4]. The article [4] relates to the case of the action of a finite 
group. In the more general situation of a continuous partition of a manifold, Dress's method was 
applied in the article [5] but under the more rigid constraint that the quotient space is a manifold 
without boundary; in consequence, even the case of the action of a finite group is not completely 
covered (see also Remark 3.2). 

We rely upon Theorem 2 of [3] whose proof involves rather intricate constructions. However, they 
can be avoided if one makes use of the method of the article [4] as it is done in the arguments below. 

2. P r e l i m i n a r i e s  and  n o t a t i o n .  

2.1. Let a continuous surjective mapping f : X ~ Y between topological spaces be open and 
closed simultaneously. Then the corresponding partition of X into the inverse images of points ("par- 
tition elements") is called continuous. Clearly, the quotient space is canonically homeomorphic to Y. 
A set A C X is called saturated if f - l ( f ( A ) )  = A. The multiplicity of a partition element is the 
number of points in it. 

2.2. The following facts are easily verifiable and probably well-known although we find it difficult 
to indicate precise references to their proofs. 

If X is locally connected and locally compact and the inverse images of points are compact, then 
the inverse image in X of even open connected subset A C Y consists of finitely many components and 
each of the components is mapped onto the whole of A. In particular, if a partition element contains 
finitely many points and if a connected neighborhood of the image of the element in Y is sufficiently 
small then the inverse image of the neighborhood has as many components as many points are in the 
element; moreover, the closures of the components are disjoint. A continuous partition is induced on 
each component. 

Let X be a connected topological manifold and let the multiplicity of all partition elements be 
finite. By virtue of [3, Theorem 1], the multiplicity of the partition is bounded; i.e., there is a positive 
integer m such that  the multiplicity of the partition elements does not exceed m. 

2.3. I~EMARK. The following generalization of Theorem 1 of [3] holds: Let X have the same form 
as in Theorem 1.3 and let f : X ---* Y be a pseudosubmersion. Then the multiplicity of the partition 
induced on X is bounded. 

The proof can be translated from [3] practically without changes. 

2.4. Introduce the notation: Ki is the union of partition elements containing at most i points; 
~i = Ki \ Ki-1 (assume K0 = 0).  By continuity of the partition, the sets Ki are closed, while 
r are open in Ki and locally compact. On each 4'i the mapping is locally homeomorphic and has 
multiplicity i. Clearly, all the Ki's and ~i's are saturated. 

Theorem 2 of [3] asserts that if a continuous partition of bounded multiplicity is given on a con- 
nected manifold, then the partition elements of maximal multiplicity form an everywhere dense open 
set. Thus, Ki is nowhere dense if i is less than the maximal multiplicity m. Moreover, r with i > m 
may locally divide the manifold only if m is even (for i > 1 this is proven in [3, w 7]; the case i = 1 
is settled similarly on use made of Theorem 2 of [3]). Also, observe that  d i re r (Kin_l )  < n, where 
n is the dimension of the manifold. Indeed, since dim @i < n for i < m (because @i has no interior 
points (see [12, p. 69])) and f is locally homeomorphic on @i, it follows that  dim f(@i) < n. Since f 
is closed, f ( K i )  are closed and, because of @1 = K1, we successively obtain d imf (Ki )  < n for i < m 
(see [12, p. 55]). 

3. T h e  m a i n  l e m m a .  To prove Theorem 1.3, we first establish an analog of Lemma 3 of [4] in 
the case of continuous partitions. 
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3.1. Lemma. Le t  f : U --~ V be a pseudosubmersion of a bounded open connected set U C ]R n 
into a topological space V. Then 

D - max{min{llx - z[[: z �9 OU}: x �9 U} <_ C - s u p { d i a m f - l ( y ) :  y �9 V}. 

3.2. REMARK. Lemma 3.1 was formulated and used in [7] with a reference to a prel iminary 
version of the article [5]. However, in the very article [5] a considerably weaker assertion is proven (it 
is assumed that  V is a manifold without boundary).  Probably, the misunders tanding is caused by the 
fact that  the authors of [7] were acquainted only with a preliminary version of [5]. 

3.3. PROOF OF LEMMA 3. i .  Let rn stand for the maximal  multiplicity of the parti t ion. Construct  
a special mapping g : U ---+ R n that  associates the center of mass with the points of each part i t ion 

1 element.  To this end, put g(x) = -~ ~ xi for x �9 (I'm. Here and below, the summat ion  is assumed to 
be taken over all points xl of a part i t ion element. For all x �9 U, define the ramification number  w(x) 
as the maximal  multiplicity of the part i t ion induced on a sufficiently small neighborhood about x. 
Then ~ w(xi) = m. 

Verify soundness of the definition. If a neighborhood O of a point y �9 V is sufficiently small, then 
f - 1  (O) = UWi is a part i t ion ment ioned in Section 2.2. A continuous part i t ion is induced on every Wi. 
Denote by Si the union of the elements of maximal  multiplicity of the partition. Since Si is open and 
dense in Wi and since (I)m is open and dense in U, it follows that  Ri - Si N (I)m too is open and dense 
in W~. It is clear that  N~ f(R~) # o ,  and consequently the sum of the maximal  multiplicit ies of the 
partit ions on Wi equals m. 

Now, we in a unique fashion extend the function g to the whole of U by continuity: 

g(x):--i  ~w(xi)x{ for all x �9  
m 

Thus, the mapping g is continuous and is constant on the parti t ion elements; i.e., it admits  the 
commuta t ive  diagram 

U g . ]i{. n 

/ , /  
V 

Let B ( x , R )  = {z E R = : Iix - ziI < R} be an open ball. Suppose that  L e m m a  3.1 is false. 
Then D > C and there exists x0 E (I)m (since (I'm is everywhere dense) such that  B(x0, C + e) C U. 
Demonst ra te  that  the above-defined function g can be redefined so that  g(xo) = xo. Indeed, let 
f - l f ( x o )  = { x o , x l , . . . , x m - 1 }  and let the balls B(x j ,6 )  C (I'm be pairwise disjoint. Put  h.(x) = 
6-1[[x - xj[[ for x E B(x j ,6 ) ,  j # 0; h(x) = 1 for x �9 B(x0,6);  and h(x) = h ( x ) ( ~ h ( x i ) )  -1 for 
x �9 UB(xj ,6) .  It is now clear that  the function gl defined as gl(x) = ~-'~h(xi)xi for x �9 UB(xi ,6)  
and as g l (x)  = g(x) at the other points is continuous and admits a commutat ive  diagram analogous 
to diagram ( . )  too; moreover, gl (x0) = x0. 

Define a homotopy H : U x I ---+ R n by the equality H(x , t )  = tx + (1 - t)gl(x). We have 

xo = H(xo , I )  q~ H(U \ B(xo, C + ~ /2) , I ) ,  

for otherwise x0 = t x + ( 1 - t ) g l ( x ) f o r  some x ~ B(xo, C+r  C < IIx0-xll ( 1 - 0  E h(x~)ll~- 
�9 ll 1 R "  < C. Consequently, H -  (x0) is closed in x I and is thus compact. Now, we can assert that  
degz 0 gl = 1 for every ring of coefficients. Observe that  deg v f = 0 for all y E f((~m) C V and for the 
coefficient ring Zp, where p is a minimal  pr ime divisor of m, since f on (I)m is a covering and either 
0m is connected or m is odd. If we known that  xo = g~(xo) q~ g(Km-1) ,  we would have the  equali ty 
deg~ 0 gl = 0 for the ring Zp and thereby arrive at a contradiction proving the lemma. 

The closed set N = f (Km-1 )  has dimension less than n; therefore (see [12, p. 108]), the  point 
x0 E R. n is an unstable value of the mapping .ql IN : N ---+ lit.n; i.e., there are arbitrarily close mappings 
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(in the uniform metric) from N into R n not containing xo in the range. By normality (metrizability) 
of V, any such mapping can be extended to V, with the value at the point uo = f(xo) preserved and the 
distance to gl not increased. Take a mapping g2 : V ---* R n such that,  for the corresponding mapping 
g2 = g in a diagram of the form (*), the homotopy H2(x, t) = xt + (1 - t)g2(x) possesses the property 
H21(xo) C B(xo, C + e/4). Then H{-](xo) is compact and deg,0 g2 = 1 for every ring of coefficients. 
However, since g2 remained constant on the partition elements and xo = g2(xo) ~ g2(Km-1), we have 
degx 0 g2 = 0 for the coefficient ring Zv, which proves the lemma. 

4. P r o o f  of  T h e o r e m  1.3. Denote by F the union of the partition elements that  are singletons. 
The set F is closed. For each manifold Ai the following alternative holds: either Ai C F or Ai V) F is 
nowhere dense in Ai. Indeed, if we had int(Ai N F) ~ O and Ai ~ F, then we would take a saturated 
neighborhood U of a point on the boundary of int(Ai N F) such that  U C A i .  But then on the 
manifold U we would have a nontrivial continuous partition for which the set of singleton elements 
has a nonempty interior, contradicting [3, Theorem 2]. 

Take a chart ~oi : C1B(0,2) --+ Ai in each Ai. There exists ei > 0 enjoying the properties: 
(1) if x', z' C ~i(Cl B(0,2)) and d(x',z') < ~i then 

~ i - l ( x ' )  -- ~ i - l ( z ' )  < 1; 

(2) if d(x,~oi(B(O, 1))) < ei then x e ~i(B(0,2)).  
Put ~ = mine/  over i. Now, assume d i a m f - l ( y )  < ~ for all y C Y. If the partition is nontrivial 
then Ai0 ~ F for some i0 and, consequently, Aio N F is nowhere dense in Aio. But then the partition 
induced on the set 

U = (~01 o f - a  o f o ~ i 0 ) ( B ( 0 , 1 ) ) C  B(0,2) 

is nontrivial, contradicting Lemma 3.1. 
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